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Abstract: The characterization of aboveground biomass is important in forest management planning,
with various objectives ranging from prevention of forest fires to restoration of burned areas, especially
in fire-prone regions such as NW Spain. Although remotely sensed data have often been used to
assess the recovery of standing aboveground biomass after perturbations, the data have seldom been
validated in the field, and different shrub fractions have not been modelled. The main objective of the
present study was to assess different vegetation parameters (cover, height, standing AGB and their
fractions) in field plots established in five areas affected by wildfires between 2009 and 2016 by using
Sentinel-2 spectral indices and LiDAR metrics. For this purpose, 22 sampling plots were established
in 2019, and vegetation variables were measured by a combination of non-destructive measurement
(cover and height) and destructive sampling (total biomass and fine samples of live and dead fractions
of biomass).The structural characterization of gorse shrublands was addressed, and models of shrub
cover—height, total biomass, and biomass by fraction and physiological condition—were constructed,
with adjusted coefficients of determination ranging from 0.6 to 0.9. The addition of LiDAR data
to optical remote sensing images improved the models. Further research should be conducted to
calibrate the models in other vegetation communities.

Keywords: wildfire; biomass; Sentinel-2; LiDAR; fuel load

1. Introduction

The characterization of above-ground biomass (AGB) is important for evaluating
forest ecosystems for multiple purposes [1]. AGB constitutes almost a third of the terrestrial
carbon pool [2], and it is exposed to continuous disturbances. Thus, efforts have been made
to quantify AGB with the aim of analyzing the immediate impact of forest fires [3], the
rate of vegetation recovery [4], the fuel loads [5,6], and the contribution of AGB to carbon
stocks [7]. Adequate quantification of AGB, both on local and regional scales is, therefore,
essential to address these topics, especially considering that the interactions between fire
severity, vegetation regrowth and climate are partly unknown [8]. Therefore, regular
provision of detailed AGB data with adequate spatial resolution is a central goal for forest
managers [9]. Forest fires have a major impact on many ecosystems worldwide, and, in the
global warning scenario, it is evident that the severity of such events will increase under
more severe conditions [10–12]. Well-designed forest management policies are essential to
deal with the associated hazards and must take these conditions into account in order to
generate ecosystems that are resilient to the impacts of forest fires, without relying only
on fire suppression [13]. Reducing human-caused ignitions and treating forest fuels are
the only options for mitigating the increased fire hazard related to climate change [14]. In
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Europe, forest fires are particularly common in the southwestern Atlantic region [15]. The
climate in this region favours very high net productivity and the consequent growth and
accumulation of flammable forest fuels [16].

Shrubland communities represent about 40% of the wildland in northwest Spain [17],
and most are located in valuable ecosystems that are protected under the Spanish Natura
2000 network. Shrublands are biodiverse habitats that provide provisioning as well as
regulatory and cultural services [18]. This is particularly important in fire-prone areas
such as NW Spain, where about 160,000 ha of forest land were burned in the period from
2012 to 2021, 60% of which was shrubland [19]. For the above reasons, it is important for
ecologists and forest managers to have available models that accurately estimate shrub
fuel loads [20,21]. Assessment of vegetation characteristics and AGB are essential for
understanding the dynamics of these ecosystems when affected by recurrent fires. The in-
formation thus obtained would make a helpful contribution to treatment prioritization and
post-fire diagnosis. AGB assessment is crucial for determining the structure, productivity,
and service provision of shrublands. Gorse plays an important role in this context, as it is
one of the dominant shrubland communities in the northwestern Iberian Peninsula and
is well-adapted to fire recurrence [22]. However, AGB data are relatively scarce [21], and
remotely sensed data validated with field data are even scarcer.

