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Abstract: Eddy-covariance (EC) measurements are widely used to optimize the terrestrial vegetation
gross primary productivity (GPP) model because they provide standardized and high-quality flux
data within their footprint areas. However, the extent of flux data taken from a tower site within the
EC footprint, represented by the satellite-based grid cell between Landsat and Moderate Resolution
Imaging Spectroradiometer (MODIS), and the performance of the model derived from the Normalized
Difference Vegetation Index (NDVI) within the EC footprint at different spatial resolutions (e.g.,
Landsat and MODIS) remain unclear. Here, we first calculated the Landsat-footprint NDVI and
MODIS-footprint NDVI and assessed their spatial representativeness at 78 FLUXNET sites at 30 m and
500 m scale, respectively. We then optimized the parameters of the revised Eddy Covariance-Light
Use Efficiency (EC-LUE) model using NDVI within the EC-tower footprints that were calculated
from the Landsat and MODIS sensor. Finally, we evaluated the performance of the optimized model
at 30 m and 500 m scale. Our results showed that matching Landsat data with the flux tower
footprint was able to improve the performance of the revised EC-LUE model by 18% for savannas,
14% for croplands, 9% for wetlands. The outperformance of the Landsat-footprint NDVI in driving
model relied on the spatial heterogeneity of the flux sites. Our study assessed the advantages of
remote sensing data with high spatial resolution in simulating GPP, especially for areas with high
heterogeneity of landscapes. This could facilitate a more accurate estimation of global ecosystem
carbon sink and a better understanding of plant productivity and carbon climate feedbacks.

Keywords: footprints; light use efficiency; gross primary production; parameter optimization

1. Introduction

Terrestrial vegetation gross primary productivity (GPP) is a measure of the amount of
carbon absorbed by plants through photosynthesis. It plays an indispensable part in quan-
tifying the global carbon cycle. Accurately quantifying GPP is essential for improving our
understanding of ecosystem carbon dynamics [1], climate change [2], crop production [3],
and human welfare [4]. Satellite-based light use efficiency (LUE) models have become
an important method for quantifying regional and global GPP, since they can provide
spatially and temporally continuous information derived from remote sensing data [5–8].
Numerous satellite-based models have been developed to estimate GPP at regional and
global scales [7,9,10], and several global GPP products have been generated based on these
models [11–13].

Current GPP products are mainly based on medium or coarse resolution satellite
datasets and cannot reveal the spatial heterogeneity of GPP [14,15]. For example, Global
Land Surface Satellite (GLASS) GPP [13] has a spatial resolution of 500 m × 500 m, which
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limits its use in applications that require GPP with finer spatial resolution, such as monitor-
ing deforestation and restoration [16], quantifying GPP in urban areas [17], and estimating
crop yield [18]. These GPP products rely on the biome-specific parameters applied from a
biome parameter look-up table (BPLUT). The BPLUT parameters are provided at coarse
spatial resolutions and thus do not represent the full characteristics within a given biome,
especially in heterogeneous areas, due to the mismatch between the coarse spatial resolu-
tion and the eddy covariance footprints. Although BPLUT-based methods allow global
estimation of GPP, the coarse inputs and BPLUT approach can introduce considerable un-
certainties into GPP simulations [19]. One potential method to solve this problem involves
incorporating footprints into model parameterization for better constraining parameters,
making the parameters more representative [20]. Another involves using remote sensing
data as inputs with high spatial resolution in the modeling [15].

Eddy covariance (EC) measurements are commonly used to validate, develop, and
optimize terrestrial models because they can provide standardized and high-quality flux
data within their footprint area. Although the footprints concept has been applied in some
data assimilation studies [21,22], it has often been neglected in model parameterization
due to the spatial mismatch between footprints and remote sensing data [20]. In addition,
flux tower sites are generally located in areas with a heterogeneous surface, and it is
difficult to assess whether flux-tower observations are equal to model assumptions because
models are not generally optimized to the resolution of the tower footprint [20]. Surface
spatial heterogeneity has a strong influence on flux measurement, and therefore an accurate
representation of the EC flux footprint is important for understanding the carbon cycle
models [21]. In the cases of complex heterogeneity on land surface and EC tower sites, it
is useful to evaluate their footprints and integrate the footprints into the models, thereby
ensuring that the model parameters are more representative and improving model estimates
of GPP.

Most studies have parameterized and evaluated LUE models for GPP estimation using
spatially-averaged MODIS data in windows of 6 × 6 grid cells centered round tower sites,
fully covering the tower footprints [1,23]. MODIS data are provided in grid cells of about
105 m2~106 m2, which is close to the spatial scale of most tower footprints. However, data
in windows of 3 × 3 grid cells cannot capture all the details of a footprint, such as the
shape and trajectory of the fluxes, because flux footprints cover a relatively small area
(103 m2~106 m2). Landsat remote sensing data have 30 m spatial resolution and can provide
sufficiently detailed spatial information to capture the footprints—thus, they are useful for
model parametrization [24].

Landsat data, with high spatial resolution of 30 m and a spectral sensitivity consistent
with plant function, can provide valuable information used to estimate vegetation GPP [25].
For example, Landsat-derived vegetation indices have been used to accurately simulate
GPP for croplands and wetlands [25,26]. This is because the patterns and spatiotemporal
variability of GPP are attributed to many processes, including land-use changes occurring
at fine spatial scales such as agricultural intensification and deforestation [19]. Therefore,
Landsat data are well suited to assessing the feedbacks between these finer-scale processes
and GPP variability [24]. Previous studies have reported that high resolution GPP products
were superior to medium resolution GPP products for assessing details at finer scales in
land management activities such as crop agriculture, forestry, and grazing [19].

