Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sources and Acquisition
2.3. Methods
2.3.1. Image Preprocessing and LULC Classification
2.3.2. Accuracy Assessment
2.3.3. Detection of LULC Change Dynamics
Post-Classification Comparison
Net Change Analysis
Change Trend (CT), Change Percentage (CP), and Change Rate Analysis
2.3.4. Hybrid Modeling and Prediction of LULC
Markov Chain Model
Cellular Automata Markov (CA-Markov) Model
2.3.5. Validation of Land Use Prediction Model
3. Results
3.1. Classified LULC Pattern
3.2. Accuracy Assessment
3.3. LULC Change Dynamics
3.4. Modeling and Prediction of Future Land Uses
Transition Probability Matrix
3.5. Predicted LULC Patterns in 2035 and 2050
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahfahad; Naikoo, M.W.; Das, T.; Talukdar, S.; Asgher, M.S.; Asif; Rahman, A. Prediction of land use changes at a metropolitan city using integrated cellular automata: Past and future. Geol. Ecol. Landsc. 2022, 1–19. [Google Scholar] [CrossRef]
- Anila, N.; Haroon, R. Modeling the Rice Land Suitability Using GIS and Multi-Criteria Decision Analysis Approach in Sindh, Pakistan. J. Basic Appl. Sci. 2017, 13, 26–33. [Google Scholar] [CrossRef]
- Marufuzzaman, M.; Khanam, M.; Hasan, M.K. Monitoring the Land Cover Change and Its Impact on the Land Surface Temperature of Rajshahi City, Bangladesh using GIS and Remote Sensing Techniques. J. Geogr. Environ. Earth Sci. Int. 2021, 25, 1–19. [Google Scholar] [CrossRef]
- Auwalu, F.K.; Wu, Y.; Ghali, A.A.; Roknisadeh, H.; Akram Ahmed, N.A. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomat. Nat. Hazards Risk 2021, 12, 631–652. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Karuppannan, S. Land use and land cover (LULC) change analysis using TM, ETM+ and OLI Landsat images in district of Okara, Punjab, Pakistan. Phys. Chem. Earth Parts A/B/C 2022, 126, 103117. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.A.; Annor, T. Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degrad. Dev. 2018, 29, 3331–3343. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Alabsi, A.A.N. Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov). Sustainability 2020, 12, 10452. [Google Scholar] [CrossRef]
- Näschen, K.; Diekkrüger, B.; Evers, M.; Höllermann, B.; Steinbach, S.; Thonfeld, F. The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios. Sustainability 2019, 11, 7083. [Google Scholar] [CrossRef] [Green Version]
- Said, M.; Hyandye, C.; Komakech, H.C.; Mjemah, I.C.; Munishi, L.K. Predicting land use/cover changes and its association to agricultural production on the slopes of Mount Kilimanjaro, Tanzania. Ann. GIS 2021, 27, 189–209. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction of Land Use/Land Cover Change Using Remote Sensing and the CA-Markov Model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. Sci. World J. 2021, 2021, 6685045. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Singh, P.; Srivastava, S.K. Impact of land use change dynamics on sustainability of groundwater resources using earth observation data. Environ. Dev. Sustain. Multidiscip. Approach Theory Pract. Sustain. Dev. 2020, 22, 5185–5198. [Google Scholar] [CrossRef]
- Karimi, H.; Jafarnezhad, J.; Khaledi, J.; Ahmadi, P. Monitoring and prediction of land use/land cover changes using CA-Markov model: A case study of Ravansar County in Iran. Arab. J. Geosci. 2018, 11, 592. [Google Scholar] [CrossRef]
- Hussain, S.; Karuppannan, S. Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geol. Ecol. Landsc. 2021, 1–13. [Google Scholar] [CrossRef]
- Faruque, M.J.; Vekerdy, Z.; Hasan, M.Y.; Islam, K.Z.; Young, B.; Ahmed, M.T.; Monir, M.U.; Shovon, S.M.; Kakon, J.F.; Kundu, P. Monitoring of land use and land cover changes by using remote sensing and GIS techniques at human-induced mangrove forests areas in Bangladesh. Remote Sens. Appl. Soc. Environ. 2022, 25, 100699. [Google Scholar] [CrossRef]