Regarding fire ecology, quantification of AGB is important as fire can only spread
when there is sufficient biomass to burn. For fire management purposes, quantification of
the fuel load is essential, as fuel is required for fire ignition and spread and modulates fire
intensity and severity [23]. Characterization of the fuel load by fuel stratum, size, class,
and condition is also necessary for implementing fire behavior models and for prioritizing
preventive actions, particularly at the wildland-urban interface [24,25]. This aspect has
been much less well addressed than estimating total biomass in fire hazard assessment.
This particularly applies to flammable plants such as Ulex sp. [26], with the rapid post-fire
accumulation of biomass, especially the fine dead fuel load [26–28], which increases the
flammability of the material [29].

AGB is often quantified by remote sensing (RS) [30,31] rather than by field inventory,
as this permits the expansion of cartographic techniques to larger and continuous areas
and to regular time series [32,33]. Field-based methods usually provide more detailed data
than RS approaches, but extrapolation to the whole landscape is difficult. Field studies are
also expensive, sometimes even unaffordable, especially when site accessibility is poor. In
addition, updating the information depends on the frequency of study [33]. In areas with
largely heterogeneous vegetation and land use, and with a high recurrence of perturbations,
the lifetime of inventories can be particularly short. It is generally recognized that optical
RS images are only suitable for capturing the horizontal rather than vertical structure of the
vegetation [31]. In addition, the use of optical RS to characterize forest areas with a highly
complex structure is limited, as data saturation tends to occur.

Throughout recent decades, some RS technologies other than multispectral imagery
(e.g., hyperspectral imagery and LiDAR sensors) have been successfully used to quantify
and map AGB over large areas [31,34]. Integration of different spatially explicit data
sources has been proposed as a way of overcoming the limitations of AGB mapping based
on vegetation indices determined by optical RS. One possible approach is to combine
LiDAR and optical RS images, which may enable evaluation of the vertical structure of the
vegetation complex in greater detail [30,35]. Although acquisition of LiDAR data can be
expensive [36], and the temporal resolution of the data is limited by acquisition of flights,
available data can be complemented by RS techniques with a low cost of acquisition and
acceptable spatial and temporal resolution, e.g., vegetation indexes and synthetic aperture
radar (SAR) data [37]. Moreover, low-altitude drones have provided new opportunities
enabling the use of LiDAR and are less expensive than airborne laser scanners [38] and
spaceborne remote sensing [39]. The acquisition of field estimates of AGB and vegetation
structure is a critical step for the calibration and validation of RS techniques and for
successful biomass estimation [31,38].
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The main goal of the present study was to explore the potential of the combined
use of remote sensing variables acquired from Sentinel-2 spectral indices, Light Detection
and Ranging (LiDAR) metrics, and field and laboratory fuel load inventories to assess
vegetation structural characteristics (in terms of cover, height, standing biomass, and
structural parameters) in burned Ulex europaeus L. shrublands between 2.5 and 10 years
after a fire.

2. Materials and Methods
2.1. Study Area

The study was carried out in areas in Galicia affected by high-severity summer fires
(vegetation was burned completely) between 2009 and 2016 to evaluate vegetation cover,
with periods of regrowth of between 2.5 and 10 years after a fire. We focused on the plant
communities dominated by gorse (Ulex europaeus L.). These shrublands are the dominant
vegetation communities in the study area and are usually affected by summer fires. The
usual fire season in the area is summer (July to October). Five experimental sites (Figure 1)
were delineated, with at least two plots per site. A minimum distance of 1000 m between
plots was applied to prevent autocorrelation or spatial autocorrelation in the data [40].
Twenty-two plots were established within the burned areas, and the coordinates of the
locations were determined. Information about each experimental site is included in Table 1.
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Figure 1. Location of the experimental sites within Galicia (NW Spain) affected by fires between 2009
and 2016. The reference coordinate system is WGS84 (EPSG: 4326).

Table 1. Characteristics of the experimental sites.