The 16-day revisit cycle and cloud contamination provide limitations on using Landsat
data alone. However, in this work, we tested whether using fine scale data in combination
with flux tower footprints and coarse resolution MODIS data could give a more accurate
assessment of vegetation GPP. To our knowledge, no study has optimized the parameters
of LUE models at both 500 m and 30 m spatial resolution and then compared the model
performances using each optimized parameter at 500 m and 30 m spatial resolution, respec-
tively. The main aims of our study were to: (1) calculate the Landsat-footprint NDVI using
a flux footprint prediction model and the MODIS-footprint NDVI using a fixed footprint of
3 km × 3 km or 1 km × 1 km; (2) optimize the parameters and compare the performances
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of the optimized model using the Landsat-footprint NDVI and MODIS-footprint NDVI,
respectively; and (3) examine the degree of improvement in the simulated GPP using the
high resolution Landsat NDVI as compared to the coarser MODIS NDVI.

2. Data and Methods
2.1. The Revised EC-LUE Model and Parameterization

We used the revised Eddy Covariance Light Use Efficiency (EC-LUE) model to evalu-
ate its potential for improving GPP estimates. The revised EC-LUE model integrated the
impacts of atmospheric CO2 concentration, the limitation of atmosphere water demand
(i.e., vapor pressure deficit, VPD), and radiation components on GPP [8], and substan-
tially improved its capability for reproducing interannual variability of GPP compared
to the original EC-LUE [27]. The revised EC-LUE model simulated GPP as the following
expression:

GPP = PAR × FPAR × εmax × Cs × min(Ts, Ws) (1)

where PAR (MJ m−2) is the incident photosynthetically active radiation; FPAR is the fraction
of photosynthetically active radiation absorbed by plants; εmax (g C m−2 MJ−1) is the
maximum light use efficiency; Cs represents the downward regulation scalar of atmospheric
CO2 concentration; and Ts and Ws are the temperature scalar and water scalar on LUE,
respectively. The value of Cs and environmental stress factor (Ts and Ws) ranged from 0 to
1. More detailed information about Cs was summarized by [8]. Cs, Ts, Ws and FPAR were
calculated as follows:

Cs =
Ci − θ

Ci + 2θ
(2)

Ts =
(Ta − Tmin)× (Ta − Tmax)

(Ta − Tmin)× (Ta − Tmax)−
(
Ta − Topt

)
×
(
Ta − Topt

) (3)

Ws =
VPD0

VPD0 + VPD
(4)

FPAR = 1.24 × NDVI − 0.168 (5)

where θ (ppm) is the CO2 compensation point in the absence of dark respiration, and
Ci (ppm) is the CO2 concentration in the intercellular air spaces of the leaf. Tmin, Topt
and Tmax represent the minimum, optimum, and maximum temperatures for terrestrial
vegetation photosynthesis (◦C), respectively. The default values of Tmin, Topt and Tmax are
set to 0 ◦C, 40 ◦C and 20.33 ◦C, respectively [27], and VPD0 is the empirical half-saturation
coefficient for the VPD constraint [8].

We used the Markov chain Monte Carlo (MCMC) method to calibrate the parameters
of the revised EC-LUE models through the ground-GPP observations using Landsat and
MODIS NDVI, respectively. The prior value for each parameter was set as uniform, and
the range for each parameter was set as described in [28]. We conducted the parameter
optimization at a total of 78 FLUXNET sites across 10 vegetation types. More details on
the model optimization process are presented in [28]. We first set the prior value for each
parameter with an interval as described in [28], and then optimized three parameters (εmax,
θ and VPD0) of the revised EC-LUE model for each vegetation type. Observations from
odd-numbered years from all sites for each vegetation type were used to optimize the
model performance, while observations from even-numbered years were used to evaluate
the model performance. Two sets of parameters of the revised EC-LUE model were then
generated, based on two NDVI datasets, at 30 m and 500 m spatial resolution, respectively.
Finally, we compared the performance of the model with their own optimized parameters
at 30 m and 500 m spatial resolution, respectively.

We used the coefficient of determination (R2), and root mean squared error (RMSE) to
evaluate the model performance, and used the standard deviation (SD) and coefficient of
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variation (CV) to assess the heterogeneity of the FLUXNET footprint. R2 and RMSE were
calculated as follows.

R2 = 1 − ∑n
i=1(GPPsim − GPPobs)

2

∑n
i=1(GPPobs)

2 (6)

RMSE =

√
1
n

n

∑
i=1

(GPPsim − GPPobs)
2 (7)

where GPPsim and GPPobs are the simulated GPP and observed GPP, respectively, and n is
the total number of samples.

2.2. Satellite Data

In this study, we used NDVI from Landsat and MODIS datasets to drive the revised
EC-LUE model. NDVI was calculated from the spectral reflectance at the red and near
infrared wavelengths, using the following expression.

NDVI =
Rnir − Rred
Rnir − Rred

(8)

where Rnir is the surface reflectance in the near infrared wave band, and Rred is the surface
reflectance in the red wave band.

In this study, Landsat data (red and near infrared bands) with 30 m resolution were
used to calculate NDVI from sensors of Landsat-5 TM, Landsat-7 ETM+, and Landsat-8
OLI, respectively, through the Google Earth Engine (GEE) platform. Then, the maximum
composited NDVI with 16-day time step was obtained. First, the 16-day maximum com-
posited NDVI data were extracted at the 3 km × 3 km window surrounding each site to
fully cover the footprint source. Second, the Landsat NDVI data that corresponded to the
pixels of the spatial variation of footprint at each site with 16-day intervals were averaged
to generate Landsat-footprint-NDVI. Landsat pixels with clouds were not used in NDVI
computations or in model parameterization or evaluation.

