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Abstract: Aerial observation is usually affected by the Earth’s atmosphere, especially when haze
exists. Deep reinforcement learning was used in this study for dehazing. We first developed a clear–
hazy aerial image dataset addressing various types of ground; we then compared the dehazing results
of some state-of-the-art methods, including the classic dark channel prior, color attenuation prior,
non-local image dehazing, multi-scale convolutional neural networks, DehazeNet, and all-in-one
dehazing network. We extended the most suitable method, DehazeNet, to a multi-scale form and
added it into a multi-agent deep reinforcement learning network called DRL_Dehaze. DRL_Dehaze
was tested on several ground types and in situations with multiple haze scales. The results show
that each pixel agent can automatically select the most suitable method in multi-scale haze situations
and can produce a good dehazing result. Different ground scenes may best be processed using
different steps.
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1. Introduction

In recent years, aerial Earth observation technology has rapidly developed, with in-
creasingly higher resolutions and better image quality being produced by researchers. The
applications of aerial images include target detection and recognition, land-object classifi-
cation, and change detection. However, for long-distance aerial observations, the image
acquisition process is affected by the Earth’s atmosphere. The scattering and absorption
of solar radiation and ground-reflected light by the atmosphere, haze, and clouds reduce
the clarity and contrast of aerial images, and thus affect their application. Atmospheric
influences are generally removed from aerial images using the following methods [1,2]:
dehazing methods based on image and graphics processing, or atmospheric corrections
based on radiative transfer calculations [3–5]. The advantages of image- and graphics-based
methods are that they do not require additional information, are simple, and can consid-
erably improve the effect of subsequent non-quantitative applications. The advantage of
the radiative transfer calculation-based method is that it can accurately and quantitatively
invert the ground-surface reflectance for subsequent quantitative applications. However,
atmospheric parameter information at the time of imaging is required, and the calculation
of the atmospheric radiative transfer process is complex and time-consuming. In the current
paper, a method based on image and graphics processing is used to conduct research on
the dehazing of aerial images.

Scholars have developed a series of methods for dehazing based on image and graph-
ics processing, such as the classic dark channel prior (DCP) [6]; color attenuation prior
(CAP) [7]; non-local image dehazing (NLD) [8]; and deep learning network methods, such
as multi-scale convolutional neural networks (MSCNNs) [9], DehazeNet [10], and the all-
in-one dehazing network (AODNet) [11]. However, these methods all focus on dehazing
natural-ground images. There are considerable differences in the effects of haze in natural
ground and aerial images, namely:

(1) The atmospheric transmittance function of natural-ground images is related to the
distance (depth) of the image and has a strong correlation with the edge of the object in the
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image. By contrast, the atmospheric transmittance function of aerial images is only related
to the characteristics of the atmosphere. Because of the high altitude of the imaging aircraft,
the imaging distance of ground objects with different elevations is almost the same.

(2) As for aerial images, clouds may exist on the imaging path. Generally, images
obtained through thin clouds can be recovered, but the recovery is not as likely if thick
clouds exist.

• The contributions of the current study are as follows:
• We develop a specialized clear–hazy image dataset for aerial images.
• We compare the different dehazing method effects on aerial images.
• We are the first to explore the application of deep reinforcement learning (DRL) to

image dehazing, and we achieve good results.
• According to the differences between the natural-ground and aerial images, we select

the most suitable dehazing method, which is modified to a multi-scale form, to use in
the DRL method. Then, every pixel of the hazy image independently selects its best
solution using the decision-making abilities of the DRL method. The choices in the
DRL process can be displayed visually, and we can observe the actions of each pixel in
each step of the process of obtaining the final result, which is convenient for analyzing
the results.

In the remainder of this article, Section 2 introduces the existing dehazing algorithms
and the use of DRL methods in the field of image processing; Section 3 presents the datasets
used in this study; Section 4 introduces our dehazing method; Section 5 presents the
dehazing results obtained using our method and discusses them; and finally, Section 6
presents the paper’s conclusion.