Experimental
Site

Mean Annual
Precipitation

(mm)

Mean Annual
Temperature

◦C
Aspect Elevation

(m a.s.l)
Fire

Occurrence Date
Burned Area

(ha)
Number of

Plots

Piñor 1241 11.7 W 850 September 2009 350 2
Acevedo 1572 14.5 E 275 August 2013 1824 6
O Pindo 946 14.4 W 225 September 2013 2166 5
Negreira 1450 12.4 W-SW 240 September 2013 646 5

Porto do Son 1300 14.6 NE 215 August 2016 870 4
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2.2. Layout of Experimental Plots and Characterization of Vegetation

The experimental plots were installed in homogeneous areas of shrubland dominated
by Ulex europaeus L. Vegetation variables were assessed by a combination of non-destructive
measurement of structural variables (height and cover transect) and destructive sampling
of small plots. The central coordinates of the plots were established, and the plots were
located in the field with the aid of an RTK-GPS equipment. The reference positions were
marked in the field with a graduated rod.

Two transects of 20 m lengths were established in each plot, and plant cover was
estimated using the line intercept method [41]. The direction of the first transect was
defined by the position of the minute hand of a watch at that moment. The second transect
was established perpendicular to the first one. Cover and height of all plant species were
recorded along each transect (Figure 2). Fieldwork and laboratory work were carried out in
the spring and summer of 2019.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

O Pindo 946 14.4 W 225 September 
2013 

2166 5 

Negreira 1450 12.4 W-SW 240 September 
2013 

646 5 

Porto do Son 1300 14.6 NE 215 August 2016 870 4 

2.2. Layout of Experimental Plots and Characterization of Vegetation 
The experimental plots were installed in homogeneous areas of shrubland domi-

nated by Ulex europaeus L. Vegetation variables were assessed by a combination of non-
destructive measurement of structural variables (height and cover transect) and destruc-
tive sampling of small plots. The central coordinates of the plots were established, and the 
plots were located in the field with the aid of an RTK-GPS equipment. The reference po-
sitions were marked in the field with a graduated rod. 

Two transects of 20 m lengths were established in each plot, and plant cover was 
estimated using the line intercept method [41]. The direction of the first transect was de-
fined by the position of the minute hand of a watch at that moment. The second transect 
was established perpendicular to the first one. Cover and height of all plant species were 
recorded along each transect (Figure 2). Fieldwork and laboratory work were carried out 
in the spring and summer of 2019. 

 
Figure 2. Partial view of a sampling plot six years after a fire. 

Destructive sampling was carried out in 4 m2 square subplots, one within each sam-
pling plot. All the standing vegetation material within the subplots was clipped and trans-
ported to the laboratory. The material was subsequently classified into thickness size clas-
ses (0–6 mm, 6–25 mm, 25–75 mm, and >75 mm), with the aid of calipers, and the physio-
logical state (live/dead) was recorded, before the material was oven-dried at 105 ºC for 24 
h and weighed to determine the dried mass. 

The combined field and laboratory measurements enabled estimation of shrub cover 
(%), shrub height (cm), total standing biomass (kg/m2), and the fractions of: live fine bio-
mass (kg/m2), dead fine biomass (kg/m2), total live biomass (kg/m2) and total dead biomass 
(kg/m2). These variables are usually used to assess fuel characteristics and potential fire 
behavior, but they can also be used to detect areas where vegetation cover is not sufficient 
to protect the soil through natural regeneration following a disturbance. 

Figure 2. Partial view of a sampling plot six years after a fire.

Destructive sampling was carried out in 4 m2 square subplots, one within each sam-
pling plot. All the standing vegetation material within the subplots was clipped and
transported to the laboratory. The material was subsequently classified into thickness size
classes (0–6 mm, 6–25 mm, 25–75 mm, and >75 mm), with the aid of calipers, and the
physiological state (live/dead) was recorded, before the material was oven-dried at 105 ºC
for 24 h and weighed to determine the dried mass.