For each site, MODIS-derived surface reflectance products from the red and near
infrared bands were obtained from Oak Ridge National Laboratory’s Distributed Active
Archive Center (ORNL DAAC) with 8-day and 500 m resolution. These products were
used to calculate NDVI, which was then averaged into 16-day time steps to match the
time step of the Landsat NDVI. The MODIS surface reflectance products were extracted
within the 1 km × 1 km (2 pixels × 2 pixels) window, centered on the flux tower, and
used to calculate MODIS-footprint-NDVI at the croplands and savannas sites, which had
small footprints with elliptic curves below a 500 m radius. For the forest sites, MODIS
surface reflectance products were extracted within the 3 km × 3 km (6 pixels × 6 pixels)
window surrounding to calculate MODIS-footprint-NDVI, fully covering the footprint.
The footprints at forest sites had a relatively wide radius (larger than 1.5 km) due to the
canopy and measurement heights. For all sites, site-based meteorological data (temperature,
atmospheric vapor pressure deficit, atmospheric pressure, and CO2 concentration) were
averaged to 16-day intervals to match the time step of the MODIS NDVI and Landsat NDVI
data. The meteorological data, MODIS NDVI, and Landsat NDVI were then used to drive
the revised EC-LUE model at 16-day intervals.

We adopted the weighted Whittaker with dynamic λ (wWHd) method to reconstruct
the Landsat NDVI and MODIS NDVI to eliminate the effect of the poor quality NDVI data.
Whittaker smoothing is a well-known reconstruction approach and has been widely used
for vegetation index time series reconstruction [29–31]. The original Whittaker method
has only a single parameter (λ) for penalizing and smoothing the data [32]. The greater
the value of λ, the stronger the smoothing, and so the larger value of λ is required when
the vegetation index is heavily contaminated or fluctuated sharply. Ref. [33] introduced
weights (W) into the Whittaker method and called it weighted Whittaker with dynamic λ.
The value of weight depended on the quality of the corresponding point. The maximum
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weight, W = 1, represented a good point, and W decreased to a minimum of 0.2 for points
with poor quality data. More detailed information about reconstruction is available in [33].

2.3. Eddy Covariance Measurements

The measurements of carbon, water, energy fluxes, and meteorological data were
provided by The FLUXNET2015 dataset (https://fluxnet.org/data/fluxnet2015-dataset/
,accessed on 29 Nov 2022) for more than 200 sites globally. These data were standardized
by data processing, including quality control and gap-filling. The GPP data in this study
(GPP_NT_VUT_REF) were partitioned from the net ecosystem exchange (NEE) dataset,
following the nighttime partitioning approach. In the FLUXNET2015 dataset, sites were
labeled with quality control flags ranging from 0 (poor quality) to 1 (good quality). We
selected 78 Tier-1 sites with good quality for this study, encompassing ten terrestrial
ecosystem vegetation types: deciduous broadleaf forest (DBF), evergreen broadleaf forest
(EBF), evergreen needleleaf forest (ENF), mixed forest (MF), grasslands (GRA), savannas
(SAV), shrubland (SHR), wetlands (WET), and cropland (C3/C4) (Figure 1). More detailed
information about the sites is shown in Table S1 in the supplementary material. For each
site, the FLUXNET2015 dataset was split into two parts, with data from the odd-numbered
years used for the calibration model, and data from even-numbered years used for the
validation model. For each variable, we aggregated the daily data into a 16-day time step
to match the time step of the Landsat data.

Remote Sens. 2022, 14, 6062 5 of 21 
 

 

used for vegetation index time series reconstruction [29–31]. The original Whittaker 
method has only a single parameter (λ) for penalizing and smoothing the data [32]. The 
greater the value of λ, the stronger the smoothing, and so the larger value of λ is required 
when the vegetation index is heavily contaminated or fluctuated sharply. Ref. [33] intro-
duced weights (W) into the Whittaker method and called it weighted Whittaker with dy-
namic λ. The value of weight depended on the quality of the corresponding point. The 
maximum weight, W = 1, represented a good point, and W decreased to a minimum of 0.2 
for points with poor quality data. More detailed information about reconstruction is avail-
able in [33]. 

2.3. Eddy Covariance Measurements 
The measurements of carbon, water, energy fluxes, and meteorological data were 

provided by The FLUXNET2015 dataset (https://fluxnet.org/data/fluxnet2015-dataset/,ac-
cessed on 29 Nov 2022) for more than 200 sites globally. These data were standardized by 
data processing, including quality control and gap-filling. The GPP data in this study 
(GPP_NT_VUT_REF) were partitioned from the net ecosystem exchange (NEE) dataset, 
following the nighttime partitioning approach. In the FLUXNET2015 dataset, sites were 
labeled with quality control flags ranging from 0 (poor quality) to 1 (good quality). We 
selected 78 Tier-1 sites with good quality for this study, encompassing ten terrestrial eco-
system vegetation types: deciduous broadleaf forest (DBF), evergreen broadleaf forest 
(EBF), evergreen needleleaf forest (ENF), mixed forest (MF), grasslands (GRA), savannas 
(SAV), shrubland (SHR), wetlands (WET), and cropland (C3/C4) (Figure 1). More detailed 
information about the sites is shown in Table S1 in the supplementary material. For each 
site, the FLUXNET2015 dataset was split into two parts, with data from the odd-numbered 
years used for the calibration model, and data from even-numbered years used for the 
validation model. For each variable, we aggregated the daily data into a 16-day time step 
to match the time step of the Landsat data. 

 
Figure 1. The spatial distribution map of the 78 FLUXNET2015 tower sites used in this study. 

  

Figure 1. The spatial distribution map of the 78 FLUXNET2015 tower sites used in this study.

