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Abstract: Multimodal images refer to images obtained by different sensors, and there are serious
nonlinear radiation differences (NRDs) between multimodal images for photos of the same object.
Traditional multimodal image matching methods cannot achieve satisfactory results in most cases.
In order to better solve the NRD in multimodal image matching, as well as the rotation and scale
problems, we propose a two-step matching method based on co-occurrence scale space combined
with the second-order Gaussian steerable filter (G-CoFTM). We first use the second-order Gaussian
steerable filter and co-occurrence filter to construct the image’s scale space to preserve the image’s
edge and detail features. Secondly, we use the second-order gradient direction to calculate the images’
principal direction, and describe the images’ feature points through improved GLOH descriptors.
Finally, after obtaining the rough matching results, the optimized 3DPC descriptors are used for
template matching to complete the fine matching of the images. We validate our proposed G-CoFTM
method on eight different types of multimodal datasets and compare it with five state-of-the-art
methods: PSO-SIFT, CoFSM, RIFT, HAPCG, and LPSO. Experimental results show that our proposed
method has obvious advantages in matching success rate (SR) and the number of correct matches
(NCM). On eight different types of datasets, compared with CoFSM, RIFT, HAPCG, and LPSO, the
mean SRs of G-CoFSM are 17.5%, 6.187%, 30.462%, and 32.21%, respectively, and the mean NCMs are
5.322, 11.503, 8.607, and 16.429 times those of the above four methods.

Keywords: multimodal image matching; nonlinear radiation distortions; co-occurrence filter; second-
order Gaussian steerable filter

1. Introduction

Image matching refers to the detection of reliable corresponding feature relation-
ships from images of the same scene collected at different times from different sensors
or perspectives [1]. At present, image matching is widely used in medical image anal-
ysis [2,3], intelligent transportation [4], visual navigation and positioning [5,6], change
monitoring [7–10], and other fields. Image matching has made great progress in recent
years. However, most of the matching methods, such as scale-invariant feature trans-
form (SIFT) [11], speeded-up robust features (SURF) [12], histogram of oriented gradient
(HOG) [13], and others can only be applied to images collected by the same sensor device,
and how to accurately align images of the same scene collected by different sensors is still a
big challenge.

Multimodal images refer to images acquired by sensors with different imaging mecha-
nisms, showing significant differences on the same ground object, usually with severe NRD,
such as synthetic aperture radar (SAR) optical, infrared–optical, depth–optical, map–optical,
etc. [1]. In order to solve the matching problem of multimodal images, scholars have carried
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out a lot of research on it. Multimodal image matching methods are generally divided
into area-based, feature-based, and deep learning. Area-based methods include mutual
information (MI) [14] and histogram of orientated phase congruency (HOPC) [15,16], etc.
HOPC uses phase congruency to highlight the edge features of the images, and robustly
completes the matching work using template matching. Such methods generally use
template matching, and it is difficult to obtain a good matching effect when the image is
zoomed, rotated, and changed in perspective.

In contrast, the feature-based approach can better handle the scaling, rotation, and
viewing angle differences between images. Dellinger et al. [17] proposed to use the ratio of
pixel points instead of the difference to generate new gradient features, and to use log-polar
coordinate descriptors to describe feature points. This method improves the adaptability of
SIFT but still cannot deal with images with large speckle noise. Li et al. [18] used phase
information to create a maximum index map (MIM), and the proposed radiation-invariant
feature transform (RIFT) initially solves the problem of image rotation and perspective
change. The method based on deep learning [19–21] has better matching speed and effect
than the above two methods, but its matching effect depends on the training samples. It is
not easy to obtain comprehensive and extensive training samples.

Due to the geometric distortion and NRD between multimodal images, obtaining
the corresponding feature points in traditional matching methods is difficult. In contrast,
the edge information of the image can better reflect the characteristics of the image and
improve the similarity between the descriptors. For example, HOPC, RIFT, and NCFT [22]
use phase information to extract the edge features of images to complete matching. A
co-occurrence filter (CoF) [23] is an edge-preserving filter that aims to detect the boundaries
between image textures and smooth edges within textured regions. CoF does not cross the
boundaries between surfaces, and avoids smoothing across texture boundaries by using a
normalized co-occurrence matrix to assign higher weights to frequently occurring pixel
values. CoFSM [24] uses CoF to reduce the NRD between images, extract edge information,
and perform robust matching. In this paper, in order to better solve the problems of NRD,
rotation, and scale in multimodal image matching, we use the second-order Gaussian
steerable filter combined with the co-occurrence filter to generate scale space to improve
the edge information and detail features of the image. At the same time, for the problem
where the distribution of matching points is not wide enough, a two-step matching strategy
is introduced to improve the reliability and accuracy of image matching.

The main contributions of this paper are as follows:

1. A multimodal feature matching algorithm called G-CoFTM is developed, which is
superior to the current state-of-the-art matching algorithms in terms of success rate,
efficiency, and the number of correct matches.

2. We design a co-occurrence scale space combined with second-order Gaussian steerable
filtering, which can improve the image similarity while better retaining the edge and
detailed features of the image.

3. A two-step matching strategy is adopted, and the 3DPC descriptor is optimized to
increase the number of correct matches and to reduce registration errors.

The rest of this article is organized as follows. Section 2 provides a review of existing
multimodal image registration algorithms. Section 3 introduces our proposed G-CoFSM
algorithm. Section 4 analyzes the experimental results of our algorithm and five other
state-of-the-art algorithms on eight types of multimodal datasets. Section 5 presents the
performance analysis of our algorithm and the comparison algorithms, and discusses the
experimental results of our algorithm in the coarse matching stage. Finally, Section 6
provides our conclusions.

2. Related Works

In this section, we review the existing multimodal image matching algorithms in detail.
According to the classification, multimodal image matching algorithms can be divided into
area-based, feature-based, and deep-learning methods.
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Area-based methods. The key to area-based methods is to establish an effective
similarity measure by treating a predefined window on the image as a local template (or
treating the entire image as a local template), and using this local template as a feature
for matching. Traditional area-based matching methods include MI, the normalized cross-
correlation (NCC) [25], and the sum of squared differences (SSD) [26]. These methods
search for each region feature in the entire search space and complete the matching by
comparing the similarity between the two selected region features. However, among the
above algorithms, it is difficult to handle NRD for NCC and SSD between multimodal
images [27]. Although MI can solve the impact of NRD to a certain extent, the calculation
of MI is very time-consuming [28]. At the same time, MI also has the problem of easily
falling into a local optimum. Aiming at the problem of NRD between multimodal images
that cannot be handled in the spatial domain, scholars solve this problem by transforming
the images into the frequency domain. Ye et al. proposed a novel pixel-level feature
based on image-oriented gradients called the channel feature of the orientated gradients
(CFOG) [29], which achieved good results. Xiang et al. combined robust features from
optical and SAR images with 3D phase congruency (OS-PC) [30] to improve the robustness
and accuracy of matching. Although the use of image frequency information can better
solve the problem that traditional methods cannot handle NRD between multimodal
images, region-based methods still fail when dealing with rotation, scaling, and viewing
angle differences between images.