The combined field and laboratory measurements enabled estimation of shrub cover
(%), shrub height (cm), total standing biomass (kg/m2), and the fractions of: live fine
biomass (kg/m2), dead fine biomass (kg/m2), total live biomass (kg/m2) and total dead
biomass (kg/m2). These variables are usually used to assess fuel characteristics and
potential fire behavior, but they can also be used to detect areas where vegetation cover is
not sufficient to protect the soil through natural regeneration following a disturbance.

2.3. Explanatory Variables

A combination of remotely sensed data (LiDAR and multispectral imagery) was used
to assess the vegetation structure. LiDAR data was accessed from the Plan BásicoAutonómico
(Xunta de Galicia) [42] and used to compute the variables related to fuel cover, height,
and load in the study areas. The LiDAR flight took place in 2019 (4 return points m−2).
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Multispectral imagery from the Sentinel-2 program was used to generate the set of spectral
indexes potentially related to vegetation recovery.

Data were generated for the present study by processing the LiDAR and Sentinel-2
data independently, and both sources were combined in the regression analysis (Figure 3).
The LiDAR data were processed using FUSION software [43]. A Digital Surface Model
(DSM) was constructed by using Ground Filter (filtering of the point cloud to identify,
using height thresholds, the points corresponding to gorse shrubland) and Grid Surface
Create (creation of a raster DSM from the filtered point cloud using Ground Filter) tools and
clipped for each of the plots measured in situ (ClipData tool), using the central coordinates
and a radius of 10 m, covering the same area as field plots. Based on the correlation matrix
between field data and raw LiDAR metrics, the mean, maximum, and minimum heights
(Emean, Emax, Emin) and several height percentiles (E1, E5, E10, E20, E30, E40, E50, E60,
E70, E75, E90) were chosen as predictors for estimating post-fire vegetation variables in
the field.
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The Sentinel-2 images were processed using R software [44]. Once Sentinel-2 images
were pre-processed, the vegetation was resampled (from 20 to 10 m) and cropped as close as
possible to the study area to reduce the processing time. A total of four Sentinel-2 tiles were
downloaded and examined to determine the available sensing date as close as possible
to the time of field sampling (Acevedo: tile 29TNG and sensing date 19 February 2019;
Negreira: tile 29TNH and sensing date 29 March 2019; Pindo: tile 29TMH and sensing date
14 November 2018; Porto do Son: tile 29TMH and sensing date 08 January 2019; Piñor:
tile 29TNH and sensing date 18 June 2019). All the images were downloaded already
atmospherically, radiometrically, and geometrically corrected (Level-2A) by the Sen2Cor al-
gorithm. Sen2Cor performed a pre-processing of Level-1C (L1C) Top of Atmosphere (TOA)
image data, and applied a scene classification, an atmospheric correction, and a subsequent
conversion into an ortho-image Level-2A Bottom-Of-Atmosphere (BOA) reflectance prod-
uct [45,46]. Although the presence of clouds was checked prior to downloading the images,
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removal of pixels classified as clouds was ensured using the Scene Classification Image
(SCL) mask. A list of spectral bands (Table 2) was used to calculate spectral indices. Once
Sentinel-2 images were pre-processed, different spectral indices related to the physiological
activity of vegetation were obtained according to their usefulness for fuel load estimation
(Table 3). Once the spectral indices were calculated, the mean value of each index and for
each plot was extracted with QGIS software. The information was cropped to the 10-m
buffer generated around the center of each plot, defined by its coordinates, to match the
area covered by LiDAR data.

Table 2. Sentinel-2 spectral bands.

Sentinel-2 Bands Central Wavelength (µm) Resolution (m)

B2–Blue 0.490 10
B3–Green 0.560 10
B4–Red 0.665 10

B5 - Vegetation Red Edge 0.705 20
B6 - Vegetation Red Edge 0.740 20
B7 - Vegetation Red Edge 0.783 20

B8–NIR 0.842 10
B8A - Vegetation Red Edge 0.865 20

B10 - SWIR–Cirrus 1.375 60
B11–SWIR 1.610 20
B12–SWIR 2.190 20

Table 3. Sentinel-2 spectral indices used in the study.