- Wasim, P.; Vali, U.; Shoab Ahmad, K.; Junaid Aziz, K. Satellite-based land use mapping: Comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery. J. Appl. Remote Sens. 2016, 10, 026004. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Laari, P.B.; Mustak, S.; Srivastava, P.K.; Szabó, S. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 2018, 33, 1202–1222. [Google Scholar] [CrossRef]
- Aksoy, H.; Kaptan, S. Monitoring of land use/land cover changes using GIS and CA-Markov modeling techniques: A study in Northern Turkey. Environ. Monit. Assess. 2021, 193, 507. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Naim, M.N.H.; Subramanyam, G.; Faisal, A.-A.; Ahmed, N.U.; Rakib, A.A.; Kona, M.A.; Sattar, G.S. Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environ. Chall. 2021, 4, 100084. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A.N.V. Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustain. Cities Soc. 2020, 52, 101846. [Google Scholar] [CrossRef]
- Mohajane, M.; Essahlaoui, A.L.I.; Oudija, F.; el Hafyani, M.; El Hmaidi, A.; Ouali, A.; Randazzo, G.; Teodoro, A. Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth Parts A/B/C 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Akram, W.; Muhammad, H.; Ghaffar, A.; Asad, A.; Muhammad, A.; Hafiz, U.F.; Amjad, F.; Wajid, N. Study of land cover/land use changes using RS and GIS: A case study of Multan district, Pakistan. Environ. Monit. Assess. Vol. 2020, 192, 2. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Alabsi, A.A.N.; Hamed, R. Spatiotemporal Influence of Land Use/Land Cover Change Dynamics on Surface Urban Heat Island: A Case Study of Abuja Metropolis, Nigeria. ISPRS Int. J. Geo-Inf. 2021, 10, 272. [Google Scholar] [CrossRef]
- Arora, G.; Wolter, P.T. Tracking land cover change along the western edge of the U.S. Corn Belt from 1984 through 2016 using satellite sensor data: Observed trends and contributing factors. J. Land Use Sci. 2018, 13, 59–80. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Ahmad, A.; Akram, W.; Hammad, H.M.; Ali, M.; Masood, N.; Amin, A.; Farid, H.U.; Sultana, S.R.; et al. Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environ. Sci. Pollut. Res. Int. 2020, 27, 39676–39692. [Google Scholar] [CrossRef]
- Khan, S.; Qasim, S.; Ambreen, R.; Syed, Z.-U.-H. Spatio-Temporal Analysis of Landuse/Landcover Change of District Pishin Using Satellite Imagery and GIS. J. Geogr. Inf. Syst. 2016, 8, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-T. Geographic Information System. In International Encyclopedia of Geography; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Mondal, M.S.; Sharma, N.; Kappas, M.; Garg, P.K. Critical Assessment of Land Use Land Cover Dynamics Using Multi-Temporal Satellite Images. Environments 2015, 2, 61–90. [Google Scholar] [CrossRef]
- Mayani-Parás, F.; Botello, F.; Castañeda, S.; Munguía-Carrara, M.; Sánchez-Cordero, V. Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. Biol. Conserv. 2021, 253, 108864. [Google Scholar] [CrossRef]
- Mahamud, M.A.; Samat, N.; Tan, M.L.; Chan, N.W.; Tew, Y.L. Prediction of Future Land Use Land Cover Changes of Kelantan, Malaysia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W16, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Goparaju, L.; Qayum, A. LULC analysis of urban spaces using Markov chain predictive model at Ranchi in India. Spat. Inf. Res. 2017, 25, 351–359. [Google Scholar] [CrossRef]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-information. Environ. Processes 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Laffan, S.; Pettit, C.; Cao, M. Land use change simulation and analysis using a vector cellular automata (CA) model: A case study of Ipswich City, Queensland, Australia. Environ. Plan. B Urban. Anal. City Sci. 2019, 47, 239980831983097. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Aalders, I.H. Predicting land cover using GIS, Bayesian and evolutionary algorithm methods. J. Environ. Manag. 2009, 90, 236–250. [Google Scholar] [CrossRef]
- Stefanov, W.; Ramsey, M.; Christensen, P. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. [Google Scholar] [CrossRef]
