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Abstract: Plant diseases cause considerable economic loss in the global agricultural industry. A
current challenge in the agricultural industry is the development of reliable methods for detecting
plant diseases and plant stress. Existing disease detection methods mainly involve manually and
visually assessing crops for visible disease indicators. The rapid development of unmanned aerial
vehicles (UAVs) and hyperspectral imaging technology has created a vast potential for plant disease
detection. UAV-borne hyperspectral remote sensing (HRS) systems with high spectral, spatial, and
temporal resolutions have replaced conventional manual inspection methods because they allow for
more accurate cost-effective crop analyses and vegetation characteristics. This paper aims to provide
an overview of the literature on HRS for disease detection based on deep learning algorithms. Prior
articles were collected using the keywords “hyperspectral”, “deep learning”, “UAV”, and “plant
disease”. This paper presents basic knowledge of hyperspectral imaging, using UAVs for aerial
surveys, and deep learning-based classifiers. Generalizations about workflow and methods were
derived from existing studies to explore the feasibility of conducting such research. Results from
existing studies demonstrate that deep learning models are more accurate than traditional machine
learning algorithms. Finally, further challenges and limitations regarding this topic are addressed.

Keywords: hyperspectral; UAV; remote sensing; deep learning; plant disease

1. Introduction

Plant diseases cause considerable economic loss in the global agricultural industry [1].
A current challenge in agriculture is the development of reliable methods for detecting
plant diseases and plant stress [2]. Existing disease detection methods mainly involve
the manual and visual assessments of crops for visible disease indicators. These methods
are time-consuming and demanding, depending on the crop field area. Manual detection
depends on the apparent disease or stress symptoms, which mostly manifest in the middle
to late stages of infection [2,3]. Visual assessments depend on the ability and reliability of
the assessor, who is prone to human error and subjectivity. Improved technologies for plant
disease detection and stress identification beyond visual appearance are required to reduce
yield loss and improve crop protection [4]. Generally, a plant develops a disease when it
is continuously disturbed by certain causal agents, which cause abnormal physiological
processes that disrupts the typical structure, growth, function, or other activities of the
plant. Plant diseases are caused by microorganisms, such as certain viruses, bacteria, fungi,
nematodes, or protozoa. Diseases enter plants through wounds or natural openings or are
carried and inserted by vectors such as insects [5]. Plants respond to stress by undergoing
biophysical and biochemical changes, such as a decrease in the amount of chlorophyll
in their leaves or alterations in the structure of their leaf cells [1]. Decreased chlorophyll
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pigments have been shown to drastically impair a leaf’s ability to absorb light [6]. Different
light absorption patterns of leaves indicate plant stress or disease infection. For example,
brownish-yellow spots on the upper side of a leaf are indicators of downy mildew disease,
which commonly affects several plants [7].

Plant conditions can be monitored by observing how leaves reflect light. Hyperspectral
imaging (HSI) is used to detect subtle changes in the spectral reflectance of plants [1]. HSI
can collect spectral and spatial data from wavelengths outside human vision, providing
more valuable data for disease detection than visual assessment, which only uses visible
wavelengths. Additionally, HSI offers a potential solution for the scalability and repeata-
bility issues associated with traditional field inspection [4]. HSI operates by collecting
spectral data at each pixel of a two-dimensional (2D) detector array and generating a
three-dimensional (3D) dataset of spatial and spectral data, also known as a hypercube.
Hyperspectral images generally cover a contiguous portion of the light spectrum composed
of hundreds of spectral bands that capture the same scene, and they have a higher spectral
resolution than multispectral images or standard (red, green and blue) RGB images [8,9].
Hyperspectral cameras are constructed using various hardware configurations, resulting in
different image-capturing methods. Methods for capturing hyperspectral images include
whiskbroom, pushbroom, and staring or staredown imaging [2,10].

HSI has been combined with various machine learning (ML) algorithms to automat-
ically classify plant diseases [1]. Plant disease detection tools must be fast, specific to a
particular disease, and sufficiently sensitive to detect symptoms as soon as they emerge [11].
Previous studies have demonstrated the use of HSI in detecting and identifying diseases
that affect wheat and barley [12–14]. Recent advances in lightweight HSI sensors and
unmanned aerial vehicles (UAVs) have resulted in the emergence of mini-UAV-borne
hyperspectral remote sensing (HRS). HRS systems have been developed, and they have
demonstrated significant value and application potential [15]. UAVs can be integrated with
cutting-edge technologies, computing power systems, and onboard sensors to provide
a wide range of potential applications [16]. UAV-borne HRS systems with high spectral,
spatial, and temporal resolutions have replaced conventional manual inspection methods
because they allow for more cost-effective accurate crop analyses and vegetation characteris-
tics [3]. The resulting hyperspectral images typically contain abundant spectral and spatial
data that reflect the distinct physical characteristics of the observed objects [17,18]. Further
data processing is required to extract useful information from the resulting hyperspectral
images. Regression and classification tasks are usually performed during hyperspectral
image processing to learn more about the observed object.

Numerous ML techniques, such as spectral angle mapper, support vector machine,
and k-nearest neighbor (KNN), have been used to process HSI data [19]. However, ML is an
ever-changing field of study where new methods are continuously discovered to solve more
complex problems. In recent years, deep learning, a new field in ML, has demonstrated
excellent performance in various fields of study, along with growing computer capacity
and affordability [20]. Deep convolutional neural networks (CNNs) have successfully
demonstrated the ability to solve complex classification problems in diverse applications [4].
The rich spectral information of HSI is robust and has been widely employed in various
successful fields such as agriculture, environmental sciences, wildland fire tracking, and
biological threat detection [21]. Deep learning has an advantage over ML because it can
compute the reflected wavelength (spectral features) and the shape and texture (spatial
features) of an object. It has been demonstrated that extracting spatial and spectral features
from HSI considerably enhances model performance [22]. Convolutional operations, which
serve as the foundation of CNNs, can simultaneously extract spatial and spectral features.
CNNs were initially built to extract spatial features from single-channel images (LeNet) or
three-channel RGB images. However, hyperspectral images can be regarded as a stack of
images showing correlations in both the spatial and spectral directions [4,23]. HSI features
can be extracted by employing a 3D convolutional filter that moves in both the spatial and
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spectral directions. This approach is known as a 3D CNN. It has been shown that 3D CNN
models increase classification accuracy [24].

