Two-Step Matching Method Based on Co-Occurrence Scale Space Combined with Second-Order Gaussian Steerable Filter
Abstract
:1. Introduction
- A multimodal feature matching algorithm called G-CoFTM is developed, which is superior to the current state-of-the-art matching algorithms in terms of success rate, efficiency, and the number of correct matches.
- We design a co-occurrence scale space combined with second-order Gaussian steerable filtering, which can improve the image similarity while better retaining the edge and detailed features of the image.
- A two-step matching strategy is adopted, and the 3DPC descriptor is optimized to increase the number of correct matches and to reduce registration errors.
2. Related Works
3. Methodology
3.1. Co-Occurrence Scale Space Construction Combined with Second-Order Gaussian Steerable Filter
3.1.1. Co-Occurrence Scale Space Construction
3.1.2. Co-Occurrence Scale Space Combined with Second-Order Steerable Filter
3.2. Feature Point Extraction Based on Phase Congruency
3.3. Improved Log-Polar Descriptor
3.3.1. Improved Gradient Feature and Feature Direction
3.3.2. Improved Log-Polar Descriptor
3.4. Extended 3D Phase Correlation Similarity Metrics
3.4.1. Image Preprocessing
3.4.2. Optimized 3DPC Descriptor Construction Image Preprocessing
3.4.3. Template Matching
4. Experiment and Analysis
4.1. Data Description
4.2. Evaluation Indices
4.3. Parameter Study
4.4. Performance Evaluation
4.4.1. Qualitative Comparisons
4.4.2. Quantitative Comparisons
5. Discussion
5.1. Performance Analysis
5.2. Influence Analysis of Rough Matching on the Final Result
5.3. Fusion and Registration Performance Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Xu, W.; Shi, P.; Zhang, Y.; Hu, Q. LNIFT: Locally Normalized Image for Rotation Invariant Multimodal Feature Matching. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Alam, F.; Rahman, S.U. Challenges and Solutions in Multimodal Medical Image Subregion Detection and Registration. J. Med. Imaging Radiat. Sci. 2019, 50, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.L.G.; Batchelor, P.G.; Holden, M.; Hawkes, D.J. Medical image registration. Phys. Med. Biol. 2001, 46, R1–R45. [Google Scholar] [CrossRef] [PubMed]
- Yogheedha, K.; Nasir, A.; Jaafar, H.; Mamduh, S. Automatic vehicle license plate recognition system based on image processing and template matching approach. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; pp. 1–8. [Google Scholar]
- Markiewicz, J.; Abratkiewicz, K.; Gromek, A.; Samczynski, W.; Gromek, D. Geometrical Matching of SAR and Optical Images Utilizing ASIFT Features for SAR-based Navigation Aided Systems. Sensors 2019, 19, 5500. [Google Scholar] [CrossRef] [Green Version]
- Hou, B.; Wang, J.; Zhou, H. Navigation landmark recognition and matching algorithm based on the improved SURF. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1356–1361. [Google Scholar]
- Zhou, K.; Lindenbergh, R.; Gorte, B.; Zlatanova, S. LiDAR-guided dense matching for detecting changes and updating of buildings in Airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 200–213. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Connette, G.M.; Oswald, P.; Webb, E.L. Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sens. 2018, 10, 306. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Gong, M.; Zhan, T.; Yang, Y. A Conditional Adversarial Network for Change Detection in Heterogeneous Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 45–49. [Google Scholar] [CrossRef]
- Touati, R.; Mignotte, M.; Dahmane, M. Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise Based Markov Random Field Model. IEEE Trans. Image Process. 2019, 29, 757–767. [Google Scholar] [CrossRef]
- Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 1997, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Bay, H.; Tuytelaars, T.; van Gool, L. SURF: Speeded Up Robust Features. In Computer Vision–ECCV 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [Google Scholar]
- Viola, P.; Wells, W.M., III. Alignment by maximization of mutual information. Int. J. Comput. Vision 1997, 24, 137–154. [Google Scholar] [CrossRef]
- Ye, Y.; Shen, L. HOPC: A novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; pp. 9–16. [Google Scholar]
- Ye, Y.; Shan, J.; Bruzzone, L.; Shen, L. Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2941–2958. [Google Scholar] [CrossRef]