- Hyandye, C. GIS and Logit Regression Model Applications in Land Use/Land Cover Change and Distribution in Usangu Catchment. Am. J. Remote Sens. 2015, 3, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Ralha, C.; Abreu, C.; Coelho, C.; Zaghetto, A.; Macchiavello, B.; Machado, R. A Multi-Agent Model System for Land-Use Change Simulation. Environ. Model. Softw. 2013, 42, 30–46. [Google Scholar] [CrossRef]
- Dai, E.; Ma, L.; Yang, W.; Wang, Y.; Yin, L.; Tong, M. Agent-based model of land system: Theory, application and modelling framework. J. Geogr. Sci. 2020, 30, 1555–1570. [Google Scholar] [CrossRef]
- Shamsi, S.R. Integrating Linear Programming and Analytical Hierarchical Processing in Raster-GIS to Optimize Land Use Pattern at Watershed Level. J. Appl. Sci. Environ. Manag. 2010, 14, 81–85. [Google Scholar] [CrossRef]
- Tajbakhsh, A.; Karimi, A.; Zhang, A. Modeling land cover change dynamic using a hybrid model approach in Qeshm Island, Southern Iran. Environ. Monit Assess. 2020, 192, 303. [Google Scholar] [CrossRef] [PubMed]
- Kourosh Niya, A.; Huang, J.; Kazemzadeh-Zow, A.; Karimi, H.; Keshtkar, H.; Naimi, B. Comparison of three hybrid models to simulate land use changes: A case study in Qeshm Island, Iran. Environ. Monit Assess. 2020, 192, 302. [Google Scholar] [CrossRef] [PubMed]
- Marquez, A.; Guevara, E.; Rey, D. Hybrid Model for Forecasting of Changes in Land Use and Land Cover Using Satellite Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 252–273. [Google Scholar] [CrossRef]
- Nierhaus, G. (Ed.) Markov Models. In Algorithmic Composition: Paradigms of Automated Music Generation; Springer: Vienna, Vienna, 2009; pp. 67–82. [Google Scholar] [CrossRef]
- Wang, J.; Maduako, I.N. Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction. Eur. J. Remote Sens. 2018, 51, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Chotchaiwong, P.; Wijitkosum, S. Predicting Urban Expansion and Urban Land Use Changes in Nakhon Ratchasima City Using a CA-Markov Model under Two Different Scenarios. Land 2019, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Al-sharif, A.A.A.; Pradhan, B. Monitoring and predicting land-use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab. J. Geosci. 2014, 7, 4291–4301. [Google Scholar] [CrossRef]
- Jafarpour Ghalehteimouri, K.; Shamsoddini, A.; Mousavi, M.N.; Binti Che Ros, F.; Khedmatzadeh, A. Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environ. Chall. 2022, 6, 100399. [Google Scholar] [CrossRef]
- Omar, N. Modelling Land-use and Land-cover Changes Using Markov-CA, and Multiple Decision Making in Kirkuk City. Int. J. Sci. Res. Environ. Sci. 2014, 2, 29–42. [Google Scholar] [CrossRef]
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef]
- Wang, R.; Hou, H.; Murayama, Y. Scenario-Based Simulation of Tianjin City Using a Cellular Automata–Markov Model. Sustainability 2018, 10, 2633. [Google Scholar] [CrossRef] [Green Version]
- Samat, N.; Mahamud, M.A.; Tan, M.L.; Maghsoodi Tilaki, M.J.; Tew, Y.L. Modelling Land Cover Changes in Peri-Urban Areas: A Case Study of George Town Conurbation, Malaysia. Land 2020, 9, 373. [Google Scholar] [CrossRef]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, X. Dominant transition probability: Combining CA-Markov model to simulate land use change. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Deep, S.; Saklani, A. Urban sprawl modeling using cellular automata. Egypt J. Remote Sens. Space Sci. 2014, 17, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Koko, A.F.; Wu, Y.; Abubakar, G.A.; Alabsi, A.A.N.; Hamed, R.; Bello, M. Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria. Land 2021, 10, 1106. [Google Scholar] [CrossRef]
- Barau, A.S.; Maconachie, R.; Ludin, A.N.M.; Abdulhamid, A. Urban morphology dynamics and environmental change in Kano, Nigeria. Land Use Policy 2015, 42, 307–317. [Google Scholar] [CrossRef] [Green Version]
- United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Available online: https://population.un.org/wup/Country-Profiles/ (accessed on 15 June 2020).