Feature-based methods. Feature-based methods extract salient structural features
from images, including point, line, and surface features, and match them according to
the similarity between the descriptors of each element. The current classic feature-based
methods include SIFT, SURF, ORB [31], and so on. SIFT finds feature points in the scale
space by constructing a Gaussian scale space, and uses the gradient histogram to describe
the features. SIFT is widely used in the matching of optical images due to its robustness
to illumination, rotation scale, and noise. Since SIFT was proposed, many derivative algo-
rithms of SIFT have been developed. PAC-SIFT [32] utilizes principal component analysis
to reduce the dimensionality of descriptors and reduce the space and time complexity. SAR-
SIFT uses the ratio of pixel points instead of difference to generate new gradient features,
and uses log-polar coordinate descriptors to describe feature points, which improves the
adaptability of SIFT. Adaptive binning scale-invariant feature transform (AB-SIFT) uses
adaptive column histograms to generate feature descriptors, making it better able to cope
with radial geometric distortions [33]. Unlike SIFT and its derived algorithms, SURF uses a
box filter with very little computation to replace the second-order Gaussian partial deriva-
tive, which speeds up the matching. However, these methods are generally not well suited
for matching between multimodal images, which suffer from severe NRD [34]. Recently, the
RIFT proposed by Li [18] can better solve the NRD between images of different modalities.
Still, this method cannot handle the scaling problem between images because it does not
construct scale space. At the same time, the performance of RIFT is not satisfactory for
large rotation angles. To solve the scale problem between multimodal images, Yao et al. [35]
proposed the histogram of absolute phase consistency gradients (HAPCG), which uses the
phase consistency directions and Gaussian scale space to complete the matching problem
of multimodal images. Yang et al. [36] used the modified phase sharpness direction as the
main direction of the feature descriptor, and established a local phase sharpness orientation
(LPSO) descriptor using log-polar coordinates. On this basis, to better solve the problem
of rotation between images, Yao et al. [24] used CoF to reduce the NRD between images,
extract edge information, and perform robust matching. However, although this method
can handle scale and rotation differences to a certain extent, there is still the possibility
of matching failure in some scenarios. Although the above feature-based methods have
different degrees of robustness to translation, scaling, and rotation differences between mul-
timodal images, the methods’ performance decreases significantly when multiple problems
exist simultaneously.
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Deep-learning methods. With the rapid development of deep learning, deep learning
has also been applied to the matching of multimodal images [37–39]. Ye et al. [40] used
a deep convolutional neural network (CNN) combined with SIFT to generate combined
features from images, and incorporated them into the PSO-SIFT [41] for matching. Ma
et al. adopted a two-step matching strategy, first using CNN to calculate the spatial
approximation between images. Then, combined with hand-crafted local features, the
matching relation and transformation matrix are further adjusted [42]. Deep learning
methods need to label and train many images, thus consuming many computing resources.
At the same time, the lack of training sample scene types will also affect the final results.
Therefore, deep-learning methods still require further research.

In a word, multimodal image matching has made great progress in template matching,
classical feature methods, and deep learning, but there are still great challenges in multi-
modal image matching, mainly focusing on two aspects: (1) traditional feature descriptors
cannot accurately describe feature points, leading to matching failure; and (2) since the
NRD between multimodal images is significant, the main direction of images cannot be
well calculated.

In order to solve the above two problems, this paper introduces a new multimodal
image matching method, which uses the Gθ

2,σ − CoF construct the scale space of the image,
better retains the contour information of the image and calculates the main direction, and
uses optimized feature descriptors to enhance the description of feature points to achieve
effective matching.

3. Methodology

This paper proposes a two-step matching algorithm based on co-occurrence scale
space combined with the second-order Gaussian steerable filter called G-CoFTM. We first
combine the second-order Gaussian steerable filter and co-occurrence filter to construct
the scale space of the image. Then, the preliminary matching of the image is completed
by using the second-order gradient of the image and the improved GLOH descriptor to
describe the features. Finally, based on preliminary matching, a more accurate matching
is performed by using the optimized 3DPC descriptor combined with the preliminary
matching results. Figure 1 shows the flow of our entire method.

Figure 1. The framework of the matching process.
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3.1. Co-Occurrence Scale Space Construction Combined with Second-Order Gaussian
Steerable Filter

The scale of the image refers to the thickness of the image content. The image is
constructed via convolution with continuous Gaussian kernels [43] to construct scale
space by extracting the contour information of the image. Noise suppression and edge
preservation are two critical metrics for scale space construction. To effectively preserve
image edge information and to remove image noise, we propose a co-occurrence scale
space combined with a second-order Gaussian steerable filter. The co-occurrence filter is
an edge filter that preserves the texture boundary information of the image. The second-
order Gaussian steerable filter is a linear steerable filter used to preserve the local spatial
information of the image and to smooth the image to improve the anti-interference ability
to noise.

When we construct the co-occurrence scale space combined with the second-order
Gaussian steerable filter, we first calculate the co-occurrence scale space and obtain scale
images. Then, we use the second-order Gaussian steerable filter to perform continuous
convolution operation on the original image to obtain a smoothed Gaussian image. Finally,
the two images are subtracted to obtain the final co-occurrence scale space, combined with
the second-order Gaussian steerable filter. Since we use the co-occurrence filter to preserve
the image’s edge information and remove the local information using the second-order
Gaussian steerable filter, our scale space keeps only the details and edge parts, which are
crucial for multimodal image matching.

3.1.1. Co-Occurrence Scale Space Construction

The definition of CoF is shown in Equation (1):

Jp =
∑q∈N(p) Gσs(p, q)·M

(
Ip, Iq

)
·Iq

∑q∈N(p) Gσs(p, q)·M
(

Ip, Iq
) (1)

where Jp and Iq are the pixel values of the image output and input, p, q are the index posi-
tions of the pixel in the image, Gσs(p, q)·M

(
Ip, Iq

)
is the weight of the co-occurrence of pixel

q to the output of pixel p, Gσs(p, q) is the Gaussian filter with scale σs, M
(

Ip, Iq
)

represents
the calculation result of the normalized co-occurrence matrix, and M is a 256 × 256 matrix.
The equation is shown in Equation (2):

M(a, b) = C(a,b)
h(a)h(b)

C(a, b) = ∑
p,q

exp
(
− d(a,b)2

2σo2

)[
Ip = a

][
Iq = b

]
h(a) = ∑

p

[
Ip = a

]
, h(b) = ∑

q

[
Iq = b

] (2)

In Equation (2), the calculation of M(a, b) relies on the co-occurrence matrix C(a, b),
the number of co-occurrences of the calculated values a and b divided by their frequencies
h(a), h(b). σ0 is a fixed value in the calculation of this paper; σ0 = 2

√
5 + 1; [·] means 1 if

the expression in parentheses is true and 0 otherwise.
The scale image of each layer in the co-occurrence scale space can be obtained using

Equations (1) and (2). Divide the scale space into S layers, then the scale of each layer
scale image is defined as follows: σsn = σs0 ·

3
√

2n, (n = 0, 1, 2 . . . n); σs0 represents the
scale of the first layer image in scale space, and S represents the scale-space layers of the
multimodal image. Because we need to define the size of each local window when using
co-occurrence filtering to process images, the local window size of each layer scale image
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can be calculated from the window of the first layer scale image and the scale of each layer
image. The definition is shown in Equation (3): OCn = σsn

2·NO
2

CoFSpace =
{

OCn·Jn
p

}N

n=0

(3)

where CoFSpace represents the co-occurring scale space; OCn represents the local window
size of the first-level scale image, NO represents the initial window size of the co-occurrence
filter (set as 5 in this paper), N represents the number of layers of the scale image in the
scale space, and Jn

p represents the nth multimodal image after co-occurrence filtering.