2. Related Work
2.1. Dehazing Algorithms

The haze physical model can be described as follows [12]:

I(x) = J(x) · t(x) + A(1− t(x)), (1)

where x represents the position in the image; I(x) represents the hazy image value at
position x obtained by the camera device; J(x) represents the clear image at position x
obtained when there are no atmosphere effects; t(x) represents the atmosphere transmission
map; and A represents the atmospheric background light intensity.

Using the Beer–Lambert law theorem, t(x) can be expressed as follows:

t(x) = e−β(λ,x)d(x), (2)

where β is the extinction coefficient of the atmosphere and d is the distance between the
photographed target and the camera, that is, the depth of the image.

The process of image dehazing is knowing I(x) and deriving J(x). In Equations (1) and (2),
to obtain J(x), A and t(x) first need to be obtained. Scholars have developed many
algorithms to estimate J(x) from I(x), the core of which is to estimate A and t(x) from
some prior knowledge and then obtain J(x).

Tan [13] developed a cost function using the framework of Markov random fields
and relying on the following two basic observations: first, the haze-free image must have
a higher contrast than the input haze image; second, variation in the airlight mainly de-
pends on the distance of objects to the viewer. Fattal [14] estimated the transmission in
hazy scenes relying on the assumption that the transmission and surface shading were
locally uncorrelated. This approach is physically sound, but it solves a non-linear inverse
problem, and therefore its performance greatly depends on the quality of the input data.
Zhu et al. [7] proposed a linear color-attenuation prior method based on the difference
between the brightness and saturation of the pixels of the hazy image. The scene radiance
of the hazy image can be recovered using this method. Berman et al. [8] noted that in a hazy
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image, tight color clusters change because of haze and form lines in the RGB space that
pass through the airlight coordinates. An algorithm was proposed to identify these haze
lines, and the transmission of each pixel was estimated. However, this method may fail
for scenes where the airlight is significantly brighter than the scene. He et al. [6] proposed
a simple haze-removal method based on the key observation that most local patches in
haze-free outdoor images contain some pixels that have very low intensities in at least one
color channel. The DCP performs well, but when the scene objects are inherently similar
to the atmospheric light and no shadow has been cast on them, the dark channel prior
may be invalid. Cai et al. [10] proposed a trainable end-to-end system called DehazeNet
for a medium-transmission estimation. DehazeNet adopts a convolutional neural net-
work (CNN)-based deep architecture and a novel non-linear activation function bilateral
rectified linear unit (BReLU). Ren et al. [9] presented a multiscale deep neural network
called MSCNN by learning the mapping between hazy images and their corresponding
transmission maps. It consists of a coarse-scale net that predicts a holistic transmission map
based on the entire image, and a fine-scale net that locally refines the results.

There are also end-to-end methods such as AOD-Net that directly learn clear-image
features obtained from hazy images, and then acquire the clear image. Li et al. [11] proposed
AOD-Net, which directly generates the clean image using a lightweight CNN.

2.2. Application of DRL in the Field of Image Processing

DRL is a combination of deep learning and reinforcement learning (RL) techniques.
It integrates the powerful understanding ability of deep learning in perception problems
such as vision with the decision-making ability of RL. Since the emergence of DRL, it has
been widely used in applications that require decision-making and control, typically in the
fields of games and machine control, such as StarCraft, Atari games, Go, chess, autonomous
driving systems/unmanned vehicles, and robot control.

Recently, studies have emerged that apply DRL to image processing functions. There
are studies that use DRL for object detection [15–18] as well as image segmentation and
classification [19,20]. DRL is also used for semi-supervised hyperspectral band selection
and hyperspectral image classification [21,22], including hyperspectral unmixing [23].
Moreover, some studies use DRL to obtain image super-resolution [24–26]. DRL is also
used to automatically extract road networks from remote-sensing images.