Index Description Algorithm Reference

NBR Normalized Burn Ratio (B8−B12)
(B8+B12)

[47]

NDVI Normalized Difference
Vegetation Index

(B8−B4)
(B8+B4)

[48]

RVI Ratio Vegetation Index B8
B4 [49]

SAVI Soil-Adjusted Vegetation Index
(B8−B4)

(B8+B4+L) ∗ (1 + L)
L = 0.5

[50]

EVI Enhanced Vegetation Index 2.5∗(B8−B4)
(B8+6∗B4−7.5∗B2)+1

[51]

2.4. Statistical Analysis

Measurements of post-fire vegetation structure and remote-sensed variables were used
to construct statistical models for vegetation variables. A total of 19 independent variables
were included in the statistical analysis. Exponential regression was used to evaluate the
capacity of the independent variables to predict the shrub characteristics, as is usual in
biomass modelling based on remote sensing [36,52,53].The exponential regression models
presented were fitted to linear regression models, with the last term of the equation being
the bias corrector.

The performance of the predictive models was assessed with the following metrics: ad-
justed R2, which is a modified version of R2 adjusted according to the number of predictors
in the model; Root Mean Squared Error (RMSE), which measures the error of the prediction
model as the average difference between the observed known values of the outcome and
the value predicted by the model; and the Relative Root Mean Squared Error (RRMSE), a
complement of the RMSE that measures the percentage of the RMSE with respect to the
mean value of the dependent variable.

Adjusted models were tested to determine whether they fulfilled the Ordinary Least
Squares assumptions: absence of multicollinearity between independent variables, linearity
of the data in the relationship between independent and dependent variables, normality
of residuals, and homogeneity of residuals variance with a mean of 0 (homoscedasticity).
Possible multicollinearity was evaluated by the tolerance parameter (TOL). When multi-
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collinearity was indicated (TOL < 0.1), problematic predictors were eliminated. Potential
errors due to the lack of linearity of the data or the lack of normality and homogeneity of
residuals were addressed by examination of plots of residuals vs. fitted values, normal
Q-Q, scale-location, and residuals vs. leverage. The R statistical software [44] was used to
perform the analysis. The R variable selection method “both”, a combination of “forward”
and “backward” methods, was used to select the regressor variables.

3. Results

The main characteristics of the shrublands under study, which were determined in
field inventories and laboratory analyses, are listed in Table 4. In all cases, the vegetation
completely covered the soil, with maximum values over 300%. The range of variation of
vegetation height was higher than that observed for vegetation cover, with the highest
value being four times greater than the lowest value. The total standing biomass was also
highly variable, with the highest amount being five times that of the lowest amount. Live
portions of vegetation represented on average 77% of the total standing biomass. The fine
standing biomass represented 65% of the total standing biomass, and the dead fraction
accounted for only 23% of the total. Dead standing biomass was eight times greater and
the dead fine biomass up to 16 times higher in the older communities.

Table 4. Mean and range of variation of post-fire vegetation variables measured in the field plots.

Vegetation Variable Mean Range

Total cover, % 220.0 102.0–321.8
Height, cm 105.8 45.0–190.0

Total standing biomass, kg/m2 3.1 1.1–5.9
Total live biomass, kg/m2 2.4 0.9–4.4

Total dead biomass, kg/m2 0.7 0.2–1.6
Live fine (diameter < 6 mm) biomass, kg/m2 1.4 0.9–2.8
Dead fine (diameter < 6 mm) biomass, kg/m2 0.6 0.1–1.6

The mean values and range of Sentinel-2 spectral indices are shown in Table 5. The
Ratio Vegetation Index displayed the highest range of variation. The values of the SAVI
and EVI indices were very similar.