2.4. Flux Footprint Modeling

The flux footprint prediction (FFP) model was used to compute the footprint of EC
sites in this study. The FFP model is a dimensionalized parameterization of a backward
Lagrangian stochastic dispersion model and was applied to a wide range of boundary
layer stratifications and measurement heights. The input variables for the FFP model
were: wind direction (WD), friction velocity (u∗), wind speed (v), Obukhov length (L),
instrument height (Zm) and canopy height (hc). The FFP model was able to provide results
on size, position, and contour footprint climatology. More detailed information about
footprint climatology calculation is available in [34]. The Obukhov length, canopy height,
and instrument height were not directly provided in the FLUXNET2015 dataset. Obukhov
length was therefore derived from a simple formula using the Monin–Obukhov similarity
theory [35]. References for the canopy and instrument heights used here can be found in
the references (Table S1).

https://fluxnet.org/data/fluxnet2015-dataset/,accessed
https://fluxnet.org/data/fluxnet2015-dataset/,accessed
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The footprint calculations were conducted at half-hour time steps and aggregated to
the 16-days resolution to generate two-dimensional contour lines of the footprint centered
on the site. The footprints at the 80% contour of source weights were enough to truncate
for analysis due to the extra 20% contour of footprints increasing with upwind distance
from the receptor [20,36]. We estimated the flux footprint climatology with a grid size of
30 m spatial resolution at 16-day intervals to keep consistence with time step and spatial
resolution from Landsat NDVI.

3. Results
3.1. Heterogeneity of Flux Footprint

We calculated the footprint climatology for all 78 eddy covariance sites at 16-day
time steps through the study period and considered the 80% contribution contour as
each footprint’s climatology extents. The footprint climatology had a relative symmetric
geometry and the size and position of the footprint climatology varied with wind directions,
measurement height, and atmospheric stability. We selected ten sites, one representing
each vegetation type, to show how footprint size varied across vegetation types (Figure 2).
Overall, the footprint areas ranged from 0.09 km2 to 2.18 km2 at the 16-day scale among the
78 sites encompassing ten biomes. Evergreen broadleaf forests, evergreen needleleaf forests,
deciduous broadleaf forests, and mixed forests had the largest footprint areas, ranging from
0.74 km2 to 2.18 km2, while footprint areas in grasslands, wetlands, savannas, shrublands
and croplands were relatively small, covering around 0.13 km2 to 0.82 km2.
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Figure 2. The contours of cumulative footprint climatology for a 16-day time step at 10 sites, rep-
resenting each vegetation type. The sites (DE-Hai to US-Ne1) are given in Figure 3a. The biome
types are as follows: (a) deciduous broadleaf forest (DBF); (b) evergreen broadleaf forest (EBF);
(c) evergreen needleleaf forest (ENF); (d) mixed forest (MF); (e) grasslands (GRA); (f) savannas (SAV);
(g) shrublands (SHR); (h) wetlands (WET); (i) croplands (CRO).
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Figure 3. (a) Site names for each of the 78 sites. The site names listed in (a) correspond with the
grids of (b–d), such that site CA-NS1 is in the top corner and site US- Ne1 is in the final grid column
just above the white line. The abbreviation of each site can be found in Table S1. (b) the mean
footprint area of each site, (c) standard deviation (SD) of footprint area of each site; (d) the coefficient
of variation (CV) of footprint area at each site. The site name of (a) corresponds with the grid of (b–d).

We examined the heterogeneity of the flux footprint and calculated the mean footprint
area, SD, and CV of footprint area for each of the 78 flux sites at the 30 m spatial resolution
over 16-day intervals. The mean footprint area of the 78 sites varied from 0.09 to 2.18 km2

(Figure 3b). The SD and CV for footprint area are illustrated in Figures 3c and 3d. Evergreen
needleleaf forests, evergreen broadleaf forests, deciduous broadleaf forests, and mixed
forests had a large mean footprint area with low SD and CV in footprint area. In contrast,
grasslands, wetlands, savannas, and croplands had a relatively small mean footprint area
with high SD and CV. For individual sites, grassland sites (e.g., IT-MBo, NL-Hor, US-ARc
and US-ARb) and cropland sites (e.g., US-Ne1, US-Ne2 and US-Ne3) exhibited the largest
SD among the 78 sites (Figures 3c and 4b). This indicated that the heterogeneity of the
FLUXNET footprint varied across the sites and vegetation types. This also suggested that
the FLUXNET footprint was highly heterogeneous in grasslands, wetlands, savannas, and
croplands.

To further examine how the footprint area and heterogeneity of flux footprint could be
captured at 30 m and 500 m spatial resolution, we first calculated how many Landsat and
MODIS pixels were needed to resolve each footprint area, and then computed the Landsat-
footprint-NDVI and MODIS-footprint-NDVI. In general, the EC footprints were covered
with only a few MODIS pixels, but needed thousands of Landsat pixels (Figure 4c). For
example, the largest footprint areas were found for evergreen needle forests that covered
2.18 km2. These were covered by a maximum of 8 MODIS 500 × 500 m pixels. They
required 2422 of the much smaller (30 × 30 m) Landsat pixels to calculate NDVI. Cropland
footprint areas with less than a 500 m radius were only covered by a single MODIS pixel,
whereas there were 230 Landsat pixels available for calculating NDVI, enough to fully cover
even this small footprint area. This demonstrated the huge difference in potential for spatial
matches between the EC footprint and remote sensing pixels. The Landsat-footprint-NDVI
was systematically higher than the MODIS-footprint-NDVI for forest ecosystems—but
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was less so for grasslands, wetlands, savannas, and croplands (Figure 4d). Moreover, the
difference between the Landsat-footprint-NDVI and MODIS-footprint-NDVI was greatest
for grasslands, wetlands, savannas, and croplands, and was lowest for forest ecosystems
(Figure 4d).
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Figure 4. (a) Boxplot of the footprint area across 10 vegetation types; (b) the boxplot of standard
deviation (SD) and coefficient of variation (CV) of footprint for each vegetation types; (c) the number
of pixels required to cover the footprint area using Landsat satellite NDVI with a 30 m spatial
resolution and using MODIS NDVI with 500 m spatial resolution, respectively; (d) the footprint
NDVI, Landsat, and MODIS satellite for each vegetation type. The biome types are as follows:
deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf forest
(ENF); mixed forest (MF); grasslands (GRA); savannas (SAV); Shrublands (SHR); wetlands (WET); C3
cropland (C3); C4 cropland (C4).
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3.2. Optimized Parameters