Furuta developed a network called pixelRL that is used for pixel-wise manipula-
tions [27]. PixelRL is a multi-agent RL method, where each pixel has an agent. Each
pixel value is regarded as the current state and is iteratively updated by the agent’s ac-
tion. This method is used for image denoising, restoration, and color enhancement [28].
PixelRL has also been adopted for magnetic resonance imaging reconstruction [29], 3D
medical image segmentation [30], image-instance segmentation [31], and single-image
super-resolution [26].

3. Datasets

A large number of real hazy aerial images and their haze-free counterparts are usually
difficult to collect; hence, synthesizing the images is a more realistic method.

We developed an aerial hazy–clear pair dataset that contains various ground types,
including residential, city, farmland, and forest areas. To date, this is the first dataset that
focuses on aerial image dehazing. The previous datasets are mostly ground indoor- and
outdoor-scene images. As previously mentioned, considerable differences exist between
ground and aerial images. It was therefore necessary to develop a specialized dataset.

The INRIA Aerial Image Labeling dataset was used to develop the dataset. This dataset
presents aerial orthorectified color imagery with a spatial resolution of 0.3 m, covering an
area of 810 km2 (405 km2 for training and 405 km2 for testing). As a result of the longer
path along which the ground signal must propagate prior to being imaged, the satellite
images are affected more than the aerial images. We hence selected aerial images for the
following work.
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We selected eight clear images from the INRIA Aerial Image Labeling dataset to create
the dataset. These eight clear images represented four typical scenes: residential, city,
farmland, and forest areas. For each scene, two images from INRIA were selected. Typical
scenes are shown in Figure 1.
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Figure 1. Typical images selected from the INRIA Aerial Image Labeling dataset to create the dehazing
dataset: (a) city, (b) residential, (c) farmland, and (d) forest areas.

The size of each image was 5000 × 5000, and the images were divided into many
70 × 70 images. Then, for each 70 × 70 image block, we randomly selected transmissions
in the range (0.2, 0.9) to generate the hazy images. Thus, 40,328 hazy images and the
corresponding clear images were created. For validation, 4032 of the images were selected,
and the remainder were used for training. For testing, eight group images which were
independent of the above 40,328 images were used. There were 250 images in each group.
These eight group images also represented the four typical scenes, with two groups for
each scene.

In a large-scale aerial image, the distribution patterns of haze or thin cloud can have
various scales and forms, which affect the image in patches with different sizes. The
atmosphere transmittance in a particular patch is generally uniform or changes slowly, and
changes greatly at its boundary. We constructed the transmissions with various patch sizes
to simulate the scene described above.

According to the haze features of aerial images, we developed a multi-scale haze-
image dataset, as presented in Figure 2. Three kinds of scale size were developed: they
were uniform-haze, medium-scale, and small-scale situation.
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4. Methods

Image dehazing is a problem that involves the selection of the dehazing method,
and the best dehazing method or parameters may be different for different pixels of the
image. Hence, the dehazing process is a decision process for each pixel in the image. A
pixel-based RL method is suitable for this problem. We used a pixel-level DRL method
based on pixelRL to solve the dehazing problem, and we call this method DRL_Dehaze.

4.1. Problem Formulation

We formulated the aerial image dehazing problem as a Markov decision process (MDP)
problem that can be described by 〈s, a, r, P, λ〉. Here, s represents the state, a represents the
action that is chosen based on policy π, r represent the reward, P is the transfer probability,
and λ is the discount factor for the cumulative reward.

In the dehazing problem, every pixel can be treated as an agent. The input image
is a hazy image, and the agent performs actions to remove the haze iteratively. State s(t)i

is simply the i-th pixel value at time step t. The agent selects action a(t)i from action set

a(t)i ∈ A according to policy πi(a(t)i

∣∣∣s(t)i ) , where A is the action set pre-defined by the
author. We designed the action set by comparing state-of-the-art dehazing methods and
choosing the most suitable ones. The agent changes to the next state s(t+1)

i and achieves a

reward r(t)i by taking action a(t)i . An action a(t)i changes the pixel value s(t)i to s(t+1)
i , and

s(t+1)
i is the dehazing result of the i-th pixel using one of the methods in the action set A.