- Dankani, I.M. Constraints to Sustainable Physical Planning in Metropolitan Kano. Int. J. Manag. Soc. Sci. Res. (IJMSSR) 2013, 2, 34–42. [Google Scholar]
- Mohammed, M.; Jeb, D. GIS-Based Analysis of the Location of Filling Stations in Metropolitan Kano against the Physical Planning Standards. Int. J. Eng. Res. 2014, 3, 147–158. [Google Scholar]
- Abaje, I.B.; Ndabula, C.; Adamu, G. Is the Changing Rainfall Patterns of Kano State and its Adverse Impacts an Indication of Climate Change? Eur. Sci. J. 2014, 10, 192–206. [Google Scholar]
- Nwagbara, M. Case Study: Emerging Advantages of Climate Change for Agriculture in Kano State, North-Western Nigeria. Am. J. Clim. Chang. 2015, 04, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Singh, R. Assessment and prediction of LULCC dynamics in a part of Indo-Gangetic Alluvial Plain (IGAP) using geospatial techniques on multi-temporal Landsat imageries. Arab. J. Geosci. 2022, 15, 1076. [Google Scholar] [CrossRef]
- Amir Siddique, M.; Wang, Y.; Xu, N.; Ullah, N.; Zeng, P. The Spatiotemporal Implications of Urbanization for Urban Heat Islands in Beijing: A Predictive Approach Based on CA–Markov Modeling (2004–2050). Remote Sens. 2021, 13, 4697. [Google Scholar] [CrossRef]
- Sadiq Khan, M.; Ullah, S.; Sun, T.; Rehman, A.U.; Chen, L. Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [Google Scholar] [CrossRef]
- Moisa, M.B.; Gemeda, D.O. Analysis of urban expansion and land use/land cover changes using geospatial techniques: A case of Addis Ababa City, Ethiopia. Appl. Geomat. 2021, 13, 853–861. [Google Scholar] [CrossRef]
- Alsharif, M.; Alzandi, A.A.; Shrahily, R.; Mobarak, B. Land Use Land Cover Change Analysis for Urban Growth Prediction Using Landsat Satellite Data and Markov Chain Model for Al Baha Region Saudi Arabia. Forests 2022, 13, 1530. [Google Scholar] [CrossRef]
- Richards, J.A.; Xiuping, J. Remote Sensing Digital Image Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Shao, G.; Tang, L.; Liao, J. Overselling overall map accuracy misinforms about research reliability. Landsc. Ecol 2019, 34, 2487–2492. [Google Scholar] [CrossRef] [Green Version]
- Moisa, M.B.; Dejene, I.N.; Roba, Z.R.; Gemeda, D.O. Impact of urban land use and land cover change on urban heat island and urban thermal comfort level: A case study of Addis Ababa City, Ethiopia. Environ. Monit. Assess. 2022, 194, 736. [Google Scholar] [CrossRef]
- Rwanga, S.; Ndambuki, J. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Gebru, B.M.; Lee, W.-K.; Khamzina, A.; Lee, S.-G.; Negash, E. Hydrological Response of Dry Afromontane Forest to Changes in Land Use and Land Cover in Northern Ethiopia. Remote Sens. 2019, 11, 1905. [Google Scholar] [CrossRef] [Green Version]
- Ahlqvist, O. Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 U.S. National Land Cover Database changes. Remote Sens. Environ. 2008, 112, 1226–1241. [Google Scholar] [CrossRef]
- Mohamed, S.A.; El-Raey, M.E. Land cover classification and change detection analysis of Qaroun and Wadi El-Rayyan lakes using multi-temporal remotely sensed imagery. Environ. Monit. Assess. 2019, 191, 229. [Google Scholar] [CrossRef] [PubMed]
- Maity, B.; Mallick, S.K.; Rudra, S. Spatiotemporal dynamics of urban landscape in Asansol municipal corporation, West Bengal, India: A geospatial analysis. GeoJournal 2022, 87, 1619–1637. [Google Scholar] [CrossRef]