We used the MCMC method to estimate parameters for the revised EC-LUE model
based on ground-GPP data. To examine the influence of the EC footprint on model accuracy
at different spatial resolutions, we optimized the model parameters (εmax, θ and VPD0)
separately, using Landsat-footprint NDVI and MODIS-footprint NDVI as driving factors.
The model parameter calibrations used the same meteorological data, with a key difference;
one used EC footprints derived from Landsat NDVI data at 30 m spatial resolution, and
the other used EC footprints derived from MODIS NDVI data at 500 m spatial resolution.
We generated two sets of optimized parameters for the revised EC-LUE model, both at
30 m spatial resolution (Landsat) and 500 m spatial resolution (MODIS), respectively. The
30-m optimized parameter values differed greatly from the 500-m optimized parameter
values for grassland, wetland, savanna, shrubland, and cropland, but differed only slightly
for forest ecosystems (Table 1). This reflected the difference between the Landsat-footprint
NDVI and the MODIS-footprint NDVI.

Table 1. The mean value and standard deviations of estimated parameters for revised EC-LUE model
at 30 m spatial resolution (Landsat) and 500 m spatial resolution (MODIS).

Vegetation
Type

Site
Number

30 m Spatial Resolution 500 m Spatial Resolution

εmax
(g C/MJ)

θ

(ppm)
VPD0
(k Pa)

εmax
(g C/MJ)

θ

(ppm)
VPD0
(k Pa)

EBF 3 3.67 ± 0.59 24.25 ± 7.72 0.33 ± 0.09 3.65 ± 0.59 25.27 ± 7.81 0.35 ± 0.09
DBF 12 2.97 ± 0.21 51.90 ± 6.72 1.59 ± 0.09 3.04 ± 0.23 51.05 ± 7.21 1.58 ± 0.09
ENF 21 2.97 ± 0.18 35.97 ± 3.26 1.08 ± 0.15 2.90 ± 0.19 31.93 ± 5.23 1.30 ± 0.17
MF 5 2.79 ± 0.21 43.31 ± 6.07 1.34 ± 0.12 2.83 ± 0.19 43.65 ± 5.45 1.34 ± 0.13

GRA 14 4.59 ± 0.06 64.72 ± 0.63 1.09 ± 0.01 4.44 ± 0.08 64.72 ± 0.75 1.09 ± 0.01
SAV 3 3.19 ± 0.30 25.39 ± 5.25 1.55 ± 0.15 2.60 ± 0.24 25.35 ± 5.29 1.56 ± 0.14
SHR 4 2.16 ± 0.33 57.59 ± 14.18 1.26 ± 0.23 2.02 ± 0.32 58.01 ± 14.23 1.24 ± 0.23
WET 9 3.10 ± 0.19 59.66 ± 5.15 1.40 ± 0.08 2.96 ± 0.18 59.71 ± 5.17 1.41 ± 0.07

C3 Crop 3 3.57 ± 0.29 60.55 ± 5.18 1.34 ± 0.18 3.27 ± 0.19 62.63 ± 4.75 1.37 ± 0.18
C4 Crop 4 4.81 ± 0.35 50.28 ± 5.74 1.52 ± 0.14 4.47 ± 0.30 51.12 ± 5.70 1.54 ± 0.15

3.3. Model Accuracy Comparison

To examine the impact of spatial resolution of remote sensing pixels for EC footprints
on modeling, we used our estimated parameters, optimized at 30 m and 500 m spatial
resolution, respectively, pooled with corresponding Landsat-footprint-NDVI and MODIS-
footprint-NDVI, to calculate GPP separately. The resulting GPP calculations were denoted
GPPMC-30m and GPPMC-500m, respectively. The calculation of GPPMC-30m and GPPMC-500m
used the same meteorological data (temperature, VPD, air atmospheric pressure, and CO2
concentration) as driving data for fair comparison; the difference between GPPMC-30m
and GPPMC-500m lay in the optimized parameters, Landsat-footprint-NDVI, and MODIS-
footprint-NDVI.

We compared the accuracies of GPPMC-30m and GPPMC-500m at 16 days and calculated
the R2 and RMSE for each of 78 sites. On average, GPPMC-30m and GPPMC-500m explained
75% and 70% of the variance in site-based GPP across all 78 sites, respectively, indicating
that the Landsat-footprint NDVI resulted in better GPP simulation performance than the
MODIS-footprint NDVI (Figure 5). Compared with GPPMC-500m, GPPMC-30m exhibited
higher R2 values and lower RMSE values at most sites, particularly at the DE-Kli (R2 = 0.88,
RMSE = 3.21 g C/m2/16day), US-Ne2 (R2 = 0.82, RMSE = 2.65 g C/m2/16day), and US-
Ne3 (R2 = 0.87, RMSE = 2.30 g C/m2/16day) cropland sites, at the US-Myb (R2 = 0.73,
RMSE = 2.62 g C/m2/16day) and US-Tw1 (R2 = 0.86, RMSE = 1.70 g C/m2/16day) wetland
sites, and at the AU-Cpr (R2 = 0.92, RMSE = 0.74 g C/m2/16day) and SN-Dhr ( R2 = 0.83,
RMSE = 1.62 g C/m2/16day) savanna sites. Among the ten vegetation types, GPPMC-30m
explained significantly higher variance in tower GPP for C3, C4, WET, SAV, SHR, and EBF
ecosystems than GPPMC-500m, but with slightly higher variance in DBF, ENF, MF, and GRA
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ecosystems (Figure 6). For EBF ecosystems, compared with GPPMC-500m, GPPMC-30m still
had slight improvement, with RMSE decreasing from 3.0 (g C/16 day) to 2.78 (g C/16 day)
despite no improvement in terms of R2 value (Figure 6).
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Figure 6. Boxplots of the values of the R2 (a) and RMSE (b) for GPPMC-30m, GPPMC-500m, and site GPP
(GPPEC) at the 78 sites with 10 vegetation types. The calculation of GPPMC-30m and GPPMC-500m used
the same meteorological data (temperature, VPD, air atmospheric pressure, and CO2 concentration)
as driving data for fair comparison; the only differences between GPPMC-30m and GPPMC-500m are
the optimized parameters and NDVI, with footprint sources at different spatial resolutions.