4.2. PixelRL Method

In the pixelRL method, an asynchronous advantage actor–critic (A3C) algorithm [32]
was used to solve the problem. The A3C algorithm was a type of actor–critic method, which
was a combination of value function- and policy-centric algorithms. It mainly consisted of
two networks: policy and value networks. The policy network outputted actions based
on probabilities, and the value network calculated the expected total rewards of the state.
The policy network updated the probabilities of the actions according to the critic obtained
from the value network. The pixelRL network architecture is presented in Figure 3. The
objective of pixelRL is to learn the best policies πi(a(t)i

∣∣∣s(t)i ) for each pixel. However, a
traditional multi-agent RL method is not suitable for this problem, because the number
N of image pixels is normally very large. The pixelRL method is different from a typical
multi-agent RL problem for the following reasons:
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1. Fully convolutional networks (FCN) were used instead of N networks; hence, all N
agents can share the parameters. The A3C was modified to a fully convolutional form,
as illustrated in Figure 3.

2. The network was designed with a bigger receptive field to boost the network per-
formance. The policy and value networks not only observe the i-th pixel but also
the neighbor pixels. In this case, action a(t)i affects not only state s(t+1)

i , but also the
policies and values in a local window centered at the i-th pixel. The selected action
not only affects the i-th pixel, but also the pixels in the local window centered at the
i-th pixel.
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4.3. Actions

The action set was defined by the author. The choice of method was realized by
choosing pixel values obtained from dehazed images processed by different methods. The
methods can be any dehazing method. The objective of pixelRL was to obtain the optimal
policy for every pixel.

The DRL action set design should be suitable for our aerial image-dehazing problem.
We tested state-of-the-art dehazing methods, including DCP, CAP, NLD, DehazeNet, AOD-
Net, and MSCNN. All the models were trained to convergence using the dataset described
in Section 3, followed by image prediction.

We selected two indicators to quantitatively evaluate the dehazing performance of
the methods: the peak signal-to-noise ratio (PSNR) and structural similarity index mea-
sure (SSIM).

The PSNR of the image was calculated based on the error between the corresponding
pixels of the predicted and ground-truth images. A higher PSNR indicated a smaller
difference between the predicted and true images.

PSNR = 10log10(
Q2

MSE
) (3)
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where Q is the image pixel gray level, which we set to 255; and MSE is the mean squared
difference between the predicted and true haze-free images.

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

( f ′(i, j)− f (i, j))2, (4)

where f ′(i, j) and f (i, j) represent the predicted and ground-truth images, respectively; and
M and N represent the length and width of the image, respectively.

SSIM measured the similarity between the two images. The SSIM of two images can
range from 0 to 1. When the two images were identical, the value of SSIM was equal to 1.

SSIM =
(2µxµy + c1)(σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5)

where µx is the average gray level of the predicted image, µy is the average gray value of
the true image, σx is the gray value standard deviation of the predicted image, σy is the
gray value standard deviation of the true image, and σxy is the gray value covariance of the
two images. In addition, c1 = (K1L)2, c2 = (K2L)2 are constants to keep the denominator
from being zero, where K1 = 0.01, K2 = 0.03, and L, are the dynamic range of the
pixel values.

Table 1 lists the quantitative evaluation results of the traditional methods on hazy
images and the dehaze results. In Table 1, the bold font indicates the best method. The
testing dataset was labeled with R1, R2, C1, C2, FO1, FO2, FA1, and FA2. R1, R2 represent
the two residential area image groups; C1, C2 represent the two city area image groups,
FO1, FO2 represent the two forest area image groups; FA1, FA2 represent the two farmland
area groups.

Table 1. Quantitative evaluation results of different methods.