This review discusses how deep learning models process hyperspectral data from
UAVs to identify plant diseases. An in-depth understanding of the instruments, techniques,
advantages, challenges, and similar research is provided. Such detection systems ultimately
aim to identify diseases with minimal physical changes to the plant. Identifying diseases
or abiotic problems as early as possible has apparent benefits. Stress symptoms can be
realistically identified before a human observer by combining hyperspectral technology
with appropriate analysis methods [2].

2. Theories and Standard Methods

Hyperspectral cameras have been widely used in many studies to capture spectral
information beyond the visible spectrum. Unlike conventional RGB cameras, hyperspectral
cameras use different working principles to capture a scene. UAV-based hyperspectral
camera systems, also called HRS systems, can be used in combination with UAV platforms
to capture spectral information over vast areas. The effective operation of this system
requires sufficient preparations, such as flight planning and considering environmental
factors such as the weather and sun illumination. Preprocessing and data preparation
are required after data acquisition to create a deep learning model. This section describes
the fundamentals of the HSI principle and the methods for conducting aerial surveys and
developing the deep learning model.

2.1. Hyperspectral Imaging

HSI is a technology that enables the acquisition of a spectrum for each pixel in an
image [25]. HSI produces a 3D hyperspectral cube with two spatial dimensions and one
wavelength dimension [26]. HSI systems are categorized based on their acquisition mode
or the method used for obtaining spectral and spatial information [27]. Some examples of
hyperspectral-data-acquisition methods include whiskbroom (point scanning), pushbroom
(line scanning), staring imagers, and snapshot-type imagers (Figure 1).
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Figure 1. Three techniques used for building a hyperspectral image: (a) whiskbroom imager, (b) push-
broom imager, (c) staring imager, and (d) snapshot-type imagers.

A whiskbroom imager or the point scan method entails moving the sample or detector
to scan a single point along two spatial dimensions [28,29]. This technique can obtain
images with a high spectral resolution and a great deal of flexibility in terms of sample size,
raster width, spectral ranges, and optical techniques [28]. Spectral scanning methods, also
known as staring or area-scanning imaging, use 2D detector arrays to capture the scene in
a single exposure and subsequently step through spectral bands to complete the data cube.
The primary benefit of staring imaging is its ability to obtain images with a high spatial
resolution at a low spectral resolution (depending on the optics and pixel resolution of the
camera). A pushbroom imager is a line-scanning system that acquires complete spectral
data for each pixel in one line [28]. This system allows for the simultaneous acquisition
of exclusive spectral information and a slit of spatial information for each spatial point in
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the linear field of view (FOV). When this system is used, the object is only moved in one
spatial direction (y-direction), and the spectral and spatial information is collected along
the x-coordinates of the camera. This technology offers a good balance between spatial and
spectral resolutions and is widely used in remote sensing [30]. A non-scanning imager,
also known as a snapshot-type hyperspectral imager, is capable of building a hyperspectral
cube in a single integration time [31]. Unlike scanning imagers, it uses a matrix detector to
record spatial and spectral information without scanning [32]. It decreases imaging time
and makes operations more straightforward and flexible [33]. However, its spatial and
spectral resolutions are limited [32].

The light reflected by the plant represents the biological compounds present in the
leaves as well as the physical characteristics of the leaves [34]. Hyperspectral imaging
technology can be used to measure and monitor leaf reflectance [35]. Various substances
present different spectral properties. As a result, the spectral profiles of diseased and
healthy plants may differ. For example, a change in photosynthetic activity as the result of
a pathogen causes a change in reflectivity in the visible range spectrum. Changes at the
cellular level have a significant impact on the near-infrared spectrum. Increased reflectivity
in the shortwave infrared spectrum is caused by tissue necrosis [36]. In plant disease
applications, hyperspectral imaging can provide contiguous bands extending from visible
to near-infrared (NIR) or SWIR. A hyperspectral camera can measure the entire spectrum
of spectral signatures, providing richer descriptions of the observed object, allowing it
to accurately distinguish between different categories compared to three RGB bands. In
general, the chlorophyll pigments within a leaf reflect green light while absorbing blue and
red light for the purpose of photosynthesis. Chlorophyll absorbs 70–90% of visible radiation,
especially blue (450 nm) and red (670 nm) wavelengths, while reflecting the majority of
green light (533 nm), which explains why leaves appear green. Wavelengths in the NIR
region (700–1400 nm) are primarily reflected and transmitted by the leaves’ cell structure,
known as mesophyll tissue. Because NIR reflectance is closely related to the leaf cell
structure, it can be used to monitor plant health. Additionally, plant stress is characterized
by chlorophyll pigment breakdown and loss, which is indicated by yellowness, an inability
to absorb blue and red, and less reflectance in the NIR area [37].

Berdugo et al. (2014) [38] shows the spectral differences between diseased and healthy
cucumber leaves in their research on the detection and differentiation of plant diseases
among cucumbers (Figure 2). There were only slight differences between diseased and
healthy cucumber leaves on the first assessment date. As disease symptoms progressed,
differences in visible light became more significant (with a peak of ~650 nm) and at the red
edge position at 700 nm.
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HSI is an effective tool for agricultural crop monitoring. However, limitations such as
changes in the light intensity, background noise, and leaf orientations must be addressed
to fully utilize the potential outdoor applications of HSI [39,40]. Reflectance is often
the preferred output of the remote sensing data because it is a physically defined object
property [41]. However, HSI captures spectral information based on digital number (DN)
units [42]. Therefore, an additional process, namely, radiometric calibration, is required
to convert DN values to an actual radiation intensity or reflection [43,44]. Radiometrically
calibrated images provide long-term and consistent value data [40] that can be effectively
used to compute vegetation indices, such as the normalized difference vegetation index
(NDVI), and gain an understanding of the status of plants, such as their nitrogen content,
chlorophyll content, and green leaf biomass [45].

The primary step in radiometric calibration entails collecting images of Lambertian
targets with varying reflectance levels and calculating their average DN to produce radio-
metric calibration parameters for each band [44,46]. Empirical linear-based approaches can
be used when two or more reflectance targets are available on the ground, presuming that
the illumination conditions of the targets and the object under study are similar [43,47,48].
Equation (1) represents the basic mathematical formula for calculating the calibrated actual
reflectance [43,49].

Re f lectance = 100× measurement− dark current
re f erence− dark current

(1)

where measurement is the measured image, and dark current and re f erence are the dark
and standard white references. The dark reference can be obtained by covering the lens
completely to prevent light from entering the sensor, while the white reference can be
obtained by capturing standard white materials with a known reflectance.