3.1.2. Co-Occurrence Scale Space Combined with Second-Order Steerable Filter

The steerable filter can realize the adaptive control of the filter by adjusting different
angles, and has the characteristics of linearity, multi-direction, and multi-scale, thus provid-
ing more details in the image information of direction and edge [44]. Compared with the
first-order gradient, the second-order gradient can better describe the local information of
the image. The second-order Gaussian steerable filter is defined as follows:

G0
◦

2,σ = Gxx =
(
− 1

2πσ4

)(
1− x2

σ2

)
e
−(x2+y2)

2σ2

G90
◦

2,σ = Gyy =
(
− 1

2πσ4

)(
1− y2

σ2

)
e
−(x2+y2)

2σ2

Gxy = xy
2πσ6 e

−(x2+y2)
2σ2 , G60

◦

2,σ = Gyy − Gxy, G120
◦

2,σ = Gyy + Gxy

Gθ
2,σ = cos2(θ)G0

◦

2,σ + sin2(θ)G60
◦

2,σ − 2cos(θ)sin(θ)G120
◦

2,σ

(4)

where G0
◦

2,σ, G60
◦

2,σ and G120
◦

2,σ are used as the basic filter of Gθ
2,σ filter, and the Gθ

2,σ filter in all
directions can be composed of these three filters. σ represents the scale of the second-order
Gaussian steerable filter. To better collect the local spatial information of the image, we
sum the convolutions in six directions

(
0, π

6 , 2π
6 , 3π

6 , 4π
6 , 5π

6

)
of the image.

The co-occurrence scale space combined with the second-order Gaussian steerable
filter is constructed using a second-order Gaussian steerable filter and co-occurrence scale
images. The co-occurrence scale space definition combined with the second-order Gaussian
steerable filter is defined in Equation (5): Gθ

2,σ − CoFSpace =
{

6·OCn·Jn
p −∑

θ
Gθ

2,σGn
∗ In

}N

n=0
In = Gθ

2,σGn−1
∗ In−1, n = (1, 2, . . . , N)

(5)

In Equation (5), Gθ
2,σ − CoFSpace represents the image set of co-occurrence scale

space combined with the second-order Gaussian steerable filter, OCn·Jn
p represents the co-

occurrence scale image of the n-th layer, θ is the convolution direction of the second-order
Gaussian steerable filter, ∗ represents the convolution operation, and σGn represents the
scale of the second-order Gaussian steerable filter of each layer of images. In this paper,
σGn = σsn ; In represents the image that each layer participates in the second-order Gaussian
steerable filter convolution. When n = 1, I0 is the original input image.

In theory, since we use Gθ
2,σ − CoF to reduce the NRD between images, the processed

image to be registered should be closer to the reference image than the unprocessed image to
be registered. That is to say, they have a better similarity. To test our conjecture, we selected
18 pairs of images from six types of multimodal image pairs: optical–infrared, optical–
depth, optical–map, optical–SAR, day–night, and optical–optical to test. Each image pair
is pre-registered. Figure 2 shows a pair of original images (Figure 2a), Gθ

2,σ − CoF filtered
images (Figure 2b,c), and the normalized mutual information (NMI) [45] and structural
similarity (SSIM) [46] scores of the selected 18 pairs of images. As shown in Figure 2d,e, the



Remote Sens. 2022, 14, 5976 7 of 27

images after Gθ
2,σ − CoF filtering and CoF filtering have better NMI and SSIM scores than

the original images. That is to say, after filtering, the resulting images will become more
similar. From Figure 2, we can find that although the image using Gθ

2,σ − CoF filtering has
a slightly lower score on NMI than the image using CoF filtering. The score on SSIM is
much higher than that using the CoF filtering image, which also shows that our method
can better preserve the structural features of the image. At the same time, combining
Figure 2d,e, we found that compared with images in other modes, NMI and SSIM in the
optical–map mode (7–9) have the best scores, because the image structure information in
the optical–map mode is more suited for highlighting. With the day–night mode (13–15),
although the original images have the worst NMI and SSIM scores, they also significantly
improved after filtering with Gθ

2,σ − CoF. Therefore, it is necessary to construct the scale
space using Gθ

2,σ − CoF.

Figure 2. The effect diagram of Gθ
2,σ−CoF filtering, and the comparison results of Gθ

2,σ−CoF filtering
and CoF filtering: (a) Original image pair; (b) The image after Gθ

2,σ − CoF filtering; (c) Image after
Gθ

2,σ − CoF filtering twice; (d) NMI scores for Gθ
2,σ − CoF filtering and CoF filtering; (e) SSIM scores

for Gθ
2,σ − CoF filtering and CoF filtering.

3.2. Feature Point Extraction Based on Phase Congruency

In this part, we use the phase information of images to detect edge and corner fea-
tures [18]. The calculation equation of phase congruency is as follows:

PC(x, y) = ∑o ∑n Wo(x, y)bAno(x, y)∆Φno(x, y)− Tc
∑o ∑n Ano(x, y) + ε

(6)

where PC(x, y) is the magnitude of phase congruency, (x, y) is the pixel index of any point
on the image, Ano(x, y) is the amplitude of the image at (x, y) after wavelet transformation
with scale n and direction o, and ∆Φno(x, y) is a more sensitive phase deviation. Wo(x, y)
is the weighting factor used to measure the two-dimensional frequency spread, T is a noise
threshold, and ε is a small constant to avoid zero denominators in the calculations. b c denotes
that the enclosed quantity is equal to itself when its value is positive, and zero otherwise.

It can be known from the moment analysis method that the minimum moment diagram
can display the direction information of the image features; the maximum moment diagram
can reflect the saliency of the image features. We construct a weighted moment map,
taking local anisotropy features into account according to the maximum moment and the
minimum moment, and the calculation results are as follows:

Mmax =
1
2

(
c + a +

√
b2 + (a− c)2

)
(7)
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Mmin =
1
2

(
c + a−

√
b2 + (a− c)2

)
(8)

Mpc =
1
2
(Mmax + Mmin) +

k
2
(Mmax −Mmin) (9)

where
a = ∑

θ

(pc(θ)cos(θ))2 (10)

b = 2 ∑
θ

(pc(θ)cos(θ))(pc(θ)sin(θ)) (11)

c = ∑
θ

(pc(θ)sin(θ))2 (12)

where Mmax represents the edge map of the image, Mmin represents the corner map, Mpc is
the final weighted moment graph, and k is the weight coefficient, which is used to measure
the value ratio of the maximum moment graph and the minimum moment graph, and the
value of k is between −1 and 1; a, b, c are three intermediate quantities. Moreover, we use a
FAST detector to detect the interest points.

3.3. Improved Log-Polar Descriptor
3.3.1. Improved Gradient Feature and Feature Direction

After the feature points in the image are detected, the feature points need to be
described to construct a feature vector for each feature point. We use the second-order gra-
dient information of the Gθ

2,σ − CoFSpace scale images to generate new gradient features to
weaken the NRD of images further. Since Gθ

2,σ − CoFSpace preserves the edge and detailed
features of the images, so the constructed gradient can better describe the image features,
thereby increasing the number of corresponding feature points and improving the final
matching effect. The Sobel operator calculates the gradient of the image. Correspondingly,
the horizontal and vertical gradient operators are as follows:

Γx =

−1 0 1
−2 0 2
−1 0 0

, Γy =

−1 −2 −1
0 0 0
1 2 1

 (13)

In Equation (13), Γx represents the Sobel operator template in the X direction, and Γy
represents the Sobel operator template in the Y direction.