Ground
Feature

Evaluation
Indicators

Atmosphere
Transmission

Hazy
Image DCP CAP NLD DehazeNet AODNet MSCNN

Residential
area

PSNR
R1 * 0.64 23.42 20.73 24.72 12.59 27.36 23.77 30.75 **

R2 0.87 27.80 13.84 18.20 13.49 27.95 19.77 25.00

SSIM
R1 0.64 0.92 0.94 0.98 0.59 0.97 0.94 0.98

R2 0.87 0.96 0.84 0.90 0.66 0.97 0.90 0.95

Cities

PSNR
C1 0.25 14.21 19.64 19.69 16.43 27.21 20.10 23.43

C2 0.89 28.51 21.62 23.26 18.04 28.62 27.32 24.50

SSIM
C1 0.25 0.62 0.92 0.90 0.78 0.97 0.90 0.92

C2 0.89 0.97 0.86 0.92 0.74 0.97 0.96 0.87

Forests

PSNR
FO1 0.85 27.67 23.30 31.65 19.82 38.12 25.44 34.24

FO2 0.29 13.36 28.32 20.55 14.19 27.10 30.01 26.29

SSIM
FO1 0.85 0.98 0.89 0.98 0.71 0.99 0.89 0.99

FO2 0.29 0.67 0.94 0.89 0.64 0.96 0.97 0.96

Farmlands

PSNR
FA1 0.70 26.79 11.65 18.57 16.03 28.01 19.35 26.48

FA2 0.85 40.93 11.89 23.73 17.93 41.06 35.71 33.17

SSIM
FA1 0.70 0.97 0.77 0.87 0.81 0.98 0.86 0.96

FA2 0.85 1.00 0.70 0.98 0.88 1.00 0.99 0.99

* R1, R2: residential area image groups; C1, C2: city area image groups; FO1, FO2: forest area image groups; FA1,
FA2: farmland area groups. ** Bold font represents the best method.



Remote Sens. 2022, 14, 5998 8 of 16

The PSNR and SSIM indicators of the hazy image were closely related with the
atmosphere transmission. A bigger atmosphere transmission meant less difference between
the clear and hazy image; therefore, the PSNR and SSIM would be better.

DCP, CAP, and NLD had a poor performance on aircraft images. In some cases when
the atmosphere hazy effect was relatively small, the dehazed image using DCP, CAP, and
NLD was even worse than the hazy image. The learning methods such as DehazeNet,
AODNet, or MSCNN were much better.

The principles of DCP, CAP, NLD, and other methods are based on the experience of
natural-ground image dehazing, and the influence of haze is inferred based on the image
and some prior knowledge. These methods have a strong correlation with the structure
and brightness of the objects in the image. It can be observed from the transmission map
inferred from the dehazing results that the edges of the objects in the image are also the
inflection points of the transmission map. This is related to the principles of the DCP,
CAP, and NLD methods. This causes the image to produce a modulation transfer function
compensation (MTFC) effect, and the edge of the object appears clearer, especially when the
grayscale of the object is quite different from the grayscale of the surrounding environment.
The DCP method may overcorrect the dark gray ground objects. Both the CAP and NLD
methods present similar problems caused by the structure of the transmission map. The
DehazeNet, AODnet, and MSCNN methods that learned from the database produce better
results on the aerial images.

However, for forests, where the structural feature is not obvious and is relatively
uniform, the above-mentioned structural influences of the transmission map had little
effect on the dehazing results. Methods such as DCP, CAP, and NLD, were less different
than the other methods.

The DehazeNet method obtains the best results for aerial images when compared with
the other methods. In an aerial image, because the haze may affect the image at different
scales, this inspired us to adopt a multi-scale DehazeNet as the action in the DRL_Dehaze
method. Hence, DehazeNet14, DehazeNet35, and DehazeNet70 were adopted. The num-
bers in the method names indicate the sizes of the patches.

As listed in Table 2, the DRL_Dehaze method action set contained seven actions:

• Action 0, pixel-value decrement: subtract 1 from the values of all channels of the pixel;
• Action 1, do nothing: do not change the pixel values;
• Action 2, pixel-value increment: add 1 to the values of all channels of the pixel;
• Action 3, DehazeNet14: substitute the pixel values with the result of the De-

hazeNet14 method;
• Action 4, DehazeNet35: substitute the pixel values with the results of the De-

hazeNet35 method;
• Action 5, DehazeNet70: substitute the pixel values with the results of the De-

hazeNet70 method;
• Action 6, substitute the pixel values with the results of the DCP method.