- Meshesha, T.W.; Tripathi, S.K.; Khare, D. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abebe, M.S.; Derebew, K.T.; Gemeda, D.O. Exploiting temporal-spatial patterns of informal settlements using GIS and remote sensing technique: A case study of Jimma city, Southwestern Ethiopia. Environ. Syst. Res. 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Elias, E.; Seifu, W.; Tesfaye, B.; Girmay, W. Impact of land use/cover changes on lake ecosystem of Ethiopia central rift valley. Cogent Food Agric. 2019, 5, 1595876. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Haregeweyn, N.; Belay, A.S.; Hadush, Z.; Gebremedhin, M.A.; Mekonnen, G. The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: The case of Mekelle City of northern Ethiopia. Int. J. Remote Sens. 2017, 38, 4107–4129. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Zadbagher, E.; Becek, K.; Berberoglu, S. Modeling land use/land cover change using remote sensing and geographic information systems: Case study of the Seyhan Basin, Turkey. Environ. Monit. Assess. 2018, 190, 494. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hamid, H.T.; Kaloop, M.R.; Abdalla, E.M.; Hu, J.W.; Zarzoura, F. Assessment and prediction of land-use/land-cover change around Blue Nile and White Nile due to flood hazards in Khartoum, Sudan, based on geospatial analysis. Geomat. Nat. Hazards Risk 2021, 12, 1258–1286. [Google Scholar] [CrossRef]
- Gong, W.; Yuan, L.; Fan, W.; Stott, P. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 207–216. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling- A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Yang, J.; Xing, X.; Wang, D. Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China. Energies 2015, 8, 3882–3902. [Google Scholar] [CrossRef]
- Nouri, J.; Gharagozlou, A.; Arjmandi, R.; Faryadi, S.; Adl, M. Predicting Urban Land Use Changes Using a CA–Markov Model. Arab. J. Sci. Eng. 2014, 39, 5565–5573. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Model. Earth Syst. Environ. 2017, 3, 1245–1262. [Google Scholar] [CrossRef]
- Hua, A. Application of CA-Markov model and land use/land cover changes in Malacca river watershed, Malaysia. Appl. Ecol. Environ. Res. 2017, 15, 605–622. [Google Scholar] [CrossRef]
- Abubakar, G.A.; Wang, K.; Belete, M.; Shahtahamassebi, A.; Biswas, A.; Gan, M. Toward digital agricultural mapping in Africa: Evidence of Northern Nigeria. Arab. J. Geosci. 2021, 14, 643. [Google Scholar] [CrossRef]
- Abbas, Z.; Yang, G.; Zhong, Y.; Zhao, Y. Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China. Land 2021, 10, 584. [Google Scholar] [CrossRef]
- Qiao, Z.; Liu, L.; Qin, Y.; Xu, X.; Wang, B.; Liu, Z. The Impact of Urban Renewal on Land Surface Temperature Changes: A Case Study in the Main City of Guangzhou, China. Remote Sens. 2020, 12, 794. [Google Scholar] [CrossRef] [Green Version]
- Girma, R.; Fürst, C.; Moges, A. Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environ. Chall. 2022, 6, 100419. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, G.; Mainali, K.P.; Mishra, N.B. Analyzing the dynamics of urbanization in Delhi National Capital Region in India using satellite image time-series analysis. Environ. Plan. B Urban. Anal. City Sci. 2022, 49, 368–384. [Google Scholar] [CrossRef]