2.2. UAV for Agricultural Field Survey

UAVs are drones flown with the assistance of a ground-based flight controller or
without an onboard pilot [50]. UAVs can conduct a survey mission to create various map
types, including thermal maps, elevation models, and 2D or 3D orthorectified maps that
are geographically accurate [51]. A flight mission must be prepared before conducting any
UAV survey mission to provide a series of feasible points and optimize image-capturing
events [52]. Specialized software programs such as UgCS [53], PIX4Dcapture [54], DroneDe-
ploy [55], or DJI Pilot [56] are typically used in the laboratory to plan the mission (flight
and data acquisition) after determining the area of interest, necessary ground sample
distance (GSD) or footprint, and inherent parameters of the onboard digital camera. The
desired image scale and camera focal length are also calculated to determine the mission
flight height [57].

The GSD helps describe the actual size of one pixel on the image, and it is expressed
in mm or cm. For example, a GSD of 5 mm implies that 1 pixel on the camera image corre-
sponds to 5 mm on the object [58]. The GSD value depends on the sensor resolution, lens
properties, and flight altitude. Figure 3 shows how different flight altitudes affect the GSD.
Establishing ground control points (GCPs) in the survey area is another complementary
method for accurately mapping the survey area. GCPs are used to determine the exact
latitude and longitude of a point on the map on Earth [52]. They should have a clear shape,
be visible from a far distance, be easily distinguishable from their surroundings, and have
a central location (Figure 4b). GCPs should be included in the captured photographs col-
lected by a UAV to properly align and scale the object of interest for digital reconstruction
during postprocessing [58]. According to a previous study [59], using 3 GCPs, 4 GCPs, and
up to 40 GCPs to process images resulted in nearly identical accuracy. However, using at
least five GCPs is recommended for practical aerial surveys of agricultural fields [60]. It is
also important to distribute all GCPs evenly over the study area (Figure 4a).
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(b) a standard 60 × 60 cm GCP used for aerial survey [62].

The imagery collected by UAVs is mainly used to produce 2D maps. The simplest
approach to creating a mosaic from aerial imagery is to use photo stitching software such
as Image Composite Editor (ICE) [63] to combine several overlapping aerial photographs
into a single image. However, it is challenging to precisely estimate distance without
geometric correction, which is a procedure that eliminates perspective distortion from
aerial photographs. Although simply stitched images are continuous across boundaries,
their perspective distortions are not corrected. An orthomosaic is a series of overlapping
aerial photographs that have been geometrically corrected (orthorectified) to a uniform
scale. This process eliminates perspective distortion from the aerial photographs, resulting
in a distortion-free mosaic of 2D images. Geospatial information system (GIS)-compatible
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maps can be created from orthorectified images for use in cadastral surveying, construction,
and other applications [52].

2.3. Deep Learning

Deep learning is a branch of ML that operates based on a neural network principle.
It combines low-level features to form abstract high-level features to discover distributed
features and attributes of sample data [64]. It automatically extracts and determines which
data features can be used as markers to precisely label the sample data [65]. Currently,
multilayer perceptions, CNNs, and recurrent neural networks (RNNs) are the three main
types of networks [64]. CNNs are commonly used in visual recognition, medical image
analysis, image segmentation, natural language processing, and many other applications
because they are specifically designed to handle various 2D shapes [66].

As shown in Figure 5, a CNN comprises convolutional layers that serve as feature
extractors and fully connected (FC) layers that serve as classifiers at the network’s end [67].
CNNs collect input and process it through convolutional layers with filters (so-called
kernels) to detect edges and boundaries. They also collect other features to identify objects
in images. Each filter generates a feature map that travels through the network from one
layer to the next [68]. Once the features are extracted, they are mapped by a subset of FC
layers to the final outputs of the network to generate probabilities for each class [69]. The
final output of CNNs is a probability or confidence that indicates the class that each input
belongs to [67]. CNN tasks can be divided into image classification, object detection, and
image segmentation, depending on how the prediction is made (Figure 6).
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Image classification is the process of organizing images into a predefined category or
class [70]. However, it is challenging when there are multiple classes or objects in a single
image. Object detection is the subsequent stage of CNN development and aims to classify
and localize each object in an image within a bounding box [68]. This method requires
additional steps to preclassify the image into regions or grids [71] and subsequently classify
the object category or class for each bounding box to pinpoint the location of an object.
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Each box also has a confidence score that indicates how often the model believes this
box contains an item [68]. However, it is more challenging to separate and categorize
all the pixels related to the object. This operation is called object segmentation. Object
segmentation is a pixel-level description of an image. It forms a boundary according to
the shape of the corresponding object rather than creating bounding boxes that separate
each object. It provides meaning to each pixel category and is suitable for understanding
demanding scenes, such as the segmentation of roads and non-roads in autopilot systems,
geographic information systems, medical image analyses, etc. [72,73].

Since a significant amount of data is required to achieve a high-performing deep-
learning-based model, the model performance is expected to improve as the data volume
increases [67]. The model must also generalize the data, which means that it must learn
from both the training data and the unseen data [74]. Large training datasets are often
essential to ensure generalizability. Relatively small datasets (hundreds of cases) may be
sufficient for specific target applications or populations. Large sample sizes are necessary
for populations with significant heterogeneity or when there are small differences between
imaging phenotypes [75,76].

Evaluating deep learning models is an essential part of any project. A confusion
matrix is widely used to measure the performance of classification models, and it displays
counts from predicted and actual values (Figure 7). True negative (TN) represents the
number of accurately classified negative examples, true positive (TP) indicates the number
of accurately classified positive examples, false positive (FP) represents the number of
negative samples classified as positive, and false negative (FN) represents the number of
positive samples classified as negative [77]. Additional evaluation matrices can be created
to assess the model’s accuracy (ACC), precision (P), sensitivity (Sn), specificity (Sp), and
F-score. These performance metrics can be calculated using Equations (2)–(6) [78,79]:

ACC =
TP + TN

TP + TN + FP + FN
, (2)

P =
TP

TP + FP
, (3)

Sn =
TP

TP + FN
, (4)

Sp =
TN

TN + FP
, (5)

Sp =
TN

TN + FP
. (6)

Intersection over union (IOU) is commonly used to evaluate object detection or image
segmentation models (Equations (7)). It divides the overlapping area between the predicted
bounding box and the ground-truth bounding box by the union area between them.