The colors that represented the different actions are also presented in Table 2.

4.4. Reward

The reward is computed by the pixel values of the input and target images. At time
step t, after performing action at

i , the i-th pixel value changes from s(t)i to st+1
i , the target

pixel value is Itarget
i , and then the reward is defined as follows:

r(t)i = (Itarget
i − s(t)i )

2
− (Itarget

i − s(t+1)
i )

2
(6)

The reward is positive if the results achieve a value closer to the target value; otherwise,
it is negative or zero. The RL progress is used to maximize the reward, that is, to minimize
the error between the results and target clear image.
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Table 2. Action set used in DRL_Dehaze.

Serial Number Action Color

0 Pixel value − = 1
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5. Results and Discussion

We tested one-, two-, and three-step DRL_Dehaze methods on the simulated image
datasets. Here, the number of steps indicated the number of actions that were performed
on each pixel of the image. The term “one-step” suggested that only one action in the
action set was performed on the hazy image pixels. The term “two-step” suggested two
actions in the action sets were performed on the hazy image pixels, and the two actions
were performed one after another on every pixel of the hazy image. For example, if for
one pixel in the hazy image, the two-step DRL_Dehaze method performed DehazeNet14
as the first action and DehazeNet35 as the second action, the pixel was first dehazed to
an intermediate value using the DehazeNet14 method, then the intermediate value was
dehazed to the final value using the DehazeNet35 method. Similar to the definition of the
one- and two-step methods, the three-step method performed three actions one after the
other on the hazy image pixels.

5.1. One-Step DRL_Dehaze Results

The one-step DRL_Dehaze results are presented in Figures 4–7. The one-step action
chosen by the DRL method was related to the scale of the haze in the aerial image. De-
hazeNet70 was selected in the uniform-haze situation, whereas DehazeNet35 was selected
in the medium-scale haze situation, and DehazeNet14 was usually chosen in a small-scale
haze situation.
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Figure 4. One-step DRL_Dehaze results for different haze scales in a residential area. The first row
presents the uniform-haze situation, the second row presents the medium-scale haze situation, and
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the last row presents the small-scale haze situation. (a) Action maps of the hazy aerial images,
(b) hazy aerial images, (c) dehazed clear image of (b,d) predicted atmosphere transmission map,
(e) ground truth values of the atmosphere transmission maps, and (f) differences in the predicted and
true atmosphere transmissions. The bar on the right provides reference values for (d–f).
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the uniform-haze situation, the second row presents the medium-scale haze situation, and the last
row presents the small-scale haze situation. (a) Action maps of the hazy aerial images, (b) hazy aerial
images, (c) dehazed clear images of (b,d) predicted atmosphere transmission maps, (e) ground truth
values of the atmosphere transmission maps, and (f) differences in the predicted and true atmosphere
transmissions. The bar on the right provides reference values for (d–f).
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Figure 6. One-step DRL_Dehaze results of different haze scales in forest area. The first row presents
the uniform-haze situation, the second row presents the medium-scale haze situation, and the last
row presents the small-scale haze situation. (a) Action maps of the hazy aerial image, (b) hazy aerial
image, (c) dehazed clear image of (b,d) predicted atmosphere transmission map, (e) ground truth
values of the atmosphere transmission maps, and (f) differences in the predicted and true atmosphere
transmissions. The bar on the right provides reference values for (d–f).
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Figure 7. One-step DRL_Dehaze results of different haze scales in farmland area. The first row
presents the uniform-haze situation, the second row presents the medium-scale haze situation, and
the last row presents the small-scale haze situation. (a) Action maps of the hazy aerial images,
(b) hazy aerial images, (c) dehazed clear images of (b,d) predicted atmosphere transmission maps,
(e) ground truth values of the atmosphere transmission maps, and (f) differences in the predicted and
true atmosphere transmissions. The bar on the right provides reference values for (d–f).