- Dellinger, F.; Delon, J.; Gousseau, Y.; Michel, J. SAR-SIFT: A SIFT-Like Algorithm for SAR Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hu, Q.; Ai, M. RIFT: Multimodal image matching based on radiation-variation insensitive feature transform. IEEE Trans. Image Process. 2020, 29, 3296–3310. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. LIFT: Learned invariant feature transform. In Computer Vision—ECCV 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 467–483. [Google Scholar]
- Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; Sattler, T. D2-net: A trainable cnn for joint description and detection of local features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 8092–8101. [Google Scholar]
- Efe, U.; Ince, K.G.; Alatan, A. Dfm: A performance baseline for deep feature matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual Event, 19–25 June 2019. [Google Scholar]
- Yu, K.; Zheng, X.; Duan, Y. NCFT: Automatic Matching of Multimodal Image Based on Nonlinear Consistent Feature Transform. IEEE Trans. Geosci. Remote Sens. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Jevnisek, R.; Shai, A. Co-occurrence Filter. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Yao, Y.; Zhang, Y.; Wan, Y.; Liu, X.; Yan, X.; Li, J. Multi-Modal Remote Sensing Image Matching Considering Co-Occurrence Filter. IEEE Trans. Image Process. 2022, 31, 2584–2597. [Google Scholar] [CrossRef]
- Jiang, Y. Optical/SAR image registration based on cross-correlation with multi-scale and multi-direction Gabor characteristic matrixes. In Proceedings of the 2013 IET International Radar Conference (IRC), Xi’an, China, 14–16 April 2013; pp. 1–4. [Google Scholar]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K. Multimodal remote sensing images registration with accuracy estimation at local and global scales. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6587–6605. [Google Scholar] [CrossRef] [Green Version]
- Suri, S.; Reinartz, P. Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas. IEEE Trans. Geosci. Remote Sens. 2010, 48, 939–949. [Google Scholar] [CrossRef]
- Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and robust matching for multimodal remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Tao, R.; Wan, L.; Wang, F.; You, H. OS-PC: Combining feature representation and 3-D phase correlation for subpixel optical and SAR image registration. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6451–6466. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Ke, Y.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. CVPR 2004, 4, 506–513. [Google Scholar]
- Sedaghat, A.; Ebadi, H. Remote sensing image matching based on adaptive binning SIFT descriptor. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5283–5293. [Google Scholar] [CrossRef]
- Xiong, X.; Jin, G.; Xu, Q.; Zhang, H. Self-similarity features for multimodal remote sensing image matching. IEEE J.-STARS. 2021, 14, 12440–12454. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Wan, Y.; Liu, X.; Guo, H. Heterologous Images Matching Considering Anisotropic Weighted Moment and Absolute Phase Orientation. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1727–1736. [Google Scholar]
- Yang, W.; Xu, C.; Mei, L.; Yao, Y.; Liu, C. LPSO: Multi-source image matching considering the description of local phase sharpness orientation. IEEE Photonics J. 2022, 14, 7811109. [Google Scholar] [CrossRef]
- Hughes, L.; Schmitt, M.; Zhu, X. Mining hard negative samples for SAR-optical image matching using generative adversarial networks. Remote Sens. 2018, 10, 1552. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Quan, D.; Liang, X.; Ning, M.; Guo, Y.; Jiao, L. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 2018, 145, 148–164. [Google Scholar] [CrossRef]
- Han, Z.; Weiping, N.; Weidong, Y.; Deliang, X. Registration of multimodal remote sensing image based on deep fully convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3028–3042. [Google Scholar]
- Ye, F.; Su, Y.; Xiao, H.; Zhao, X.; Min, W. Remote sensing image registration using convolutional neural network features. IEEE Geosci. Remote Sens. Lett. 2018, 15, 232–236. [Google Scholar] [CrossRef]
- Ma, W.P.; Wen, Z.L.; Wu, Y.; Jiao, L.C.; Gong, M.G.; Zheng, Y.F.; Liu, L. Remote sensing image registration with modified SIFT and enhanced feature matching. IEEE Geosci. Remote Sens. Lett. 2017, 14, 3–7. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, J.; Wu, Y.; Jiao, L.; Zhu, H.; Zhao, W. A Novel Two-Step Registration Method for Remote Sensing Images Based on Deep and Local Features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale-space theory: A basic tool for analyzing structures at different scales. J. Appl. Stat. 1994, 21, 225–270. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Bai, Z.; Tang, T. A robust multimodal remote sensing image registration method and system using steerable filters with first- and second-order gradients. ISPRS J. Photogramm. Remote Sens. 2022, 188, 331–350. [Google Scholar] [CrossRef]