Table 5. Mean and range of Sentinel-2 spectral indices used in the study.

Sentinel-2 Spectral Index Mean Range

Normalized burn ratio (NBR) 0.5 0.3–0.6
Normalized Difference Vegetation Index (NDVI) 0.7 0.6–0.8

Ratio Vegetation Index (RVI) 6.7 3.8–11.0
Soil-Adjusted Vegetation Index (SAVI) 0.4 0.3–0.4

Enhanced Vegetation Index (EVI) 0.4 0.3–0.4

The LiDAR metrics used to estimate shrub height are listed in Table 6. The 60th to
90th percentiles indicated similar differences between the lowest and the highest values.

Table 6. Mean and range variation of LiDAR metric values (cm) used in the gorse shrubland studied.

LiDAR Metrics (cm) Mean Range

Mean height (Emean) 40.9 40.3–60.4
Maximum height (Emax) 190.2 170.3–200.3
Minimum height (Emin) 0.0 0.0–1
1st height percentile (E1) 0.0 0.0–1
5th height percentile (E5) 1 0.0–1
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Table 6. Cont.

LiDAR Metrics (cm) Mean Range

10th height percentile (E10) 1 0.0–1
20th height percentile (E20) 1 0.0–1
30th height percentile (E30) 2 1–4
40th height percentile (E40) 6 1–24
50th height percentile (E50) 16 40–56
60th height percentile (E60) 50 37–83
70th height percentile (E70) 79 62–100
75th height percentile (E75) 93 79–113
90th height percentile (E90) 138 124–153

The multiple exponential regression models for all the vegetation variables, deter-
mined using Sentinel-2 spectral indices, are compiled in Table 7.

Table 7. Summary of best regression models and the corresponding statistical metrics (Adjusted R2,
RMSE and RRMSE) determined for each vegetation variable using Sentinel-2 spectral indices. The
RMSE units are the same as those of the dependent variable.

Vegetation Variable Regression Model Adj. R2 RMSE RRMSE ( RMSE
¯
y

)%

Cover
(%) exp(4.0 + 0.3·GRVI + 3.5·NBR − 0.3·RVI) 0.61 41.3 19.4

Height
(cm) exp(6.3 + 44.1·EVI + 3.2·NBR − 52.3·SAVI) 0.43 34.0 31.4

Total standing biomass
(kg/m2) exp(3.7 + 42.5·EVI + 7.4·NDVI − 0.2·RVI − 50.2·SAVI) 0.62 0.8 25.3

Total live biomass
(kg/m2) exp(2.8 + 25.6·EVI + 3.9·NBR − 35.3·SAVI) 0.61 0.5 23.0

Total dead biomass
(kg/m2) exp(−5.0 + 17.2·NBR − 16.7·NDVI) 0.73 0.2 34.3

Live fine biomass
(kg/m2) exp(1.3 + 11.0·EVI + 1.7·NBR − 15.8·SAVI) 0.62 0.1 8.1

Dead fine biomass
(kg/m2) exp(0.6 + 72.6·EVI + 8.7·NBR − 0.2·RVI − 82.7·SAVI)·1.1 0.64 0.2 49.0

The models obtained ranged from an adjusted r2 of 0.4 for vegetation height to 0.7 for
total dead biomass. In the latter model, the explanatory variables were NBR and NDVI.
The other models showed similar levels of fit. NBR was the most frequent index included
in all models, except for total standing biomass. EVI and SAVI were the next most frequent
and were included in all models except for vegetation cover and total dead biomass.

The multiple exponential regression models determined using LiDAR metrics are
shown in Table 8. The models, including LiDAR data, performed better for explaining the
variability in vegetation height and cover and for dead fine biomass than those shown in
Table 7. The first percentile and the 50th to 75th percentiles represented the explanatory
variables in these models.