The DRL_Dehaze method can choose the most suitable method for different scales of
haze in images.

We calculated the PSNR and SSIM indicators of the one-step DRL_Dehaze method
at different dehazing scales. We also calculated the MSEs of the estimated atmospheric
transmissions with respect to the true values, as listed in Table 3.

Table 3. Quantitative evaluation results of one-step DRL_Dehaze methods for different dehazing
scales in the images.

Image
Group Name

Uniform-Haze
Situation

Medium-Haze
Situation

Small-Scale Haze
Situation

PSNR SSIM MSE ** PSNR SSIM MSE ** PSNR SSIM MSE **

R1 * 34.54 0.99 1.02 27.39 0.96 12.62 27.26 0.96 13.26

R2 27.30 0.97 7.43 27.16 0.95 19.51 26.51 0.96 21.65

C1 26.57 0.95 2.31 23.77 0.95 22.72 25.43 0.94 22.82

C2 38.42 1.00 0.41 27.89 0.96 37.04 25.23 0.92 41.40

FO1 42.09 1.00 0.15 33.09 0.98 31.53 26.47 0.94 32.54

FO2 26.19 0.95 1.17 24.80 0.95 19.12 22.71 0.90 21.16

FA1 38.83 1.00 1.26 31.21 0.98 23.16 29.28 0.97 26.50

FA2 42.53 1.00 2.05 42.24 1.00 22.72 40.15 1.00 24.24

* R1, R2: residential area image groups; C1, C2: city area image groups; FO1, FO2: forest area image groups; FA1,
FA2: farmland area groups. ** MSE: here the MSE is of the estimated atmospheric transmissions with respect to
the true values.

The MSE of the atmospheric transmission was closely related to the estimated clear-
image quality. The prediction results for the uniform-haze situations were better than those
for the medium-scale haze situations, and the small-scale haze situations were the most
difficult to predict.



Remote Sens. 2022, 14, 5998 12 of 16

5.2. Two-Step DRL_Dehaze Results

The two-step DRL_Dehaze results are shown in Figure 8. Only the uniform-haze
situation was tested in this part. In the first step, the method selected the best dehazing
method that matched the haze scale, which was the same choice selected in the one-step
DRL_Dehaze method.
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Figure 8. Two-step DRL_Dehaze results at a uniform-haze scale in various areas. (a) First action
maps, (b) second action maps (at the beginning of the DRL training process), (c) second action maps
(after the DRL training has advanced), (d) hazy aerial images, and (e) dehazed clear aerial images
(action (a,c) maps are adopted).

At the beginning of the DRL training process, in the second step, a repair was per-
formed on some sections of the image. The repair step was mainly the pixel-value decre-
ment action, but included a few other actions, as can be observed in Figure 8. The repaired
sections of the image were mainly the areas that were relatively dark, such as the shaded,
black soil, and canopy areas.

As the DRL training proceeded, the repair action disappeared; this is reasonable for
aerial data, because the haze distribution is irrelevant for special types of ground and is
only related to the atmosphere itself. That is, for a uniform-haze image, the action chosen
should be the same one used for the whole image. The dehazed image result presented in
Figure 8e used the actions of Figure 8a,c.

5.3. Three-Step DRL_Dehaze Results

The three-step DRL_Dehaze results are presented in Figure 9. The chosen action was
similar to that selected in the two-step DRL_Dehaze situation. At the beginning of the DRL
training process, the agents selected the repair operations in steps 2 and 3. As the training
proceeded, a uniform DehazeNet action was performed in steps 2 and 3.
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Figure 9. Three-step DRL_Dehaze result at a uniform-haze scale in various areas. (a) First action
maps, (b) second action maps (at the beginning of the DRL training process), (c) second action maps
(when the DRL training has advanced), (d) third action maps (at the beginning of the DRL training
process), (e) third action maps (when the DRL training has advanced), and (f) hazy aerial images,
(g) dehazed clear aerial images (action (a,c) maps are adopted).