- Arifeen, H.M.; Phoungthong, K.; Mostafaeipour, A.; Yuangyai, N.; Yuangyai, C.; Techato, K.; Jutidamrongphan, W. Determine the Land-Use Land-Cover Changes, Urban Expansion and Their Driving Factors for Sustainable Development in Gazipur Bangladesh. Atmosphere 2021, 12, 1353. [Google Scholar] [CrossRef]
- Spyra, M.; Kleemann, J.; Calò, N.C.; Schürmann, A.; Fürst, C. Protection of peri-urban open spaces at the level of regional policy-making: Examples from six European regions. Land Use Policy 2021, 107, 105480. [Google Scholar] [CrossRef]
- Khanal, N.; Uddin, K.; Matin, M.A.; Tenneson, K. Automatic Detection of Spatiotemporal Urban Expansion Patterns by Fusing OSM and Landsat Data in Kathmandu. Remote Sens. 2019, 11, 2296. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Munkhnasan, L.; Lee, W.-K. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Asuquo Enoh, M.; Ebere Njoku, R.; Chinenye Okeke, U. Modeling and mapping the spatial–temporal changes in land use and land cover in Lagos: A dynamics for building a sustainable urban city. Adv. Space Res. 2022. [CrossRef]
- Tsegaye, B. Effect of Land Use and Land Cover Changes on Soil Erosion in Ethiopia. Int. J. Agric. Sci. Food Technol. 2019, 5, 26–34. [Google Scholar] [CrossRef]
Urban Agglomeration of Kano Metropolis, Nigeria | City Population (Thousands) | Average Annual Rate of Change (Percentage) | |||
---|---|---|---|---|---|
2000 | 2018 | 2030 | 2000–2018 | 2018–2030 | |
2602 | 3820 | 5551 | 2.1 | 3.1 |
Satellite Image | Resolution (m) | Sensor Type | WRS | Acquisition Date | Scene Identification Number | |
---|---|---|---|---|---|---|
Path | Row | |||||
Landsat 5 | 30 × 30 | TM | 188 | 52 | 7 January 1991 | LT41880521991007XXX02 |
Landsat 7 | 30 × 30 | ETM+ | 188 | 52 | 4 March 2000 | LE71880522000064SGS00 |
Landsat 7 | 30 × 30 | ETM+ | 188 | 52 | 28 February 2010 | LE71880522010059ASN00 |
Landsat 8 | 30 × 30 | OLI/TIRS | 188 | 52 | 16 February 2020 | LC81880522020047LGN00 |
S/No. | Kappa Index (K) Values | Kappa Index Interpretation |
---|---|---|
Level of Agreement | ||
1. | < 0 | Less than chance agreement |
2. | 0.01–0.20 | Slight agreement |
3. | 0.21–0.40 | Fair agreement |
4. | 0.41–0.60 | Moderate agreement |
5. | 0.61–0.80 | Substantial agreement |
6. | 0.81–0.99 | Almost perfect agreement |
i. Error Matrix for the Year 1991 | ||||||
S/ No. | LULC Classes | Barren Land | Built-Up Areas | Vegetation | Water Bodies | Total |
1. | Barren Land | 2015 | 134 | 6 | 32 | 2187 |
2. | Built-up Areas | 183 | 1528 | 103 | 6 | 1820 |
3. | Vegetation | 18 | 30 | 421 | 0 | 469 |
4. | Water Bodies | 0 | 18 | 1 | 134 | 153 |
5. | Total | 2216 | 1710 | 531 | 172 | 4629 |
Overall Accuracy = 88.53%, Kappa Coefficient = 0.8137 | ||||||
ii. Error Matrix for the Year 2000 | ||||||
S/ No. | LULC Classes | Barren Land | Built-Up Areas | Vegetation | Water Bodies | Total |
1. | Barren Land | 2157 | 59 | 14 | 6 | 2236 |
2. | Built-up Areas | 6 | 1654 | 7 | 3 | 1670 |
3. | Vegetation | 18 | 234 | 368 | 0 | 620 |
4. | Water Bodies | 8 | 27 | 5 | 105 | 145 |
5. | Total | 2189 | 1974 | 394 | 114 | 4671 |
Overall Accuracy = 91.71%, Kappa Coefficient = 0.8652 | ||||||
iii. Error Matrix for Year 2010 | ||||||
S/ No. | LULC Classes | Barren Land | Built-Up Areas | Vegetation | Water Bodies | Total |
1. | Barren Land | 2630 | 30 | 2 | 0 | 2662 |