J
(

Bp, Bgt
)
= IOU =

area
(

Bp ∩ Bgt
)

area
(

Bp ∪ Bgt
) (7)

where Bp and Bgt represent the prediction box and ground-truth box, respectively. The
IOU is calculated by dividing the overlapping area by the union area between Bp and Bgt.
Model prediction can be evaluated by comparing the IOU with a specific threshold. The
prediction is correct if the IOU is greater than the threshold and incorrect if the IOU is lower
than the threshold [80].
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3. Related Works

HRS has been widely used for various applications in numerous study fields. Four
keywords were used to uncover publications for this review: UAV, hyperspectral, plant
disease, and deep learning. This review focuses on the target disease, system operation,
workflow, deep learning algorithm, and results.

Yu et al. (2021) [81] investigated early pine wilt disease (PWD) discovered in the
Dongzhou District of Fushun City, Liaoning Province, China. A ground survey was
conducted to identify PWD symptoms based on the morphology and molecular analysis of
tree samples to confirm the presence of the disease. The location of the tree samples was
recorded as ground-truth data using a hand-held differential global positioning system
(DGPS). The samples were classified based on the early, middle, and late infection stages.

Data acquisition was conducted using DJI Matrice 600 equipped with a Pika L hyper-
spectral camera and an LR1601-IRIS LiDAR system. The flight had a 120 m height, a 60%
overlap, and a 3 m/s flight speed. Radiometric calibration was performed based on a tarp
for reflectance correction, and six GCPs were used for geometric correction.

This research proposed a 3D-Res CNN model based on pixel-level features, and the
input data were a set of spatial–spectral neighboring cubes around the pixels. Image blocks
were extracted from the hyperspectral cube using a 3× 3× 3 kernel and an 11× 11 window.
Additionally, 11 wavelengths were extracted using the principal component analysis (PCA)
method to make the model more rapid and lightweight. The 3D-Res CNN model consists of
four convolution layers, two pooling layers, and two residual blocks. The 3D convolution
operation can be used to retain both spatial and spectral data.

The 3D-CNN, 2D-CNN, and 2D-Res CNN models were compared to evaluate the
performance of the 3D-Res CNN model in identifying PWD-infected pine trees based on
hyperspectral data. The 3D-Res CNN model outperformed the other models, with an
overall accuracy (OA) of 88.11% and an accuracy of 72.86% for identifying early infected
pine trees. A residual CNN block, which was used in the model, solved the vanishing
gradient problem and improved the classification accuracy.

Zhang et al. (2019) [82] investigated winter wheat infected by yellow rust disease in
the Scientist Research and Experiment Station of China Academy of Agricultural Science in
Langfang, Hebei Province, China. Four experiment plots were prepared for data collection:
two plots were infected with yellow rust wheat, and two plots were left uninfected. A DJI
S1000 UAV system equipped with a UHD 185 firefly (Cubert) snapshot-type hyperspectral
camera was used as the data acquisition system. The images were mosaicked, and then,
15,000 cubes with a size of 64 × 64 × 125 were cropped and extracted to build the deep
learning model. Data augmentation was performed through a small random transformation
with a rotation, flip, and mirror to prevent the model from overfitting.
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The proposed deep learning model consists of several Inception and ResNet blocks,
an average pooling layer, and an FC layer, and it classifies samples into three categories:
rust, healthy, and others. The ResNet block was used to build a feasibly thin deep learning
model while maintaining or enhancing its performance. He et al. (2016) [83] demonstrated
that residual learning can overcome the vanishing/exploding gradients in deep networks.
Since the performance of the model is also influenced by the width and kernel size of the
filter, an Inception–ResNet structure [84] was used to address this problem by employing
different kernel sizes.

The proposed model was compared to a random forest (RF) ML model to evaluate its
performance. The Inception–ResNet CNN model achieved a higher accuracy (85%) than
the RF model (77%). The proposed model was able to perform better because it could
account for both the spectral and spatial information to detect the disease, compared to the
RF, which only accounts for the spectral information. Relying on spectral information alone
was not feasible because the spectral information from each class had a high variance.

Shi et al. (2022) [85] investigated potatoes infected by late blight disease. The experi-
ment was conducted in Guyuan county, Hebei province, China. DJI S1000 equipped with a
UHD-185 (Cubert) hyperspectral camera was used as the data acquisition system. Four
types (classes) of ground-truth data were investigated: healthy potatoes, late blight disease,
soil, and background (i.e., the roof, road, and other facilities). The hyperspectral data were
acquired at a 30 m flight height.

The research proposed a deep learning model called CropdocNet, which consists of
multiple capsule layers, to model the effective hierarchical structure of spectral and spatial
features that describe the target classes. The model employed a sliding window algorithm
with 13 × 13 patch sizes and was trained with 3200 cubes. The proposed model showed
significant differences when compared to conventional ML algorithms, support vector
machine (SVM), RF, and 3D-CNN, achieving a maximum accuracy of 98.08%.

4. General Workflow for Hyperspectral-Based Plant Disease Detection

UAV-borne HRS is considered a new field of study that is continuously evolving.
New instruments and methods are being developed to obtain improved results. Three
papers that matched the keywords UAV, hyperspectral, plant disease, and deep learning are
reviewed in this paper. Several challenges must be overcome when conducting UAV-borne
HRS research for disease detection. First, it is a multidisciplinary field of study that involves
researchers from multiple disciplines; therefore, each party must collaborate effectively.
Second, a huge amount of data is required to train the deep learning model. The experiment
cannot produce a massive number of diseases as training data. Since disease occurrence in
the actual field is usually low, there is a limited number of available datasets to train the
deep learning model. However, some generalizations can be made regarding the research
workflow based on the matched research keywords and other related research.

4.1. Field Preparation

The first research step for developing a deep learning model for disease detection is to
establish an experiment site. The site must have a sufficient number of healthy and diseased
samples. Two types of methods are usually used when establishing or choosing a site. In
some studies, separate experiment plots were created, and the disease was inoculated in
one or more plots to create healthy and diseased samples [82,85,86]. For example, Guo et al.
(2021) [87] conducted research on wheat yellow rust detection. Three plots were set up
(two inoculated plots and one healthy plot), each with an area of 220 m2. Wheat yellow rust
fungus spore suspensions were prepared and sprayed on the wheat leaves with a handheld
sprayer. Meanwhile, pesticides were sprayed on the healthy plot to prevent it from being
infected by the yellow rust. However, disease inoculation is only suitable for small sample
sizes and cannot be used in actual large-scale applications [81], and the success rate is
also not guaranteed. Additionally, since different diseases (e.g., PWD disease) are initially
transmitted by insects via different transmission modes, artificial disease inoculation could
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cause various symptoms [88]. Therefore, other researchers chose experiment sites where
plants or trees are naturally infected by the disease [81,86,89,90].