We chose ten tower sites, representing ten vegetation types, to examine the seasonal cy-
cles of simulated GPP and tower GPP. In general, compared with GPPMC-500m, GPPMC-30m
was better able to capture the seasonal cycles of GPP at croplands site of US-Ne1 (Figure 7i),
US-Ne3 (Figure 7j), and at the wetland site of US-Myb (Figure 7g). For example, we noted
high surface spatial heterogeneity at cropland and wetland sites, such as the US-Ne1 and
US-Myb sites (Figures 8c and 9c). The NDVI derived from the Landsat and MODIS for
the footprints at these two sites contained different phenological information, due to the
different spatial scales at which the footprints were extracted (Figure 8a,c, Figure 9a,c).
This meant that GPPMC-30m was closer to the phenology of the site than GPPMC-500m
(Figures 8b and 9b). Although the performance of both GPPMC-30m and GPPMC-500m exhib-
ited overestimation in simulating GPP, the extent of the overestimates of the GPPMC-30m
was lower than that of GPPMC-500m at the US-Ne1, US-Ne3, and US-Mby sites. GPPMC-30m
explained 87% and 86% of the variances of tower GPP at the US-Ne1 site and US-Myb site,
respectively, while GPPMC-500m explained only 58% and 72% of the variance at these sites,
respectively (Figures 8d and 9d). This indicated that the Landsat-footprint NDVI was more
appropriate for simulating GPP for highly heterogeneous land surfaces than the MODIS-
footprint NDVI. In 2005, there was a drought at AU-Dap, a grassland site in Australia, with
high VPD and decreasing tower GPP. This was captured in GPPMC-30m, which followed the
tower data and decreased. However, there was no decrease in GPPMC-500m (Figure 7f). This
indicated that GPPMC-30m could also capture variance in GPP introduced by drought at an
individual site. For forest ecosystems (ENF, DBF, and MF), the performance of GPPMC-30m
in simulating GPP was comparable to GPPMC-500m (Figure 7a–c).
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Figure 8. The seasonal cycles of NDVI and simulating GPP, and a scatter plot of cropland at US-Ne1
site. (a): The seasonal cycles of NDVI. The NDVI Landsat and NDVI_MODIS correspond to the
footprint from Landsat and MODIS, respectively. (b): The diagram of the simulated GPP (GPPMC-30m

and GPPMC-500m) and tower GPP (GPPEC). (c): The red line represents Landsat footprint of the
US-Ne1 site extracted by the 30 m spatial resolution pixel (Landsat). The green rectangle is the
footprint of the US-Ne1 site extracted by the 500 m spatial resolution pixel (MODIS). (d): The scatter
plot of GPPMC-30m, GPPMC-500m, and tower GPP (GPPEC).
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3.4. The Effect of Landsat Reconstruction on Model Accuracy 
The Landsat-footprint NDVI was severely affected by cloud contamination, which 

accounted for 25~47% of the data that were acquired over the ten vegetation types (Figure 
10a). In contrast, cloud contamination had a relatively small influence on the MODIS data, 
and only 5% to 19% were affected. The proportions of the Landsat-footprint NDVI data 
and the MODIS-footprint NDVI data that were affected by cloud at each site are illustrated 
in Figure 10. In this study, the missing Landsat-footprint NDVI data were not gapfilled or 
used for parameterization or evaluation of the model due to the serious data loss; the re-
maining Landsat-footprint NDVI was reconstructed. We compared the accuracy values 
of the model driven by the Landsat-footprint NDVI and reconstructed Landsat-footprint 

Figure 9. (a): The seasonal cycles of NDVI from different sensors. The NDVI_Landsat and
NDVI_MODIS correspond to the footprint from Landsat and MODIS, respectively. (b): The plot of the
simulated GPP (GPPMC-30m and GPPMC-500m) and tower GPP (GPPEC). (c): The red line represents
Landsat footprint of the US-Myb site extracted by the 30 m spatial resolution pixel (Landsat). The
green rectangle is the footprint of the US-Myb site extracted by the 500 m spatial resolution pixel
(MODIS). (d): The relationship of GPPMC-30m, GPPMC-500m, and tower GPP (GPPEC).

To further assess the superiority of Landsat-footprint NDVI for simulating GPP for
heterogeneous mountainous regions, we chose another five mountain sites, with steep
surface gradients of over 10◦, to evaluate the performance of GPPMC-30m and GPPMC-500m
(Table 2). The comparison of model performances showed that GPPMC-30m generally
outperformed GPPMC-500m, especially at JP-MBF and CZ-BK1 (Table 2), with a significant
improvement for GPP estimation using Landsat-footprint NDVI, with R2 increasing from
0.50 to 0.77, and RMSE decreasing from 2.41 to 1.72 g C/m2/16 day. This indicated that
the smaller footprint of Landsat could greatly improve GPP estimation in areas with high
heterogeneity.
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Table 2. Mountain site information and the value of R2 and RMSE of the model performance at 30 m
and 500 m resolution, respectively.