In most cases, the best results were obtained with the combined data from Sentinel-2
and LiDAR metrics (Table 9 and Figure 4). The highest correlation was obtained for the total
standing biomass. The only exception was total live biomass. RVI was the only spectral
index in the total standing biomass and dead fine biomass models.
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Table 8. Summary of best regression models and the corresponding statistical metrics (Adjusted R2,
RMSE and RRMSE) determined for each vegetation variable using LiDAR metrics. The RMSE units
are the same as those of the dependent variable.

Vegetation Variable Regression Model Adj. R2 RMSE RRMSE ( RMSE
¯
y

)%

Cover
(%) exp(2.3 + 11.7·E1 + 0.3·E75 − 0.1·E60) 0.81 44.3 20.8

Height
(cm) exp(4.4 + 0.2·E50)·1.1 0.62 26.5 24.5

Total standing biomass
(kg/m2) exp(−2.6 + 0.3·E40 + 19.1·E5 + 0.6·E75 − 0.4·E70)·1.1 0.34 1.3 44.9
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Table 8. Cont.

Vegetation Variable Regression Model Adj. R2 RMSE RRMSE ( RMSE
¯
y

)%

Total live biomass
(kg/m2) exp(−4.5 + 7.7·Emin + 0.4·E90) 0.64 0.5 23.0

Total dead biomass
(kg/m2) exp(−3.3 + 0.6·E40 + 25.6·E10)·1.1 0.73 0.3 41.1

Live fine biomass
(kg/m2) exp(−2.3 + 6.8·E20 + 0.13·E95) 0.42 0.5 36.2

Dead fine biomass
(kg/m2) exp(−7.9 + 23.6·E1 + 1.5·E75 − E70)·1.1 0.82 0.2 36.9

Table 9. Summary of best regression models and the corresponding statistical metrics (Adjusted R2,
RMSE and RRMSE) determined for each vegetation variable using a combination of LiDAR metrics
and Sentinel-2 spectral indices. The RMSE units are the same as those of the dependent variable.

Vegetation Variable Regression Model Adj. R2 RMSE RRMSE ( RMSE
¯
y

)%

Cover
(%) exp(3.2 + 0.4·Emean + 3.1·NBR − 0.2·RVI) 0.82 26.6 12.4

Height
(cm) exp(6.3 + 0.35·E50 − 3·NDVI) 0.72 26.0 24.1

Total standing biomass
(kg/m2) exp(1.6 + 0.8·E40 − 0.2·RVI) 0.91 0.4 14.2

Total live biomass
(kg/m2) exp(−4.5 + 7.7·Emin + 0.4·E90) 0.64 0.5 23.0

Total dead biomass
(kg/m2) exp(1.8 + 0.6·E40 + 3.8·NBR − 6.4·NDVI) 0.74 0.1 20.0

Live fine biomass
(kg/m2) exp(1.5 + 0.8·E30 + 1.2·NBR − 5.0·SAVI) 0.82 0.1 7.4

Dead fine biomass
(kg/m2) exp(0.03 + 1.3·E40 − 0.3·RVI)·1.1 0.81 0.2 43.7

4. Discussion

Evaluation of forest vegetation biomass or growth is frequently carried out in remote
sensing research; however, further information is needed about post-fire regrowth [34,35],
particularly to aid studies using models to predict different vegetation characteristics [2].
Several studies have assessed the recovery or growth of AGB over areas of very different
extensions; however, not all of these studies are supported by detailed field data [8,35,54,55].
There remains a need to have field data available to validate and calibrate remote sensing
data sources [31,38]. To our knowledge, no previous studies have modelled the different
shrub fractions (dead/live or fine/total biomass), and very few have considered biomass
and strata (herbaceous/shrub) separately [56]. It is particular important to be able model
the fraction of thin and dead standing AGB as input for a dynamic evaluation of fire
hazard through changes in the prediction of potential fire behavior in those vegetation
communities [23]. The results presented in this study show the potential of the combined
use of LiDAR and Sentinel-2 spectral indices to obtain specific parameters to describe
shrubland complexes and obtain inputs to be used in fire behavior simulator programs.
With the values obtained in this study, it can be seen that the values of total fuel load or
dead fuel load reached the upper range of these communities six years after the fire [21].
Three years after the fire, although the vegetation cover was 100%, only 33% of the pre-fire
load had been reached.