4.2. Ground Survey

Another crucial stage is to conduct a ground survey after the experimental site has
been established. The diseased plant on the acquired images must be validated and
matched with the diseased plant on the actual site [81,85]. The exact position of the
diseased plant at the experiment site must also be identified in the acquired images. The
different visual features of the samples displayed in the images can be used to differentiate
each class. Another viable option is to mark the sample’s position based on its GPS
location [91]. The infection stages can be determined by identifying the sample morphology.
For example, Yu et al. (2021) [92] conducted research to detect PWD disease infection. A
ground survey was conducted to determine the infected plants and build a ground-truth
dataset. The PWD infection was divided into several stages by considering resin secretion,
growth vigor, and the color of the needles. Afterward, the disease infection can be further
validated by performing sample molecular identification using polymerase chain reaction
(PCR) analysis [93].

Disease severity refers to how a particular disease spreads throughout a plant and
affects its growth and yield. It is most often expressed as a percentage or proportion. Most
studies have defined disease severity as the area of disease lesions or symptoms with
respect to the area of the leaf. Therefore, researchers have used deep learning-based image
classification to solve the problem based on the area of leaves covered by lesions [94].

4.3. Data Acquisition

Data acquisition involves UAV-based hyperspectral system configuration and flight
planning. UAV platforms must be able to carry payloads safely and stably because most
hyperspectral camera systems require a microcomputer for operation. Figure 8 presents
examples of a typical UAV-based hyperspectral camera system configuration.
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hyperspectral camera, and standard reflectance tarps.

The GSD, or ground resolution, must be defined before conducting data acquisition.
Ground resolution is typically acquired by deriving the camera properties (such as sensor
resolution, focal lengths, or FOV), and it depends on the samples and application. Most
hyperspectral cameras have lower resolutions than digital RGB cameras. Therefore, the
ground resolution must be calculated carefully to obtain good results.

In forestry, flights are conducted at heights between 70 m [88], 100 m [95], and
120 m [81,96] above the ground for disease detection, with a ground resolution of 0.4–0.56 m.
However, agricultural field applications tend to have a smaller sample size (plant) and flat
ground. Flying between 20 m [97] and 30 m [82,85,87,98–100] above the ground allows for
the collection of more detailed field information with 1 to 3.5 cm of ground cover.
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Weather factors should be considered during data acquisition. The flight should be
conducted on a sunny day to achieve a good DN value and uniform illumination all over
the experiment site [101]. Flying on a windless day should also be considered to reduce
UAV vibration caused by the blowing wind. This is because the wind could move the
plants, causing them to have different positions in each photo captured and resulting in
blurry images [102].

4.4. Image Preprocessing

Aerial images captured from UAVs must be processed to reduce errors and obtain high-
quality hyperspectral images for plant disease analysis. This process is called preprocessing,
and it includes image mosaicking, geo-referencing, radiometric calibration, and in some
cases, dividing the images into small patches as input for the model. Mosaicking is the
process of combining overlapping field images into one single image. It is important to
use an orthomosaic image because this type of image corrects perspective distortion and
provides true distance measurement. Agisoft Metashape [103], PIX4Dmapper [104], or
DJI Terra [105] are commonly used, reliable software programs for creating orthomosaic
images. Geo-referencing is the technique of assigning each pixel in an image to a specific
location in the real world. Georeferencing is performed by utilizing GCPs on the field. This
process can provide accurate geoinformation about an image and rectify its overall shape
to resemble how it looks in the real world. Georeferencing can be conducted in software
such as ArcGIS [106], Agisoft Metashape [103], PIX4Dmapper [104], or ENVI [107]. The
following step is radiometric calibration. The raw data captured by the hyperspectral
camera are simply arbitrary numbers known as a digital number (DN), which must be
converted into radiation. Because the field observations may occur on different days and
because slight differences in light intensity between flights are unavoidable, converting the
radiation value to reflectance is required to provide a consistent value. This is accomplished
by calibrating the radiation value to a known reflectance, which in this case, is a reflectance
tarp set in the field during data collection.

4.5. Feature Extraction

Disease detection begins with feature extraction. The disease might be indicated by
different colors. In the case of hyperspectral images, further differences can be found
beyond visible light bands. Furthermore, a classifier model can be built to detect diseased
areas by using spectral data as input variables. Having a distinct spectral signature, the
model can distinguish between healthy and diseased samples. However, using only spectral
data as variables may not be entirely robust. Different environmental conditions, such as
sunlight and shades, can affect the spectral data of the samples for outdoor applications.
The model classification accuracy can be increased by considering the shape caused by the
disease or by employing the spatial feature of the data. Feature extraction aims to extract
and form new feature vectors for plant disease detection by combining and optimizing
the spectral, spatial, and texture features and then delivering them to a set of classifiers or
ML algorithms [36].

4.5.1. Spectral Features Extraction

1. Using full spectrum

Having numerous spectral data points is one of the advantages of using a hyperspectral
camera. Different intensities of particular spectral bands within the hyperspectral data
can be used to identify disease symptoms. Full spectrum can be used when short-range
dependencies between spectral wavelengths must be preserved [1]. A classifier model can
be built based on these differences by assigning each band as a variable, and classifications
can be made by classifying one pixel at a time.
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2. Band reduction methods

Hyperspectral images have stacks of wavelength bands that are treated as variables
for the model. In most cases, adjacent wavelengths have high similarity, which causes
a large amount of data redundancy, which has a negative effect on classification per-
formance [108]. Therefore, selecting the characteristic bands or variables that can fully
represent all wavelength information is important. Dimensionality reduction methods,
such as PCA, minimum noise fraction (MNF) algorithm, linear discriminant analysis (LDA),
stepwise discriminant analysis (SDA), partial least squares discriminant analysis (PLS-DA),
and successive projection algorithm (SPA), can be used to decrease collinearity between
variables and increase model performance [36].

PCA is one of the most common feature selection methods, and it transforms the
original data linearly. This method processes the original data and generates features known
as components. The components are statistically uncorrelated and keep the maximum
amount of information [108]. Contrary to using the original spectral data as the model
input, using the PCA components results in a low number of variables while maintaining
adequate information. Additionally, SPA is a variable selection technique that can minimize
the influence of collinearity between spectral variables and extract useful information from
the spectral data [109]. Xuan et al. (2022) [12] attempted to detect early wheat powdery
mildew disease using HSI. They used SPA to filter out the effective wavelengths from the
whole spectrum. Twelve effective wavelengths were obtained when the RMSE reached the
minimum value of 0.31, and the wavelength selection processes are shown in Figure 9.
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Dimensionality reduction techniques are used to reduce the number of variables used
as model input while retaining as much information as possible in those reduced variables.
The amount of collinearity within the spectrum is minimized, and the reduced variable
can be used to represent the whole spectrum data. These techniques condense redundant
information across the whole spectrum, thereby improving classification performance and
reducing computational costs.