Using Γx and Γy to calculate new first-order gradient magnitude and second-order
gradient magnitude, defined as shown in Equations (14) and (15): G1 =

√
(I(x, y) ∗ Γx)

2 +
(

I(x, y) ∗ Γy
)2

Angle1 = arctan
(

I(x,y)∗Γy
I(x,y)∗Γx

) (14)


G2 =

√
(G1 ∗ Γx)

2
+
(
G1 ∗ Γy

)2

Angle2 = arctan
(

G1∗Γy
G1∗Γx

) (15)

where I(x, y) represents the input scale image, G1 represents the new first-order gradient
magnitude, ∗ represents the convolution operation, Angle1 represents the new first-order
gradient direction, G2 represents the new second-order gradient amplitude, Angle2 repre-
sents the new second-order gradient direction, Γx represents the Sobel operator template in
the X direction, and Γy represents the Sobel operator template in the Y direction.

In our study, new gradient images are generated using co-occurrence-scale images
combined with the second-order Gaussian steerable filter, and more structured gradient
features are obtained. To highlight the new gradient effect, we visualized the gradient
amplitude and gradient direction, and the results are shown in Figures 3 and 4.
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Figure 3. Results of new gradient magnitude: (a) The gradient amplitude of the original image pair;
(b) The gradient amplitude of the image pair in first layer scale space; (c) The gradient amplitude of
the image pair in second layer scale space; (d) The gradient amplitude of the image pair in third layer
scale space.

Figure 4. Results of new gradient direction: (a) The gradient direction of the original image pair;
(b) The gradient direction of the image pair in first layer scale space; (c) The gradient direction of
the image pair in second layer scale space; (d) The gradient direction of the image pair in third layer
scale space.

3.3.2. Improved Log-Polar Descriptor

For the feature point set that has been extracted from the image pair, it is necessary to
construct the feature descriptor of each feature point to increase the discrimination between
these features. A lot of research has been performed on how to construct feature descriptors,
including SIFT feature descriptors, HOG feature descriptors, and GLOH feature descriptors.
The GLOH descriptor is an extension of the SIFT descriptor, which uses a logarithmic grid
to divide local image blocks instead of regular grid division, improving the descriptor’s
robustness and saliency. In this paper, to address the geometric distortion problem in
multimodal image matching, a feature descriptor similar to GLOH is designed.

For each local image block, we specify that it is a local feature block of R× R pixel
size, selected from the feature point as the center. When we calculate the main direction of
each local image block, we divide it into 24 bins according to the directions of all pixels
in the local image block, calculate the sum of the gradient magnitudes corresponding to
each bin, and select the highest score bin as the main direction. We not only use the bin
with the highest score as the main direction, but also record the bin with a score greater
than 0.8 times the highest bin as the auxiliary direction. This is because Lowe mentioned in
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the original paper that although only about 15% of the feature points will have multiple
orientations, and it can effectively improve the robustness of matching [11]. The direction
of the improved log-polar descriptor is:

LPA = [A1, A2, · · · , AN ]
T (16)

where LPA represents the direction set of all feature points, Ai
T represents the direc-

tion set of each feature point, including the main direction and auxiliary directions; T
represents the matrix transpose character, N represents the number of feature points,
Ai

T = [Anglemain, Angleassist1, Angleassist2, · · · , Angleassistn]; Anglemain is the main direc-
tion of the i-th feature point, and [Angleassist1, Angleassist2, · · · , Angleassistn] is all auxiliary
directions of the feature point.

A feature descriptor is constructed for each feature point’s direction. Generally speak-
ing, for the GLOH descriptors, the entire local image block is first rotated to the main
direction. Then, the whole description region is divided into a circular region and two an-
nular regions from the inside to the outside. The size of the three regions can be determined
by R1, R2, and R3 (seen as in Figure 5). Each annular region is equally divided into eight
fan-shaped regions, and all directions in the region are divided into 16 column-shaped
parts. The inner circle area has only divided all directions into 16 directions. Finally, a
(2× 8 + 1)× 16 = 272 dimensional feature vector can be obtained. However, the feature
vectors constructed in this manner have complexities that are too high, which makes the
time and space complexity of the algorithm large. Therefore, considering the stability and
time complexity of the descriptor, we divide each ring into 12 fan-shaped regions equally,
and divide the directions within the fan-shaped region into eight equal divisions. The
directions’ division in the inner circle area is consistent with each sector area. Finally, as
shown in Figure 5, we generated a (2× 12 + 1)× 8 = 200-dimensional feature vector. Such
a division not only improves the instability of the description caused by fewer grids, but
also reduces the time complexity of the descriptor.

Figure 5. A log-polar descriptor for multimodal image grid optimization.

3.4. Extended 3D Phase Correlation Similarity Metrics

After the feature descriptors are constructed, we perform initial matching and obtain
preliminary matching results. Due to various problems in multimodal image matching,
such as rotation, translation, scaling, and viewing angle differences, it is difficult to obtain
uniformly distributed and numerous matching points in all scenes. However, as we all
know, if the matching points are distributed more evenly and the number of matching
points is greater, the matching accuracy is also higher. Therefore, after completing the
preliminary matching, we use the obtained transformation matrix H1 to project the image
to be registered onto the reference image, and perform secondary matching to obtain a
more reliable spatial transformation relationship.

Phase correlation (PC) is an efficient frequency-domain matching method that has
been widely used in images due to its sub-pixel accuracy and robustness to image contrast,
noise, and occlusion [30]. Since we eliminated the rotation and scaling differences between
the two image patches in the preliminary matching, there is mainly a translational offset
between them. Therefore, we adopt a template matching scheme for image matching. The
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matching process based on 3D phase correlation mainly includes the following steps: (1)
image preprocessing, (2) optimized 3DPC [47] descriptor construction, and (3) template
matching.

3.4.1. Image Preprocessing

After completing the initial matching, we obtain the preliminary transformation
matrix H1, and we use H1 to project all the pixels (x, y) on the to-be-registered image
ISen_Be f ore(x, y) to the reference image IRe f (x, y). Above, we generate a new image to be
registered ISen_A f ter(x, y). The calculation equation is shown in Equation (17):x′

y′

1

 = H1

x
y
1

 (17)

where (x, y) is the pixel coordinate point on the image to be registered ISen_Be f ore(x, y), H1
is the homography transformation matrix, and (x′, y′) is the pixel coordinate of the point
after transformation.

Due to the problems of rotation, translation, and scaling of the two images, the trans-
formed pixel coordinates (x′, y′) may exceed the boundary range of the reference image.
Thus, the final generated ISen_A f ter(x, y) can be represented using the following code:

If
(

x′ > 0 && y′ > 0 && x′ <= IRe f _width && y′<= IRe f _height), Then delete
(
x′, y′

)
(18)

ISen_A f ter(x, y) = padarray
(

ISenA f ter (x, y), [marg, marg], 0, ′both′
)

(19)

IRe f (x, y) = padarray
(

IRe f (x, y), [marg, marg], 0, ′both′
)

(20)

where IRe f _width is the length of the reference image, IRe f _height is the width of the reference
image, padarray represents the filling operation on the image, [marg, marg] represents the
number of rows and columns to fill, marg represents the search boundary for template
matching, 0 represents the padding value, and ′both′ means padding before the first
element and after the last element of each dimension of the image. The operation steps are
shown in Figure 6.