Sites
Name

Long (◦) Lat (◦) Vegetation Slope
(◦)

Elevation
(m)

GPPMC-30 m GPPMC-500 m

R2 RMSE
(g C/m2/16 Day) R2 RMSE

(g C/m2/16 Day)

AT-Neu 47.12 11.32 GRA 14.83 961–1307 0.76 3.11 0.69 3.42
CH-Lae 47.48 8.37 MF 21.44 489–846 0.76 1.87 0.75 1.82
JP-MBF 44.39 142.32 DBF 14.48 478–601 0.63 3.25 0.55 3.58
CZ-BK1 49.50 18.54 ENF 13.74 761–941 0.77 1.72 0.50 2.41
IT-Lav 45.96 11.28 ENF 12.10 1315–1466 0.93 2.58 0.90 2.12

3.4. The Effect of Landsat Reconstruction on Model Accuracy

The Landsat-footprint NDVI was severely affected by cloud contamination, which ac-
counted for 25~47% of the data that were acquired over the ten vegetation types (Figure 10a).
In contrast, cloud contamination had a relatively small influence on the MODIS data, and
only 5% to 19% were affected. The proportions of the Landsat-footprint NDVI data and
the MODIS-footprint NDVI data that were affected by cloud at each site are illustrated
in Figure 10. In this study, the missing Landsat-footprint NDVI data were not gapfilled
or used for parameterization or evaluation of the model due to the serious data loss; the
remaining Landsat-footprint NDVI was reconstructed. We compared the accuracy values
of the model driven by the Landsat-footprint NDVI and reconstructed Landsat-footprint
NDVI. For ENF, DBF, MF, GRA, SHR, and WET, the R2 values were slightly higher and
the RMSE values were slightly smaller when GPP was derived from the reconstructed
Landsat-footprint NDVI than GPP driven by the Landsat-footprint NDVI (Figure 6). We
found that the reconstruction of the Landsat-footprint NDVI resulted in a slight improve-
ment in model performance at the ecosystem level, which indicated that the effect of the
reconstruction on GPP estimation was small.
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4. Discussion

In this study, we first optimized the parameters of the revised EC-LUE model using
Landsat NDVI, spatially matched to the flux tower footprints at 30 m spatial resolution,
and MODIS NDVI with a fixed footprint of 3 km × 3 km at 500 m spatial resolution. We
then evaluated the performance of the model with our optimized parameters at different
spatial scales. We found that matching the NDVI to the flux tower footprint significantly
improved the GPP estimates at the 78 FLUXNET sites.

4.1. Impact of Spatial Scale Mismatch on Parameterization

Mismatches between the spatial scale of model parameters and input data can intro-
duce significant uncertainties in GPP estimation [37]. In this study, we characterize how the
footprint mismatching influenced the parameterization and performance of the revised EC-
LUE model. We found that matching Landsat NDVI and flux footprints resulted in model
parameters that were more representative at finer spatial resolutions, and considerably
improved the estimated GPP, particularly for heterogeneous landscapes.

We considered that the footprint directly influenced estimated model parameters. This
can be explained by the scale mismatch that existed between flux tower footprints and
remote sensing data [14]. The tower-based observed GPP represented a flux integrated
over the tower footprints, which had a typical area about 103–107 m2. MODIS data has
a resolution of 106 m2, and so a MODIS pixel is often several orders of magnitude larger
than a tower footprint. The Landsat image with 30 m satellite-based grid cells was able
to provide enough spatial information to capture the EC footprint and thus better reflect
the boundary of the flux measurement [38]. This explained the difference that we found
between the Landsat-footprint NDVI and MODIS-footprint NDVI (Figure 4d), which led to
a difference in the estimated model parameters at 30 m and 500 m spatial resolution values
(Table 1) and in the resulting GPP (Figures 5 and 6).

To quantify the effects of the spatial resolution of the remote sensing data on the results
of GPP estimation, we evaluated whether the footprint matching could still be effective
for MODIS at 500 m spatial resolution rather than 30 m. We found that MODIS-footprint
NDVI resulted in poor estimates of GPP for grasslands, wetlands, savannas, shrublands,
and croplands due to the low proportion of footprint area within a MODIS pixel of a high
heterogeneous surface. Landsat-footprint-NDVI consistently had a robust and reliable
performance in estimation of GPP at ten vegetation types. This highlighted the advantage
of high spatial resolution remote sensing data when considering the footprint for GPP
simulation; these data could not be replaced by coarse spatial resolution remote sensing
data.

The differences between the optimized parameters and the performance of the re-
sulting models varied only slightly at forest ecosystem sites, but were large for other
ecosystem types, which was related to vegetation heterogeneity and footprint size. For
homogeneous vegetation, such as a forest ecosystem with a relatively large footprint, the
fixed areas of 3 km × 3 km surrounding the towers for MODIS-footprint-NDVI could ade-
quately represent the footprint of flux measurement. However, this was not true for other
ecosystems with more heterogeneous vegetation, such as savanna and cropland, where
the flux measurement footprints were smaller. Therefore, the impact of spatial mismatch
between satellite imagery and EC footprints was more acute in heterogeneous landscapes or
complex terrains [39,40], which led to the large variance of parameters and GPP estimation,
especially in grasslands, wetlands, savannas, shrublands, and croplands (Figure 6).