2. | Built-up Areas | 0 | 3257 | 0 | 1 | 3258 |
3. | Vegetation | 0 | 246 | 367 | 1 | 614 |
4. | Water Bodies | 5 | 148 | 6 | 100 | 259 |
5. | Total | 2635 | 3681 | 375 | 102 | 6793 |
Overall Accuracy = 93.54%, Kappa Coefficient = 0.8891 | ||||||
iv. Error Matrix for Year 2020 | ||||||
S/ No. | LULC Classes | Barren Land | Built-Up Areas | Vegetation | Water Bodies | Total |
1. | Barren Land | 2222 | 70 | 14 | 5 | 2311 |
2. | Built-up Areas | 0 | 4435 | 44 | 2 | 4481 |
3. | Vegetation | 3 | 247 | 1067 | 3 | 1320 |
4. | Water Bodies | 1 | 3 | 0 | 119 | 123 |
5. | Total | 2226 | 4755 | 1125 | 129 | 8235 |
Overall Accuracy = 95.24%, Kappa Coefficient = 0.9190 |
i. 2035: Probability of Changing to | |||||
S/No. | LULC Classes | Barren Land | Built-Up Area | Vegetation | Water Bodies |
1. | Barren Land | 0.5329 | 0.2664 | 0.1933 | 0.0074 |
2. | Built-up Area | 0.0056 | 0.9007 | 0.0900 | 0.0037 |
3. | Vegetation | 0.0850 | 0.3959 | 0.4900 | 0.0291 |
4. | Water Bodies | 0.1341 | 0.5681 | 0.2056 | 0.0922 |
ii. 2050: Probability of Changing to | |||||
S/No. | LULC Classes | Barren Land | Built-Up Area | Vegetation | Water Bodies |
1. | Barren Land | 0.3107 | 0.4592 | 0.2192 | 0.0108 |
2. | Built-up Area | 0.0161 | 0.8522 | 0.1255 | 0.0062 |
3. | Vegetation | 0.0909 | 0.5826 | 0.3072 | 0.0194 |
4. | Water Bodies | 0.1046 | 0.6769 | 0.1963 | 0.0222 |
S/ No. | Simulated/ Projected Period | 2035 Prediction | 2050 Prediction | ||
---|---|---|---|---|---|
(15-Year Planning Period) | (30-Year Planning Period) | ||||
LULC Classes | Area (km2) | Area (Percentage) | Area (km2) | Area (Percentage) | |
1. | Barren Land | 139.6665 | 24.2799 | 88.9605 | 15.4650 |
2. | Built-up Area | 307.8963 | 53.52522 | 364.8753 | 63.4306 |
3. | Vegetation | 121.4037 | 21.1050 | 115.1667 | 20.02078 |
4. | Water Bodies | 6.2694 | 1.08988 | 6.2334 | 1.08362 |
5. | Total | 575.2359 | 100 | 575.2359 | 100 |
LULC Classes | LULC Change Dynamics 2020–2035 | LULC Change Dynamics 2020–2050 | Contributions to Built-Up Area in 2035 (km2) | Contributions to Built-Up Area in 2050 (km2) | ||||
---|---|---|---|---|---|---|---|---|
Losses (km2) | Gains (km2) | Net Change | Losses (km2) | Gains (km2) | Net Change | |||
Barren Land | −101.35 | 0.13 | −101.22 | −152.01 | 0.08 | −151.93 | 63.14 | 110.89 |
Built-up Area | −0.30 | 89.48 | 89.18 | −0.44 | 146.60 | 146.16 | - | - |
Vegetation | −26.32 | 37.48 | 11.15 | −34.67 | 39.58 | 4.91 | 23.85 | 33.18 |
Water Bodies | −2.21 | 3.10 | 0.89 | −2.13 | 2.99 | 0.85 | 2.19 | 2.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koko, A.F.; Han, Z.; Wu, Y.; Abubakar, G.A.; Bello, M. Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sens. 2022, 14, 6083. https://doi.org/10.3390/rs14236083
Koko AF, Han Z, Wu Y, Abubakar GA, Bello M. Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sensing. 2022; 14(23):6083. https://doi.org/10.3390/rs14236083
Chicago/Turabian StyleKoko, Auwalu Faisal, Zexu Han, Yue Wu, Ghali Abdullahi Abubakar, and Muhammed Bello. 2022. "Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050)" Remote Sensing 14, no. 23: 6083. https://doi.org/10.3390/rs14236083
APA StyleKoko, A. F., Han, Z., Wu, Y., Abubakar, G. A., & Bello, M. (2022). Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sensing, 14(23), 6083. https://doi.org/10.3390/rs14236083