Figure 6. Schematic diagram of image preprocessing: H1 is the transformation matrix calculated via
preliminary matching.

3.4.2. Optimized 3DPC Descriptor Construction Image Preprocessing

For the preprocessed image to be registered ISen_A f ter(x, y) and the reference image
IRe f (x, y), we use the co-occurrence filter and the Low-Pass Butterworth (LPB) filter further
to enhance the edge feature of the two images and to reduce NRD. The LPB filter can
reduce the energy of the high-frequency part of the image to achieve the effect of smoothing
the image and reducing noise [48,49]. We do not use the second-order Gaussian steerable
filter mentioned above for image processing, because when we construct the optimized
3DPC descriptor, we need to use the Log-Gabor filter to calculate the amplitude map in
the six directions of the image and arrange them on the Z-axis. The second-order Gaussian
steerable filter collects convolutional information in multiple directions of the image to
improve the local features of the image. However, this may lead to a decrease in the
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difference of amplitude maps in different directions. Therefore, we choose LPB filter to
reduce the NRD between images.

After obtaining the filtering ISen_A f ter(x, y) and IRe f (x, y), we do not directly calculate
its phase information to generate 3DPC descriptors. To better retain the structure of the
image, the second-order gradient amplitude of the image is generated according to the steps
in Section 3.3 as the final operation image. Similar to other methods of using templates,
we stipulate that the size of each template is Rm × Rm. Then, we use the even-symmetric
and odd-symmetric log-Gabor wavelets at scale n and orientation o to convolute the image
to obtain the corresponding response component eno(x, y) and ono(x, y). The calculation
equation is shown in Equation (21):

[eno(x, y), ono(x, y)] = [I(x, y) ∗Me
no, I(x, y) ∗Mo

no] (21)

where Me
no and Mo

no represent the even-symmetric and odd-symmetric log-Gabor wavelets
at scale n and orientation o, I(x, y) represents an input image, and eno(x, y) and ono(x, y)
represent the response components obtained with two small wave functions through
convolution.

So, the amplitude after the wavelet transforms at scale n and orientation o is:

Ano(x, y) =
√

eno(x, y)2 + ono(x, y)2 (22)

For each direction o, find the amplitude value of all n scales and obtain the direction
amplitude diagram Ao(x, y). Arrange the direction amplitude maps on the Z-axis according
to the size of the direction to obtain an optimized 3DPC descriptor. Figure 7 shows the
processing process of the optimized 3DPC descriptor.

Figure 7. Optimized 3DPC description process: (a) The original image; (b) Preprocessed image;
(c) Second-order gradient amplitude of the image; (d) Phase direction magnitude map of the image;
(e) Optimized 3DPC descriptor.

3.4.3. Template Matching

The basic theory of image matching models based on phase correlation is the Fourier
shift property, which states that the relative displacement of a pair of similar images in
the spatial domain can be transformed into a linear phase difference in the frequency
domain [50]. Let I1(x, y) and I2(x, y) be a pair of corresponding feature points in the image
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to be registered and the reference image, respectively, then I1(x, y) and I2(x, y) should
satisfy the following relationship:

I1(x, y) = I2(x− x0, y− y0) (23)

f1(u, v) = f2(u, v) exp{−2πi(ux0, vy0)} (24)

where (x0, y0) is the displacement difference between points I1(x, y) and (x, y), f1(u, v) is
the coordinate of I1(x, y) in frequency after the Fourier transform (FT) of the image, and
f2(u, v) is the coordinates of I2(x, y) in frequency after the reference image undergoes FT.

Because we have expanded the original image and added its description on the Z axis,
Equations (23) and (24) can be written as follows:

I1(x, y, z) = I2(x− x0, y− y0, z) (25)

f1(u, v, w) = f2(u, v, w) exp
{
−2πi(ux0, vy0)

←
γ
}

(26)

where z is the dimension of the reference image and the image to be registered on the Z
axis;

←
γ is a 3D unit vector. The normalized cross-power spectrum matrix is calculated as an

image-matching similarity measure. Then, the 3D inverse Fast Fourier transform (IFFT) is
performed to obtain the 3D Dirac function:

Q(u, v, w) =
f1(u, v, w) f2(u, v, w)∗∣∣ f1(u, v, w) f2(u, v, w)∗

∣∣ = exp
{
−2πi(ux0, vy0)

←
γ
}

(27)

Q(u, v, w) = ϑ−1{Q(u, v, w)} = δ(u− x0, v− y0)
←
γ (28)

where ∗ denotes a complex conjugate and ϑ−1 denotes IFFT; we can use the Dirac function
to determine the offset between two images. Usually, the peak of the Dirac function will
appear at (x0, y0). Thus, we can complete image matching work by searching for local
maxima.

4. Experiment and Analysis

In this section, we compare our proposed G-CoFTM method with five state-of-the-art
methods: PSO-SIFT, HAPCG, RIFT, LPSO, and COFSM. For a fair comparison, the codes of
the comparative methods provided by the authors are applied. At the same time, phase
information is also used in RIFT, HAPCG, and LPSO. Therefore, we set the parameters
related to this paper in these three algorithms to be consistent, to ensure the fairness of the
experiment.

4.1. Data Description

We use the datasets provided by Yao et al. [24] and Yang et al. [36] for testing. The
datasets contain six types of multimodal image pairs (optical–optical, optical–infrared,
optical–depth, optical–map, optical–SAR, and day–night). In the datasets Yao provided,
each image type contains 10 image pairs. There are mainly translation relationships between
these image pairs, and about 10 to 30 corresponding homonymous feature points were
manually selected for each image pair by the provider. In the datasets provided by Yang,
there are image pairs with rotation and scale changes. There are significant NRD and
slight geometric distortion between the two images in image pairs. In order to better prove
the processing effect of our proposed method for rotation and scale changes, the image
pairs are randomly selected from the above six types of image pairs for rotation and scale
transformation. Finally, for each method, we validated a total of 8× 10 pairs of images
(optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, day–night,
rotation, and scale).
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4.2. Evaluation Indices

In the quantitative evaluation, we select NCM, SR, and root mean square error (RMSE)
as the evaluation index to measure the matching effect of each algorithm. Among them, SR
represents the ratio of the correct matching in all successful matching, and NCM represents
the number of homonymous feature points correctly matched. If the number of NCM
is less than 5, it is considered to be a matching failure. RMSE represents the pixel error
between the coordinates of the feature points after using the transformation matrix and
the corresponding homonymous feature points. Suppose that there is a point coordinate
(x, y) on the original image, and its position is (x′, y′) after matrix transformation. Its
corresponding homonymous feature point is (x2, y2), so that RMSE can be calculated using
Formula (29). RMSE reflects the accuracy of matching; the smaller the value of RMSE, the
higher the matching accuracy. We use the high-precision correspondence manually selected
by the provider to estimate the real transformation model H of the image pair, and use it as
the actual value of the following evaluation process.