4.2. To What Degree Do Landsat Images Improve GPP Estimation

The improvement in GPP estimation that was achieved by using fine-resolution
Landsat data, compared to relatively coarse-resolution MODIS data, varied between sites,
vegetation types, and for different surface heterogeneities. At the site level, model accuracy
improved by 1~29% over the 78 sites when Landsat-footprint NDVI data were used to
drive the model rather than MODIS-footprint NDVI data (Figure 5). For vegetation types,
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using Landsat-footprint NDVI data improved GPP estimates by 18% for savannas, 14% for
croplands, and 9% for wetlands; Landsat-footprint NDVI was comparable to or slightly
stronger than MODIS-footprint NDVI in estimation GPP at grasslands, shrublands, and
forest ecosystems (Figure 6). Additionally, the accuracy of GPP estimates improved dra-
matically at sites with high surface heterogeneity when Landsat-footprint NDVI data were
used. For example, R2 increased by 0.29 at the US-Ne1 cropland site with (Figure 8), by 0.14
at the US-Myb wetland site (Figure 9), and by 27% at the CZ-BK1 mountain (Table 2). This
showed that Landsat-footprint-NDVI can be used to describe the spatial surface hetero-
geneity of mixed planting in cropland, grass and water in wetlands, and complex terrain,
providing more detailed phenological information to better describe GPP distribution.

Surface heterogeneity fell into two general categories in this study. The first was the
mountainous regions. Characteristics of these regions included vegetation heterogeneity
and surface topography with steep slopes and elevation variance, which were important
factors for the GPP estimation. Vegetation heterogeneity directly determines photosynthetic
capacity and topography influences the redistribution of precipitation and incoming solar
radiation [41]. Moreover, vegetation is often highly fragmented in these regions due to
the vegetation structures with climatic and topographic gradients [42]. Therefore, the high
spatial heterogeneity of mountain vegetation could influence the quality of MODIS NDVI
at coarse resolution. Additionally, data from the higher spatial resolution Landsat sensor
could provide more detailed information for mountainous regions, despite topographic
illumination condition correction being of no consideration [43]. Moreover, the authors
of [44] suggested that considering the footprint of flux towers in mountainous regions
could also improve GPP estimates. Our results revealed that remote sensing data with high
spatial resolution, combined with introducing the footprint into model parametrization,
improved GPP estimates in mountainous areas with strong heterogeneity (Table 2). This
was because high resolution remote sensing data provided sufficient spatial information to
capture surface heterogeneity [38].

The second category of surface heterogeneity in this study was landscape fragmen-
tation in croplands and wetlands, which have high surface heterogeneity and relatively
small footprints. Using MODIS NDVI as the forcing data for model GPP simulation may
not have accurately captured the phenology of the plant with a strong spring green-up
signal at the US-Ne1 [45] and US-Myb sites. Similar to the problems associated with us-
ing a coarse data source for mountainous regions, MODIS NDVI with coarse resolution
contained other plant information due to fragmentation planting within the footprint area.
Furthermore, the mismatch of spatial resolution of MODIS NDVI and EC footprint resulted
in mixed pixel information, which led to the MODIS NDVI being unable to capture the
phenology information of plants within the footprint area (Figures 8 and 9). However,
Landsat images, with their high spatial resolution, had an absolute advantage in capturing
the pixels representing the flux footprint [24]. The large difference between the spatial
resolutions of Landsat and MODIS led to differences in their ability to capture the footprints
at heterogeneous sites, which led to GPPMC-30m outperforming GPPMC-500m for ecosystems
with a fragmented plant structure (Figures 8 and 9).

4.3. Limitations and Perspectives

Landsat NDVI has a higher spatial resolution than MODIS NDVI and is less affected
by spatial compositing and mixed pixels, making it better suited to capturing surface
details and for characterizing flux tower footprints [46]. However, the 16-day revisit
cycle and problems with frequent cloud contamination and snow limit the amount of
Landsat data, and therefore Landsat available data are often insufficient for research on
vegetation seasonal variability [47,48]. Although gap-filling and reconstruction are widely
used methods for improving the quality of Landsat data, the effects of gap-filling and
reconstruction on the Landsat data were small for GPP estimates [15,49].

It is often more appropriate to use MODIS NDVI than Landsat NDVI data, despite
the coarser resolution of the former, owing to its high revisit frequency and low cloud
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proportion of cloud-affected pixels [50]. In the future, blending high spatial resolution data
(i.e., Landsat) with high temporal resolution (i.e., MODIS) could provide an alternative data
source with high temporal resolution and high spatial resolution that would be better able
to capture spatiotemporal patterns in ecosystem dynamics [51]. If combined with higher
temporal-resolution data in this way, the 30-m resolution Landsat NDVI could be used to
simulate GPP at regional or global scales. The advantage of using remote sensing data with
high resolution when simulating GPP for heterogeneous landscapes is the superiority of
the resulting general GPP monitoring at medium or coarse resolution—which could then
capture more detailed GPP dynamics and responses to heterogeneous landscape changes
such as cropland agriculture, land use change, and human activities.

5. Conclusions

We utilized the FFP model to evaluate the footprints of the 78 FLUXNET sites across
ten vegetation types on the globe and calculated the Landsat-footprint NDVI and the
MODIS-footprint NDVI. We optimized the parameters (εmax, θ and VPD0) of the revised
EC-LUE model and compared the model performance using Landsat-footprint NDVI,
incorporating spatial and temporal dynamics of the flux footprint at 30 m spatial resolution
and MODIS-footprint NDVI with a fixed footprint at 500 m spatial resolution. Our results
showed that Landsat-footprint NDVI, compared with MODIS NDVI, could improve GPP
estimation by 18% for savannas, 14% for croplands, 9% for wetlands, and 6% for evergreen
needleleaf forest, with slight improvement or comparable performance as compared to
other ecosystems. This indicated that using NDVI with high spatial resolution resulted
in more detailed GPP estimates, particularly for areas with heterogeneous surfaces. Our
study highlighted the significance of using data with a high spatial resolution to match the
flux tower footprint more accurately and improve estimation of GPP.
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