3. Vegetation indices

A Vegetation Index (VI) is a value computed by transforming the observations of
two or more spectral bands designed to emphasize the spectral properties of green plants,
allowing them to be distinguished from other image components [110]. Spectral features
can be extracted from hyperspectral data by analyzing and comparing vegetation indices
between diseased and healthy crop samples and using them as variables. Vegetation indices
numerically represent the relationship between the different wavelengths reflected by plant
surfaces. Vegetation indices represent the physiological and morphological characteristics
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of a plant, such as its water content, biochemical composition, nutrient status, biomass
content, and diseased tissues [111].

Marin et al. (2021) [112] extracted 63 vegetation indices from multispectral images
to detect coffee leaf rust disease using several ML models. In their research, Modified
Normalized Difference Red Edge (MNDRE) has the highest contribution to the model.
Similarly, Abdulridha et al. (2019) [99] studied 31 vegetation indices to develop a radial
basis function (RBF) and KNN for citrus cancer disease detection. It was found that the
Water Index (WI) was the most influential band in distinguishing healthy and diseased
leaves. Additionally, Anthocyanin Reflectance Index (ARI) and Transform Chlorophyll
Absorption in Reflectance Index (TCARI 1) can accurately differentiate healthy citrus trees
from cancer-infected citrus trees. Zhao et al. (2020) [113] used six typical vegetation indices
related to biomass, photosynthetically active radiation (PAR), leaf area index (LAI), and
chlorophyll contents to estimate cotton crop disease. Some of these vegetation indices
include the NDVI, green NDVI, Enhanced Vegetation Index, and Soil-Adjusted Vegetation
Index (Table 1). It was found that Enhanced Vegetation Index (EVI) is the most suitable for
detecting cotton diseases. A comprehensive list of vegetation indices can be found in the
Index-Data-Base (IDB) [114].

Table 1. List of commonly used vegetation indices related to plant health [110].

Vegetation Indices Formulas Applications

Normalized Difference Vegetation Index NDVI = (R800−R670)
(R800+R670)

NDVI assesses plant health by dividing the
difference in the intensity of reflected light in

the red and infrared regions by the sum of
these intensities.

Green Normalized Difference
Vegetation Index GNDVI = (R800−R550)

(R800+R550)

GNDVI is calculated by dividing the
difference between infrared and green light

reflectance; it is sensitive to
chlorophyll concentration.

Ratio Vegetation Index RVI = R800
R670

RVI is the ratio between the near infrared and
red band reflectance.

Enhanced Vegetation Index EVI = 2.5(R800−R670)
(R800+6R670−7.5R450+1)

EVI is related with biomass;
leaf area index (LAI).

Normalized Difference Red-Edge NDRE = (R800−R720)
(R800+R720)

NDRE is used to measure chlorophyl amount
in the plants; it provides more accurate result

for middle and late season crops.

Soil-Adjusted Vegetation Index SAVI = (1.5)(R800−R670)
(R800+R670+0.5)

SAVI is best suited in areas having low
vegetation cover

Leaf Chlorophyll Index LCI = (R850−R710)
(R850+R680)

LCI is used to measure chlorophyll content

Modified Chlorophyll Absorption
Ratio Index

MCARI = (R700 − R670)−
0.2 (R700 − R550) ∗ (R700/ R670)

MCARI indicates the relative
abundance of chlorophyll.

The NDVI is a common vegetation index used for crop health monitoring. However,
it is not suitable for identifying the causal agent of crop diseases. The NDVI does not
follow specific wavebands that represent physiological changes caused by pathogens. In
general, VIs are a simple and effective algorithm that can be used for plant condition
assessment. Disease identification can be accomplished using VIs by evaluating leaf
senescence, chlorophyll content, water stress, etc. However, VIs are not disease specific
because they are only related to plant biophysical properties. The majority of the VIs are
quite specific and only performed well with the datasets for which they were designed [110].
Spectral Disease Indices (SDIs) are a more accurate representation of disease-infected plants,
and it is a ratio of the different disease spectral bands extracted based on spectral responses
from the diseased vegetation. SDIs are specific and unique to each vegetation, disease, and
infection stage because the disease may uniquely affect the leaf reflectance spectrum [115].
Disease indices can be formulated for specific diseases, or an existing SDI can be used.
Mahlein et al. (2013) [116] developed spectral indices to detect Cercospora leaf spot, rust,



Remote Sens. 2022, 14, 6031 15 of 24

and powdery mildew disease in sugar beet plants. Meng et al. (2020) [117] developed
a disease index to detect corn rust and classify its severity. SDIs have the potential to
discriminate and differentiate one plant disease from another because they are sensitive to
a particular disease.

4.5.2. Spatial Features Extraction

Spatial features are numerical representations of an image in a single band based on a
descriptor. Shape, size, orientation, and texture are examples of spatial characteristics. Tetila
et al. (2017) [118] employs a machine-learning method for automatic soybean leaf disease
detection. Spatial features include texture (repetitive patterns that present in an image
associated with roughness, coarseness, and regularity), shape (describes images according
to the contour of objects), and gradient (represents derivatives in different directions of the
image). Hlaing and Zaw (2018) [119] used the Scale Invariant Feature Transform (SIFT) to
find texture information classified as tomato plant disease using a combination of texture
and color features. They used the Scale Invariant Feature Transform (SIFT) to find the
texture information, containing details about the shape, location, and scale. Because a
machine learning model can only accept numerical inputs, hyperspectral images must be
converted or transformed into a numerical value that represents their spatial features.

Vegetation Index generation, SDI generation, and dimensional reduction methods are
feasible methods for creating features used for developing ML models. Multiple steps and
complex processes are involved in feature extraction. Engineering or extracting features
from raw data is a challenging task, and sometimes, the solutions are specific to each case
or dataset. However, this process can be eliminated in CNN models because the essential
features are located during the dataset training [111].