MSE =

√√√√ 1
NCM

NCM

∑
1

[
(x′ − x2)

2 + (y′ − y2)
2
]

(29)

4.3. Parameter Study

Our proposed G-CoFTM mainly consists of three parameters, namely S, R, and Rm.
S is the number of layers of the scale image in the scale space. The larger the value of S,
the more information the scale space contains, and the computational complexity will also
increase. Parameter R is used to describe the size of the local image block in preliminary
matching. If the local image block is too small, it contains insufficient local information
and cannot fully reflect the uniqueness of the feature. Conversely, if the local image block
is too large, then the time required for calculation is higher; the longer the time that is
required for matching. The parameter Rm, like the parameter R, is used to describe the size
of the local image patch, and the parameter Rm is used to construct the search template in
precise matching. The larger the parameter R, the more information the template contains
and the higher the computational complexity. Therefore, the correct parameter design will
have an important impact on the matching results and the time required for matching. We
randomly selected a pair of optical–map images for the test. To obtain the appropriate
parameters, we designed three independent experiments to learn the parameters S, R, and
Rm. In each experiment, we only allow one parameter to exist as a variable, and the other
parameters will be fixed as a constant. The overall setting details of the experiment are
shown in Table 1. The results of the experiment are shown in Tables 2–4. The image pairs
used in the experiment are shown in Figure 8.

Table 1. Details of parameter settings.

Experiments Variable Fixed Parameters

parameter S S = [1, 2, 3, 4, 5] R = 48, Rm = 108
parameter R R = [32, 40, 48, 56, 64] S = 3, Rm = 108

parameter Rm Rm = [48, 72, 96, 120, 144] S = 3, R = 48

Table 2. The results of the parameter S.

Metric
S, R = 48, Rm = 108

1 2 3 4 5

NCM 719 1540 1586 1068 1226

SR/% 100 100 100 100 100
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Table 3. The results of the parameter R.

Metric
R, S = 3, Rm = 108

32 40 48 56 64

NCM 534 1071 1586 1960 1629

SR/% 97.8 100 100 100 100

Table 4. The results of the parameter Rm.

Metric
Rm, S = 3, R = 48

84 96 108 120 132

NCM 947 1059 1586 1457 1381

SR/% 100 100 100 100 100

Figure 8. Image pairs for parameter study experiments.

From the results of the above three experiments, we can draw the following conclu-
sions: (1) The larger S is, the more layers of scale space that we construct for G-CoFTM,
and the richer the information extracted from the image is. Additionally, the larger S is,
the more NCM will be obtained. However, too large a value of S will cause unnecessary
computational overhead. It can be seen from Table 2 that our method has achieved good
results in the scale space of any number of layers. In order to balance the accuracy and
calculation time of the matching results, we set S to 3. (2) It can be seen from Table 3 that the
mismatch of the constructed G-CoFTM decreases with an increase in the value of R. When
R ≥ 40, the mismatch disappears, and the number of NCM increases. However, when
R = 64, the number of NCM is reduced to 1629, which may be because too large a number
of local image blocks contain some unnecessary noise while increasing the description
information. Therefore, according to Table 3, we set R = 48. (3) In all assumed values of
the parameter Rm, SR reaches the highest value. The obtained NCM begins to increase
when Rm ≥ 40, and it reaches the highest point when Rm = 108 and begins to decrease.
The reason for this is similar to Rm, because raising the template size increases the amount
of description information and includes noise. We choose Rm = 108 as the parameter of
our experiment, which is not only because the number of correct matches is the highest
when Rm = 108; it is also to reduce our computing time. In the following experiments,
these parameters are fixed as S = 3, R = 48, Rm = 108.

4.4. Performance Evaluation
4.4.1. Qualitative Comparisons

We randomly selected an image pair from each of the eight types of multimodal
datasets collected for qualitative comparison, and we visualized the matching results of the
various methods. Due to the different temporal phases or the imaging mechanisms of these
images, these images contain significant NRD. The matching results of G-CoFTM, CoFSM,
RIFT, HAPCG, LPSO, and PSO-SIFT are shown in Figure 9.
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Figure 9. Qualitative comparison results of the sample data: (a) Results of G-CoFTM; (b) Results of
CoFSM; (c) Results of RIFT; (d) Results of HAPCG; (e) Results of LPSO; (f) Results of PSO-SIFT.

It can be seen from Figure 9 that our proposed G-CoFTM has achieved good results
on eight types of data, and the number of extracted homonymous feature points is the
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largest. CoFSM, RIFT, HAPCG, LPSO, and PSO-SIFT involved in the comparison have
various problems with eight types of data: they cannot extract the correct corresponding
feature points on all experimental images, or the number of corresponding feature points
extracted on certain types of images is sparse and unevenly distributed. Below, we will
analyze the experimental results in detail. From Figure 9b, we can see that CoFSM has
obtained many corresponding feature points with uniform distribution on optical–optical,
day–night, optical–SAR, and optical–map. However, for optical–infrared, optical–depth,
scale, and rotation images, the number of corresponding feature points extracted by CoFSM
is scarce, unevenly distributed, or wrongly extracted. This is because CoFSM uses CoFSM
filtering to extract the edge features of the image to increase the reliability of the matching.
However, for each descriptor, if the image information contained is too little, the reliability
of the matching will also decrease. For multimodal image matching, it is necessary to
contain enough local information.

Compared with CoFSM, RIFT uses second-order phase gradient features instead
of gradient features to calculate the main direction, and uses the maximum index map
(MIM) to construct local descriptors. At the same time, RIFT also discusses the influence
of the size of each descriptor on matching. This means that RIFT can extract the correct
corresponding feature points on each data type, as shown in Figure 9c. However, due to the
characteristics of the phase information itself, the scale changes between the images cannot
be well processed. This is the reason for the poor extraction effect of RIFT on scale images.
At the same time, since each descriptor in RIFT has only six description latitudes, it cannot
achieve good results for images with insufficient texture features (such as optical–infrared).

HAPCG and LPSO are improved based on RIFT, and we can regard it as a RIFT
upgrade. HAPCG uses phase congruency direction to solve the rotation problem in the
images. However, due to the large NRD between multimodal images, it is sometimes
inaccurate to use the phase consistency feature direction to calculate the main direction of
the image. LPSO further proposes to use the odd symmetric filtering direction instead of
the phase consistency direction on HAPCG, which makes its matching effect on multimodal
images better than HAPCG. However, LPSO still cannot solve the rotation problem in
multimodal image matching, as shown in Figure 9d,e.

PSO-SIFT uses the second-order gradient feature of the image to construct the de-
scriptor and to calculate the main direction of the descriptor. Due to the existence of NRD,
the gradient features of the images are very unreliable for multimodal image matching;
PSO-SFT is the worst in all test methods, such as in Figure 9f.

4.4.2. Quantitative Comparisons

In order to better compare the methods mentioned above, we conducted a more
detailed quantitative evaluation. Since PSO-SIFT only extracts a few wrong corresponding
feature points on multiple data types, we do not analyze PSO-SIFT. At the same time, we
set the RMSE to 10 when the image matching fails. For an image, if the matching time is
more than 10 min and there is no response, it is also considered a failed matching. We set
NCM to 0 and RMSE to 10 in this case.

Table 5 shows the SR of each method on different datasets. We can see that the SR of
our method reaches 100 on all types of image pairs. HAPCG and LPSO have the worst SRs
of all methods. The SRs of CoFSM on optical–optical, optical–infrared and optical–map
data reach 100, and CoFSM also achieves good results on optical–SAR images, with SR
reaching 90. However, the effects on optical–depth, day–night, scale, and rotation types
of images are poor, with SRs of 70, 70, 70, and 60, respectively. RIFT is the best matching
method among the five methods, except for G-CoFTM. Except for the scale test, the SR of
RIFT reached 100. However, the SR of RIFT on the scale images is only 50. This is because
RIFT does not construct scale space, and cannot deal with the scale change of the image
well. Unfortunately, we find that the matching time of RIFT is the longest among the five
methods. If the scale space is constructed to solve the scale problem, its matching time will
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reach an unacceptable level (about 6–7 min). HAPCG and LPSO received the worst SRs in
all comparison methods, but the matching effect of LPSO is slightly better than HAPCG.