- Studholme, C.; Hill, D.L.G.; Hawkes, D.J. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 1999, 32, 71–86. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Proc. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Ye, Y.; Zhou, L.; Li, Z.; Yin, G. Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features. ISPRS J. Photogramm. Remote Sens. 2021, 181, 129–147. [Google Scholar] [CrossRef]
- Yu, B.; Gabriel, D.; Noble, L.; An, K.-N. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J. Appl. Biomech. 1999, 15, 318–329. [Google Scholar] [CrossRef]
- Kovesi, P. Image features from phase congruency. Videre J. Comput. Vis. Res. 1999, 1, 1–26. [Google Scholar]
- Kuglin, C.D. The phase correlation image alignment method. In Proceedings of the International Conference on Cybernetics and Society/IEEE Systems, Man, and Cybernetics Society, New York, NY, USA, 26–28 October 1975. [Google Scholar]
- Wan, G.; Wang, Y.; Wang, T.; Zhu, N.; Zhang, R.; Zhong, R. Automatic Registration for Panoramic Images and Mobile LiDAR Data Based on Phase Hybrid Geometry Index Features. Remote Sens. 2022, 14, 4783. [Google Scholar] [CrossRef]
Experiments | Variable | Fixed Parameters |
---|---|---|
parameter | , | |
parameter | , | |
parameter | , |
Metric | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
NCM | 719 | 1540 | 1586 | 1068 | 1226 |
SR/ | 100 | 100 | 100 | 100 | 100 |
Metric | |||||
---|---|---|---|---|---|
56 | 64 | ||||
NCM | 534 | 1071 | 1586 | 1960 | 1629 |
SR/ | 97.8 | 100 | 100 | 100 | 100 |
Metric | |||||
---|---|---|---|---|---|
84 | 96 | 108 | 120 | 132 | |
NCM | 947 | 1059 | 1586 | 1457 | 1381 |
SR/ | 100 | 100 | 100 | 100 | 100 |
Method | SR/ | |||||||
---|---|---|---|---|---|---|---|---|
Optical–Optical | Optical–Infrared | Optical–Depth | Optical–Map | Optical–SAR | Day–Night | Scale | Rotation | |
G-CoFTM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
CoFSM | 100 | 100 | 70 | 100 | 90 | 70 | 70 | 60 |
RIFT | 100 | 100 | 100 | 100 | 100 | 100 | 50.5 | 100 |
HAPCG | 100 | 100 | 79.6 | 59.9 | 100 | 70 | 36.8 | 10 |
LPSO | 90 | 90 | 80 | 80 | 60 | 70 | 49.8 | 22.5 |
Method | ||||||||
---|---|---|---|---|---|---|---|---|
Optical–Optical | Optical–Infrared | Optical–Depth | Optical–Map | Optical–SAR | Day–Night | Scale | Rotation | |
G-CoFTM | 1917.5 | 3003.8 | 1755.9 | 2061 | 1631.2 | 1150.1 | 1890.4 | 1479.3 |
CoFSM | 556 | 647.4 | 223 | 368.1 | 172 | 335.5 | 177.5 | 318.1 |
RIFT | 267.7 | 324.6 | 172.2 | 94.9 | 151.3 | 79.7 | 14.9 | 189.1 |
HAPCG | 317.9 | 468.3 | 195.7 | 242.3 | 178.2 | 153.8 | 116.1 | 57.6 |
LPSO | 113.16 | 189.1 | 74.6 | 171.7 | 68.6 | 74.7 | 155.1 | 59.3 |
Method | ||||||||
---|---|---|---|---|---|---|---|---|
Optical–Optical | Optical–Infrared | Optical–Depth | Optical–Map | Optical–SAR | Day–Night | Scale | Rotation | |
G-CoFTM | 1.004 | 0.890 | 1.129 | 0.990 | 1.093 | 1.169 | 1.017 | 1.074 |
CoFSM | 1.900 | 1.853 | 4.358 | 1.801 | 2.800 | 4.367 | 4.426 | 5.087 |
RIFT | 1.891 | 2.027 | 1.921 | 1.903 | 2.599 | 2.084 | 6.621 | 1.926 |
HAPCG | 1.853 | 1.836 | 3.696 | 4.380 | 1.945 | 4.357 | 7.532 | 9.193 |
LPSO | 2.632 | 2.810 | 2.630 | 3.431 | 3.735 | 5.084 | 5.803 | 8.353 |
Criteria | Optical– Optical | Optical– Infrared | Optical–Depth | Optical–Map | Optical–SAR | Day–Night | Scale | Rotation |
---|---|---|---|---|---|---|---|---|
238.6 | 455.6 | 178.4 | 257.1 | 160.7 | 120.9 | 79.3 | 265.5 | |
1.764 | 1.822 | 1.852 | 1.843 | 1.909 | 1.868 | 1.841 | 1.843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, G.; Zhong, R.; Wu, C.; Xu, Y.; Ye, Z.; Yu, K. Two-Step Matching Method Based on Co-Occurrence Scale Space Combined with Second-Order Gaussian Steerable Filter. Remote Sens. 2022, 14, 5976. https://doi.org/10.3390/rs14235976
Wan G, Zhong R, Wu C, Xu Y, Ye Z, Yu K. Two-Step Matching Method Based on Co-Occurrence Scale Space Combined with Second-Order Gaussian Steerable Filter. Remote Sensing. 2022; 14(23):5976. https://doi.org/10.3390/rs14235976
Chicago/Turabian StyleWan, Genyi, Ruofei Zhong, Chaohong Wu, Yusheng Xu, Zhen Ye, and Ke Yu. 2022. "Two-Step Matching Method Based on Co-Occurrence Scale Space Combined with Second-Order Gaussian Steerable Filter" Remote Sensing 14, no. 23: 5976. https://doi.org/10.3390/rs14235976
APA StyleWan, G., Zhong, R., Wu, C., Xu, Y., Ye, Z., & Yu, K. (2022). Two-Step Matching Method Based on Co-Occurrence Scale Space Combined with Second-Order Gaussian Steerable Filter. Remote Sensing, 14(23), 5976. https://doi.org/10.3390/rs14235976