4.6. Disease Detection Approaches

Mosaicked aerial images are large-sized images that contain a huge amount of in-
formation regarding the entire field. They must be divided into smaller patches or seg-
ments in order to perform effective disease classification. The divided images can then
be transferred to a classifier to determine the presence of the disease and subsequently
combined as a whole image with the delineated diseased area. Aerial images are di-
vided differently, depending on the research object, and they can be optimized with a
classifier to obtain maximum performance. Several studies have divided the images into
11 × 11 [81], 13 × 13 [85], 32 × 32 [86], 64 × 64 [82,120], 128 × 128 [90], 224 × 224 [121],
256 × 256 [90], and 800 × 800 [88] patches using various approaches, including a segmen-
tation process [89,122,123], to create the dataset.

The following are numerous methods used for effectively processing aerial images for
disease detection:

1. Patches or sliding windows and CNNs [82,120,124]: These methods are the most
straightforward methods for detecting and localizing plant disease. They entail
dividing the original images into smaller square images (patches) and using them as
CNN input. After each patch or window is classified, the end result can be achieved by
recombining them into a whole image. However, most of the time, these methods are
not suitable for real-time usage because they tend to be computationally expensive.

2. Segmentation and CNN or ML [89,90,122,123]: This method has a similar operation
to the sliding window algorithm; however, the image is segmented or separated into
regions using different segmentation algorithms rather than divided into smaller
square patches. The segmented regions have arbitrary shapes that contain similar
features within each segment. For plant disease detection, the segments can be
designed to follow the shape of each leaf or some region of the leaf that has similarities.
The classification is performed by extracting the segments and transferring them to a
classifier model (CNN or ML). After recombining each classified segment, the result
would look like the diseased leaves are delineated. This method identifies diseased
plants with high accuracy.
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3. Object detection [88,93,125–127]: This method utilizes CNN-based object detection
algorithms, such as YOLO, Fast R-CNN, and Faster R-CNN. The input image for
this method is between 244 and 1000 pixels. This method can generate bounding
boxes that surround the object, detect the disease, and find its location in the image.
This method can be used in real time because it has a faster prediction speed. This is
because this method simultaneously detects multiple objects in a single image rather
than dividing the image into smaller patches like the previous two methods. However,
there is currently no information about its accuracy for detecting disease based on
hyperspectral images (further research is needed).

4. Image segmentation algorithm: This method has been used to detect plant diseases
or weeds in various studies [86,90,91,128–131]. It classifies each pixel in the image
into corresponding classes. This method is similar to object detection, but it generates
an arbitrary region shape that matches the shape caused by the disease rather than
generating bounding boxes around the disease area. The segmentation method aims
to provide a fine description of these regions by delimiting the boundary of each
different region in the image [132].

5. Pixel-based CNNs [81,85]: This method has the same principle as the sliding window
method. However, the input data are a set of spatial–spectral neighboring cubes
around pixels rather than the whole image (Figure 10). The patch size of the input
information from the acquired image is smaller than that of the image-level classifica-
tion task. Generally, convolution kernels with small spaces can be used to prevent
excessive input data loss [81]. The resulting output is a map of regions with an
arbitrary shape, and it classifies the diseased area.

6. Heat map and conditional random field (CRF) [121]: This method uses CNNs as a
heatmap, which is then reshaped to accurately segment the lesions using CRF.
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Figure 10. Hyperspectral images divided into small patches by Yu et al. (2021) [81] to decrease the
input size and increase the number of datasets.

All the abovementioned techniques can classify and locate diseases within the acquired
aerial images. Patches or sliding windows combined with CNNs and object detection
produce bounding boxes around the diseased area, while the other techniques produce
segments or regions with a similar shape to the diseased area. Object detection only allows
for the creation of rectangular bounding boxes, resulting in the localization of the extra
areas with no disease lesions and symptoms. The segmentation method produces the most
accurate results when used to calculate the infected leaf regions with respect to the entire
leaf [94]. Table 2 provides a summary of the different methods for disease detection.
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Table 2. Summary of the different methods for disease detection.

Plant Disease UAV System Data Model Algorithm Input Features Evaluation Ref

Pine Pine wilt
disease

DJI M600,
LR1601 IRIS

LIDAR,
Pika L HSI

Hyperspectral 3D-Res CNN Sliding
window

11 × 11 × 11
hyperspectral

block
88.1 acc [81]

Wheat Yellow rust
DJI S1000,
UHD 185

Cubert
Hyperspectral Inception-

Resnet
Sliding

window

64 × 64 × 125
hyperspectral

block
85 acc [82]

Potato Blight
DJI S1000,
UHD-185

Cubert
Hyperspectral CropdepcNet Sliding

window

13 × 13 × 125
hyperspectral

block
95.75 acc [85]

Pine

Rotting,
powdery

mildew, and
wood

nematode

DJI Phantom
4Pro, FC6310 RGB Inception V3 +

AdaBoost
Region

classification
64 × 64 × 3
RGB patch 0.957 recall [120]

Radish Fusarium wilt DJI Phantom 4 RGB VGG-A Region
classification

200 × 200 × 3,
KNN ROI 93.3% acc [89]

Pine Nematode
disease

FeimaD200,
RedEdge-MX

Multi
spectral SCANet Image seg-

mentation 128 × 128 × 5 79.33% acc [90]

Corn NLB DJI Matrice 300
RTK, P1 RGB DenseNet169 Sliding

window 1000 × 1000 × 3 100% acc [122]

Soybean

Asian rust,
target spot,

mildew,
pwdery
mildew

Phantom 3 Pro,
Sony EXMOR RGB

Inception-v3
FT 75%,

Resnet-50
FT 50%,

VGG-19 FT
100%, Xception

FT 100%

Region
classification

256 × 256 × 3,
SLIC Segmentation

99.04%,
99.02%,
99.02%,
98.56%

[123]

Pine PWD DJI Phantim 4
Multispectral Multispectral Faster R-CNN,

YOLOv4
Object

detection 800 × 800 × 6 60.98% map,
57.07% map [88]

Pine PWD DJI Phantom 4
RTK, CMOS RGB

YOLOv3
Darknet53,
YOLOv4

MobileNet,
R-CNN

ResNet50m
Faster R-CNN

ResNet101

Object
detection 1024 × 1024 × 3

64% map,
63.2% map,
60.2% map,
62.2% map

[93]

Grape Flavescence
Doree

DJI Matrice
210 v2,

Zenmuse XT2
RGB Faster R-CNN

ResNet 101
Object

detection 1024 × 1024 × 3 82% map [125]

Pine PWD CMOS Sony
Rx R12 RGB FPN +

ResNet101
Object

detection 800 × 800 × 3 89.44% map [126]

Vine Mildew

Quadcopter
drone Scanopy,

MAPIR
Survey2

Multispectral SegNet Image seg-
mentation 360 × 480 90.23% acc [86]

Wheat Yellow rust DJI Sentinel 2 RGB PSPNet Image seg-
mentation 256 × 256 × 3 98% acc [128]

4.7. Model Evaluation

Model evaluation is the process of assessing the performance of a model, and it can be
performed using evaluation matrices. A confusion matrix is one of the evaluation matrix
methods that allow for a model evaluation by visualization, and it can be used for single or
multiclass classification. It compares the OA of the model and the accuracy within each
class (Figure 11). It reveals the categories that the model excels at and those that it struggles
with. Researchers can rely on this information to further enhance the performance of a
model or evaluate the dataset for a specific class.