Table 5. Comparison on SR metric.

Method

SR/%

Optical–
Optical

Optical–
Infrared

Optical–
Depth

Optical–
Map

Optical–
SAR Day–Night Scale Rotation

G-CoFTM 100 100 100 100 100 100 100 100

CoFSM 100 100 70 100 90 70 70 60

RIFT 100 100 100 100 100 100 50.5 100

HAPCG 100 100 79.6 59.9 100 70 36.8 10

LPSO 90 90 80 80 60 70 49.8 22.5

Figure 10 shows the NCM results, and Table 6 shows the average NCM of all methods
on each data type. It can be seen from Figure 10 that the proposed G-CoFTM shows excellent
performance on all types of data and obtains the most matching numbers. The NCMave
obtained by G-CoFTM on all types of data are 1917.5, 3003.8, 1755.9, 2061, 1631.2, 1150.1,
1890.4, and 1479.3, respectively, as shown in Table 6. Compared with G-CoFTM, although
the average extraction number of CoFSM ranked second among the five methods, the
eight types of NCMave were 556, 647.4,223, 368.1, 172, 335.5, 177.5, and 318.1, respectively.
However, from Figure 10, we can see that CoFSM has matching failures on optical–depth,
optical–SAR, day–night, scale, and rotation images. Especially in the day–night and scale
types of images, there are three instances where CoFSM cannot match. RIFT uses the phase
index to construct the descriptor. Although the description latitude of the descriptor is
reduced, the stability is greatly improved. As shown in Table 5, RIFT only has mismatches
on the scale images. Table 6 and Figure 10 show the specifics of RIFT matching. We
can see that RIFT has only 14.9 NCMave on the scale images, and failed matching occurs
for almost every pair of scale images. Therefore, for RIFT, it is necessary to improve its
adaptability to scale images while reducing the computational complexity. HAPCG is
similar to RIFT. It can be found from Table 6 that the NCM of HAPCG on all types of data is
almost improved compared with RIFT. Figure 10 more intuitively reflects the lifting effect
of HAPCG. However, although HAPCG has been greatly improved on NCM compared
with RIFT, HAPCG is significantly lower than RIFT in the success rate of matching. RIFT
has better stability than HAPCG, as shown in Table 5. LPSO and HAPCG are similar,
although they are slightly lower than HAPCG in NCM, but there is a certain degree of
stability improvement; see Tables 5 and 6.

Table 6. Comparison on the NCMave metric.

Method

NCMave

Optical–
Optical

Optical–
Infrared

Optical–
Depth

Optical–
Map

Optical–
SAR Day–Night Scale Rotation

G-CoFTM 1917.5 3003.8 1755.9 2061 1631.2 1150.1 1890.4 1479.3

CoFSM 556 647.4 223 368.1 172 335.5 177.5 318.1

RIFT 267.7 324.6 172.2 94.9 151.3 79.7 14.9 189.1

HAPCG 317.9 468.3 195.7 242.3 178.2 153.8 116.1 57.6

LPSO 113.16 189.1 74.6 171.7 68.6 74.7 155.1 59.3
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Figure 10. Comparisons on the NCM metrics: (a) Optical–Optical; (b) Optical–Infrared; (c) Optical–
Depth; (d) Optical–Map; (e) Optical–SAR; (f) Day–Night; (g) Scale; (h) Rotation.

Considering the accuracy of the matching, Figure 11 shows the RMSE of all methods
on different types of data, where RMSE = 10 indicates a failed match. The results show that
our matching accuracy is the highest among all methods due to our two-step matching
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strategy using optimized 3DPC descriptors for accurate matching. It can be seen from
Table 7 that the RMSE of our matching is about 1 pixel, and that the RMSEave of eight times
is 1.004, 0.890, 1.129, 0.990, 1.093, 1.169, 1.017, and 1.074, respectively. CoFSM has a high
matching accuracy on the optical–optical, optical–infrared and optical–map types of images.
The RMSEave of the three types of images are 1.900, 1.853, and 1.801, respectively. CoFSM
has poor matching accuracy on four types of images: optical–depth, day–night, scale, and
rotation. Figure 10 shows that CoFSM often fails to match the above four types of images.
CoFSM is quite unstable in the face of these four types of data. RIFT has stable matching
performance on seven types of images except for scale, with an RMSEave of around 2 pixels.
The RMSEave of HAPCG is lower than that of LPSO on four types of images: optical–optical,
optical–infrared, optical–SAR, and day–night, which are improved by 0.802, 0.974, 1.79, and
0.727, respectively. However, the RMSEave of HAPCG is higher than that of LPSO in optical–
map, optical–depth, scale, and rotation types of images. Combined with Figure 11 and
Table 7, the matching effect of HAPCG is generally better than that of LPSO. However, both
methods cannot deal with various problems in multimodal image matching. Comparing
the performances of all methods on eight data types, we can find that the scale and rotation
types of images are more challenging for the matching algorithms. This is because the
scale and rotation types of images are randomly selected and generated from the first six
images, making it more challenging. Day–night images are also a challenge in multimodal
image matching. We analyzed 10 day–night image pairs in the dataset, and found that
the day–night images contain less information than the other five types of data (excluding
scale and rotation), and they have a larger gap with the reference image.

Figure 11. Cont.
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Figure 11. Comparisons on the RMSE metrics: (a) Optical–Optical; (b) Optical–Infrared; (c) Optical–
Depth; (d) Optical–Map; (e) Optical–SAR; (f) Day–Night; (g) Scale; (h) Rotation.

Table 7. Comparison on RMSEave metric.

Method

RMSEave

Optical–
Optical

Optical–
Infrared

Optical–
Depth

Optical–
Map

Optical–
SAR Day–Night Scale Rotation

G-CoFTM 1.004 0.890 1.129 0.990 1.093 1.169 1.017 1.074

CoFSM 1.900 1.853 4.358 1.801 2.800 4.367 4.426 5.087

RIFT 1.891 2.027 1.921 1.903 2.599 2.084 6.621 1.926

HAPCG 1.853 1.836 3.696 4.380 1.945 4.357 7.532 9.193

LPSO 2.632 2.810 2.630 3.431 3.735 5.084 5.803 8.353

5. Discussion
5.1. Performance Analysis

From the qualitative and quantitative results, we can see that the proposed G-CoFSM
achieves good results on all types of data. This is because we decompose the matching
problem into two sub-problems: we obtain relatively accurate transformation relations
in the coarse matching stage, and we obtain uniformly distributed and large numbers of
correct matches in the fine matching stage. To obtain reliable transformation relations, we
construct co-occurrence scale-spaces combined with the second-order Gaussian steerable
filter. The construction of scale space has two main purposes: to solve the scale problem in
image matching through different scale images, and to strengthen the structural features
and smooth texture information of the image. The image rotation problem is mainly solved
by the main direction angle of the image. Compared with the texture information in the
multimodal image, the main direction angle calculated by the structure information is
more reliable. We can better describe the feature points for different types of multimodal
images by designing a reasonable local feature descriptor. The above solution strategy
ensures that we can obtain relatively accurate transformation relations on the eight data
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types. After obtaining a reliable transformation relationship, we use template matching to
extract the correct match further. Therefore, our proposed G-CoFSM can handle multiple
simultaneous problems in multimodal image matching.