The NDVI is undoubtedly one of the most commonly used vegetation indexes [8,16,32,54,55,57],
and it is considered one of the best performing indexes as regards accounting for the
variability of vegetation, especially in densely vegetated areas [57]. However, in the present
study it only made a large contribution in two of the regression models. By contrast, the
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Normalized Burned Ratio (NBR) was one of the most important indices in the obtained
models. One possible explanation for the low level of importance of the NDVI for explaining
the shrub characteristics in our models may be the saturation of the index in scenarios of
large quantities of biomass [58], which reached up to 70 t/ha in our study. Observations
by Lu et al. [31] showed that indices including near-infrared information showed weaker
correlations with AGB than those based on shortwave infrared in sites presenting a complex
vegetation structure. Although NBR has been less commonly used to assess vegetation
characteristics, its capacity to characterize vegetation AGB has been observed in previously
published research [35,59–63]. The preference for other indexes rather than NDVI to assess
AGB in shrublands is not a new finding. For example, Chen et al. (2018) [53] modelled
AGB in semi-arid ecosystems with the Ratio Vegetation Index (RVI) and brightness.

The addition of LiDAR data to optical multispectral RS greatly increased the ca-
pacity of the method to determine standing AGB, as previously pointed out by several
authors [4,35,53]. Our results regarding the independent variables selected were consis-
tent with and confirm previous findings. Remote sensing optical imagery is considered
more suitable for assessing the horizontal distribution of vegetation, whereas LiDAR data
performs better for modelling the vertical structure of the vegetation [31,35,64]. In this
respect, for characteristics related to vertical structure or AGB indicators, optical vegetation
indexes played a secondary role, and the most important variables were those extracted
from LiDAR metrics. This was previously demonstrated by Zolkos et al. (2013) [65], who
performed a meta-analysis of more than 70 articles on AGB assessment from RS sources and
demonstrated that the inclusion of LiDAR metrics significantly improved the performance
of AGB models. Similarly, other studies combining several data sources have observed that
Synthetic Aperture Radar (SAR) performs better than optical remote sensing data (NDVI),
although the combination of both data sources improved the adjusted AGB models [36].

The results obtained in the present study show that structural characterization with
LiDAR and satellite data can give good results. However, this methodology should be
tested in more shrubland communities, and with a wider temporal range. The possibility
of further studies is also limited by the acquisition of LiDAR data.

5. Conclusions

The study addressed the structural characterization of gorse shrublands in north-
western Spain, and models were constructed for predicting the different characteristics
(height, cover, total standing AGB and AGB by thickness fraction and physiological con-
dition), with adjusted coefficients of determination ranging from 0.6 to 0.9. The addition
of LiDAR data to optical RS images greatly improved the model performance, especially
in relation to the vertical structure of the shrub complex. The models were derived from
post-fire vegetation data, covering a period of between 2 and 10 years after the fire. Future
research should focus on calibrating the models in other areas and, when necessary, should
include new vegetation communities at different moments after the fire.

Our findings are sufficiently robust to be potentially applied in forest management
plans, as they enable shrub characteristics to be mapped using freely available data at a
regional scale. The data present an adequate balance between spatial resolution (higher for
PNOA LiDAR data) and temporal resolution (higher for Sentinel-2 mission). The models
developed are potentially useful for assessing spatial fire hazards due to fuel build-up and
for acting as carbon sinks.
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