Remote Sens. 2022, 14, 6031 18 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 11. Confusion matrix made by Yu et al. (2021) [92] to evaluate the performance of the classi-
fication algorithm on the five stages of PWD infection. 

In some cases, accuracy may not be very reliable in describing model performance. 
Wu et al. (2018) [133] developed a deep learning model to detect corns infected by north-
ern leaf blight. They discovered that even though the accuracy was 97.76%, the model 
prediction produced many false positives and negatives, indicating that the training set 
did not accurately represent the empirical distribution. The false positive and negative 
predictions were reduced by including many more negative samples, and the model was 
able to delineate the disease more accurately. 

  

Figure 11. Confusion matrix made by Yu et al. (2021) [92] to evaluate the performance of the
classification algorithm on the five stages of PWD infection.

In some cases, accuracy may not be very reliable in describing model performance.
Wu et al. (2018) [133] developed a deep learning model to detect corns infected by north-
ern leaf blight. They discovered that even though the accuracy was 97.76%, the model
prediction produced many false positives and negatives, indicating that the training set
did not accurately represent the empirical distribution. The false positive and negative
predictions were reduced by including many more negative samples, and the model was
able to delineate the disease more accurately.

4.8. The Importance of Spatial Resolution
4.8.1. Sub-Pixel Problem and Spectral Unmixing

Aerial hyperspectral imagery, unlike lab tests, captures images from above. The
importance of choosing an appropriate flight height is highlighted here; a lower altitude is
better, but field coverage will be reduced due to the flight time. Pixel sizes for aerial remote
sensing, particularly for hyperspectral images, range from centimeters to meters, implying
that the pixels will typically contain information from more than one material [2]. Materials
of interest (target) may not be resolved in a single pixel [134].

Mahlein et al. (2012) [135] found that a spatial resolution of 0.2 millimeters per pixel
was optimal for visualizing disease symptoms in their research for small-scale analysis
of sugar beet disease. A sensor system’s spatial resolution is critical for detecting and
identifying leaf diseases. Characteristic symptoms were no longer detectable at spatial
resolutions of 3.1 and 17.1 mm; the spectral signal contained both healthy and diseased
tissue. The number of pixels with mixed information increased as spatial resolution
decreased, while reflectance differences decreased.

Kumar et al. (2012) [136] investigated citrus green disease known as Huanglongbing
(HLB) using aerial hyperspectral imagery with a spatial resolution of 0.7 m. More pixels
were discovered using linear spectral unmixing techniques, indicating HLB (HLB-infected
pixel) infection. The detection of HLB-infected pixels after spectral unmixing resulted in
more match to the ground-truth data. Using a spectral unmixing algorithm may enable
hyperspectral imaging to detect smaller and potentially earlier diseases.
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4.8.2. Comparison with RGB Camera

UAV-based hyperspectral camera systems require a detailed setup in order to operate,
and they tend to be more expensive than RGB cameras. Moreover, hyperspectral cameras
tend to have a lower spatial resolution in exchange for high spectral resolution. In the
studies discussed in this review, the observed plant disease was indicated by morphological
changes, which can be identified based on visible wavelengths. Considering the cost-
effective value of an RGB camera and its high resolution [82], comparative studies on the
performance of RGB and hyperspectral cameras on the same samples should be one of the
further areas of interest.

Ahmad et al. (2022) [122] conducted a study on detecting crop diseases using DenseNet169-
based RGB cameras. The disease was apparent on the leaf surface, and the used model could
achieve the best results with the lowest loss value of 0.0003 and testing accuracies of up to
100%. It can be concluded that RGB imagery has great potential to be used for identifying
diseased regions.

Wu et al. (2021) [93] studied PWN-infected pine trees. They discovered noticeable
spectral differences between the healthy and diseased pine trees at 638–744 nm wavelengths.
They also discovered that the healthy pines (HPs), late-stage infected pines (AIs), and early-
stage infected pines (PIs) had different gray values in the RGB images. They concluded
that RGB images are sufficient for distinguishing PIs and HPs.

4.9. Limited Dataset Handling

The accuracy of a CNN model may not be satisfactory without sufficient training
samples. However, gathering sufficient training samples for large-scale applications can be
challenging. Some plant diseases have a low incidence, and the cost of acquiring disease
images is high, resulting in only a few or dozens of disease images being collected [137].
For example, gathering diseased tree samples in actual forestry management requires a
considerable workforce and a significant amount of material resources [91]. Therefore, it is
crucial to ensure that the model is accurate even with few training samples.

However, a limited dataset can be handled by designing a reasonable network struc-
ture to reduce the sample requirements. Liu et al. (2020) [73] developed a more accurate
CNN method for diagnosing diseases that affect grape leaves. A depth-separable convolu-
tion rather than a conventional convolution was used in the model to prevent overfitting
and to minimize the number of parameters. The initial structure was applied to the model to
enhance its ability to extract multiscale features for grape leaf lesions of various sizes. This
model achieved faster convergence than standard ResNet and GoogLeNet deep learning
models while maintaining high accuracy of 97.22%.

5. Conclusions

Plant disease detection using deep-learning-based HRS is a new and continuously
growing research area. It is a multidisciplinary field of study that has numerous technical
challenges. Existing research has demonstrated that deep-learning-based HRS achieves
promising results and has adequate research methods. The data acquisition system mainly
depends on a precision flight using drones and flight mission planning. Deep learning
detection methods have been shown to provide higher accuracy than other ML detection
methods. This paper presents general end-to-end methods for deep-learning-based HRS
disease detection. This review also explores various approaches used for detecting diseases
based on hyperspectral aerial images. However, early disease detection and limited datasets
remain a challenge. Further studies will focus on how this method can be used in different
sites/datasets or further integrated with the mapping information to handle diseases.
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