Compared with G-CoFSM, CoFSM performs well on optical–optical, optical–infrared,
optical–map, and optical–SAR image pairs. However, the performance drops significantly
on day–night, scale, and rotation, especially as the rotation shows the worst matching
effect. This is because CoF’s enhancement of image edge structure and smoothing of
texture information is much worse than that of Gθ

2,σ − CoF. Therefore, the orientation angle
calculated using CoFSM is not as accurate as that of G-CoFSM. At the same time, we found
that CoFSM often has a non-response in matching. Through further analysis of CoFSM, we
found that CoFSM adopts a strategy similar to that of this paper in the step of eliminating
error points: first, we use the FSC algorithm to obtain the coarse matching result, and
then we add the obtained transformation relationship to the nearest neighbor matching to
obtain more correct matches. However, compared with our two-step matching method, this
strategy has higher requirements on the coarse matching results of the CoFSM. A wrong
transformation relationship or a small number of successful matches will not only lead
to the failure of the matching, but also affect the incorrect convergence when using the
FSC algorithm for the second time. Although the improved nearest neighbor constraint
adopted using CoFSM can greatly improve the registration accuracy and the number of
correct matches, it will also lead to an unacceptable result: the program does not respond.

The performances of the HAPCG and LPSO algorithms are quite unstable in the test.
Although HAPCG and LPSO can obtain more correct matches than RIFT in some cases, the
stability of matching is our first consideration. Compared with RIFT, both HAPCG and
LPSO use the phase consistency direction as the main direction, and the GLOH descriptor
to describe the feature points. The direction of phase consistency can reflect the change of
image direction, and it has a good resistance to the NRDs of multimodal images. However,
considering that the first-order direction information is sensitive to NRD and noise, the
calculation of the second-order gradient based on the phase-consistent direction may be
able to reflect the main direction of the image better.

RIFT has the best matching success rate among the five algorithms compared, but
there are more failures on the scale images. Unlike the other methods, RIFT does not
calculate the main direction directly. It uses the MIM feature map calculated based on the
phase consistency information to construct the feature descriptor, and realizes the direction
invariance by analyzing the influence of different orientation angles on the MIM feature,
such that this method makes RIFT more robust. It is a pity that the RIFT algorithm does not
consider how to deal with scale images. Therefore, RIFT cannot be applied to the matching
of scale images. Of course, RIFT can solve the problem of not being able to match scale
images by introducing scale space. However, considering the computational complexity
of RIFT, this approach may have better improvements. The matching accuracy of RIFT is
lower than that of the CoFSM algorithm among the five methods compared. Still, if the
matching results of RIFT are used for fine matching, the matching accuracy will be greatly
improved.

5.2. Influence Analysis of Rough Matching on the Final Result

As mentioned above, our final matching results are based on the results of preliminary
matching. This section will discuss the effect of our preliminary matching algorithm.
Generally speaking, if we want to obtain accurate matching results in the fine matching
step, the transformation matrix we obtained in the coarse matching step should be as
precise as possible. Therefore, this method’s matching accuracy of rough matching is
crucial. Figure 12 shows the proposed method’s specific matching results on eight data
types, and the matching evaluation indexes are NCM and RMSE. From Figure 12a, we
can find that our proposed method has the best effect on extracting corresponding feature
points on optical–infrared image data. The effect of extraction on three types of data:
day–night, scale, and rotation, is relatively poor. The NCMave of the preliminary matching
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method in this paper is 120.9, 79.3, and 265.5 on three data types of day–night, scale, and
rotation, respectively, as shown in Table 8. The extraction effect on the scale image is the
worst; NCMave is only 79.3. This shows that the performance of our preliminary matching
method for day–night, scale, and rotation data remain to be improved. Figure 12b and
Table 8 show the accuracy error of our method on all types of data. The RMSEave of eight
types of data are 1.764, 1.822, 1.852, 1.843, 1.909, 1.868, 1.841, and 1.843. Therefore, our
coarse matching method is robust against eight types of data matching, which is also the
key to obtaining accurate matching results in the fine matching step.

Figure 12. Coarse matching results of G-CoFTM on the NCM (a) and RMSE metrics (b).

Table 8. The average results of NCM and RMSE in Figure 12 for each type of image pair.

Criteria Optical–
Optical

Optical–
Infrared

Optical–
Depth

Optical–
Map

Optical–
SAR Day–Night Scale Rotation

NCMave 238.6 455.6 178.4 257.1 160.7 120.9 79.3 265.5

RMSEave 1.764 1.822 1.852 1.843 1.909 1.868 1.841 1.843

5.3. Fusion and Registration Performance Analysis

In this section, we visualize the final registration results, obtain the optimal transfor-
mation parameters according to the least squares method, and display them using fusion
graphs and checkerboard grid graphs. It can be seen in Figures 13 and 14 that although
there are apparent NRD, rotation, and scale differences in multimodal image matching,
our proposed method can still complete the image matching work well. The fusion graph
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shown in Figure 13 shows no obvious ghosting using the proposed algorithm. At the same
time, in the chessboard shown in Figure 14, each chessboard edge can match well without
obvious misalignment, verifying that the method has good universality.

Figure 13. Fusion effect of image pairs: (a) optical–optical; (b) optical–infrared; (c) optical–depth;
(d) optical–map; (e) optical–SAR; (f) day–night; (g) rotation; (h) scale.

Figure 14. Registration effect of image pairs: (a) optical–optical; (b) optical–infrared; (c) optical–depth;
(d) optical–map; (e) optical–SAR; (f) day–night; (g) rotation; (h) scale.

6. Conclusions

In order to better solve the NRD problem in multimodal images matching, we propose
a two-step matching method based on co-occurrence scale space combined with the second-
order Gaussian steerable filter called G-CoFTM. We first combine the second-order Gaussian
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steerable filter and co-occurrence filter to construct the scale space of the image. This is to
better preserve the edge and detail features of the images. Then, the preliminary matching
of the image is completed by using the second-order gradient of the image and the improved
GLOH descriptor to describe the features. Finally, based on preliminary matching, a more
accurate matching is performed by using the optimized 3DPC descriptor combined with
the preliminary matching results. Compared with other state-of-the-art multimodal image
matching methods, the proposed method has more evident advantages in universality,
NCM and RMSE. Compared with CoFSM, RIFT, HAPCG, and LPSO, the mean NCMs are
5.322, 11.503, 8.607, and 16.429 times those of the above four methods, and the mean RMSEs
are increased by 2.278, 1.576, 3.393, and 3.264, respectively. At the moment, we are trying
to apply the method proposed in this paper to the registration of panoramic images and
mobile LiDAR data. If you are interested in our work, please read the article [51].

However, in this paper, we find that although G-CoFTM can effectively deal with the
scale and rotation problems in multimodal image matching, the number of corresponding
feature points in the extracted scale and rotation images is less than 100 in most cases. That
is to say, if there are large scaling and rotation differences between the two images, our
method may not be applicable. At the same time, for the day–night problem, how to use
the night light information more effectively is also a problem that we will face. Therefore,
in a future study, we will explore this more deeply: (1) design a better edge-preserving
filter, smooth the texture information of the image, and strengthen the contour features; (2)
build a more reliable scale space to solve the scaling problem of image matching; and (3)
think about how to use the local features of the image to enhance the uniqueness of the
feature descriptor.
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