5.4. Quantitative Evaluations

Table 4 and Figure 10 present the quantitative evaluation results of the DehazeNet
method and DRL_Dehaze methods proposed in this article.
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Table 4. Quantitative evaluation results of DehazeNet methods and the DRL_Dehaze methods.

Ground
Feature

Evaluation
Indicators

Hazy
Image

Dehaze
Net

One-Step
DRL_Dehaze

Two-Step
DRL_Dehaze

Three-Step
DRL_Dehaze

Residential
area

PSNR
R1 ** 23.42 27.36 34.54 * 25.88 23.42

R2 27.80 27.30 27.95 25.58 22.09

SSIM
R1 0.92 0.97 0.99 0.96 0.93

R2 0.96 0.97 0.97 0.96 0.92

Cities

PSNR
C1 14.21 27.21 23.77 30.28 26.62

C2 28.51 28.62 38.42 36.87 33.88

SSIM
C1 0.62 0.97 0.95 0.99 0.97

C2 0.97 0.97 1.00 0.99 0.99

Forests
PSNR

FO1 27.67 38.12 42.09 34.72 31.84

FO2 13.36 27.10 24.80 32.90 37.19

SSIM
FO1 0.98 0.99 1.00 0.99 0.99

FO2 0.67 0.96 0.95 0.99 1.00

Farmlands

PSNR
FA1 26.79 28.01 38.83 39.62 36.34

FA2 40.93 41.06 42.53 35.85 32.15

SSIM
FA1 0.97 0.98 1.00 1.00 1.00

FA2 1.00 1.00 1.00 0.99 0.99

Time consumption (second) - 1.8 16.30 20.1 21.4

* Bold font represents the best method.** R1, R2: residential area image groups; C1, C2: city area image groups;
FO1, FO2: forest area image groups; FA1, FA2: farmland area groups.

The DRL_Dehaze method performed well on different ground types. On the residential
area image, the one-step DRL_Dehaze performed the best. On the city area image, which
had many shadows, the two-step DRL_Dehaze method provided a better result. This was
due to the underestimation of the atmospheric influence due to the building’s shadows.
Additionally, in some forest and farmland areas, the decreased brightness of the image
may lead to a low estimate of atmospheric transmission parameters, and a better dehazing
result can be obtained by the multi-step dehazing method.

We also provided the runtime of the methods in Table 3; the two- and three-step
DRL_Dehaze methods were slower than the one-step method. However, the total runtimes
were not excessive.

6. Conclusions

In this study, we developed a DRL_Dehaze method based on pixelRL. A clear–haze
multi-scale aerial dataset was developed. One-, two-, and three-step DRL_Dehaze methods
were tested on the dataset. Each pixel agent selected the most suitable method for dehazing
after training. In traditional methods, only one method can be selected for the whole
image in general. By contrast, DRL_Dehaze allows a different method to be chosen for
each pixel, and multi-step processing to realize the comprehensive application of various
dehazing algorithms.

The quantitative results show that the one-step DRL_Dehaze method performs the
best in most cases, but in the city areas, where many shadows exist, the two- and three-step
DRL_Dehaze methods are better. Furthermore, in the DRL_Dehaze model training process,
the evolution of the chosen methods revealed an interesting disappearance of structural
properties. This is reasonable given the hazy properties of the aerial data.

In future studies, multi-scale haze existing in the same image could be tested: this
situation reflects real-life scenarios. Furthermore, sub-band dehazing of aerial data could
be studied. In the actual aerial imaging process, the degree of transmission and scattering



Remote Sens. 2022, 14, 5998 15 of 16

of the atmosphere varies according to the wavelength of light. The longer the wavelength,
the greater its transmittance in the atmosphere. The achromatic aberration of aerial or
remote-sensing images may be caused by the long-distance transmissions of light from the
ground object to the aircraft.
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