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Abstract: Efficient dense reconstruction of objects or scenes has substantial practical implications,
which can be applied to different 3D tasks (for example, robotics and autonomous driving). However,
because of the expensive hardware required and the overall complexity of the all-around scenarios,
efficient dense reconstruction using lightweight multi-view stereo methods has received much atten-
tion from researchers. The technological challenge of efficient dense reconstruction is maintaining
low memory usage while rapidly and reliably acquiring depth maps. Most of the current efficient
multi-view stereo (MVS) methods perform poorly in efficient dense reconstruction, this poor perfor-
mance is mainly due to weak generalization performance and unrefined object edges in the depth
maps. To this end, we propose EMO-MVS, which aims to accomplish multi-view stereo tasks with
high efficiency, which means low-memory consumption, high accuracy, and excellent generalization
performance. In detail, we first propose an iterative variable optimizer to accurately estimate depth
changes. Then, we design a multi-level absorption unit that expands the receptive field, which
efficiently generates an initial depth map. In addition, we propose an error-aware enhancement
module, enhancing the initial depth map by optimizing the projection error between multiple views.
We have conducted extensive experiments on challenging datasets Tanks and Temples and DTU,
and also performed a complete visualization comparison on the BlenedMVS validation set (which
contains many aerial scene images), achieving promising performance on all datasets. Among the
lightweight MVS methods with low-memory consumption and fast inference speed, our F-score on
the online Tanks and Temples intermediate benchmark is the highest, which shows that we have the
best competitiveness in terms of balancing the performance and computational cost.

Keywords: multi-view stereo; 3D reconstruction; depth estimation; stereo vision

1. Introduction

Multi-view stereo (MVS) is one of the essential tasks in computer vision. It has
long been studied by many researchers and has been widely applied in autonomous
driving [1], virtual reality [2], robotics, and 3D reconstruction [3,4]. MVS is also capable
of reconstructing ground terrain using aerial photography systems (such as satellites and
drones). The core of the multi-view stereo task is to use stereo correspondence from
multiple images as the main cue to reconstruct dense 3D representations. Currently, the
reconstruction of 3D scenes is mainly based on the depth map method. However, the
depth map acquisition is primarily divided into two-view and multi-view scenarios. The
two-view scenarios are mainly used to obtain the disparity of corresponding pixels in the
rectified image pairs by matching two adjacent views, and then calculating the depth [5].
However, obtaining the exact rectified image pairs for images with more varying viewpoints
is difficult. In multi-view scenarios, multiple unrectified images can be used simultaneously,
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and depth estimation can be performed directly in depth space without the need to convert
by calculating disparity. First, several hypothetical depth planes are proposed in the depth
range. Then, the best depth plane is determined for each pixel by the dense correspondence
between pixels of different views [6].

In detail, many conventional MVS methods [7–10] have yielded impressive results.
Although hand-crafted operators can achieve high accuracy, the completeness of the con-
structed point cloud is affected by low-texture regions, illumination changes, and reflections,
which make these methods usually unable to achieve a satisfactory quality of reconstruction
in practical use. Many industrial applications require efficient algorithms, such as the real-
time reconstruction of ground details by high-altitude sensors, UAV obstacle avoidance,
and automatic driving of cars. Therefore, dense reconstruction with fast inference speed
and low GPU memory has broad application prospects.

Recently, the popular learning-based methods [11–17] have significantly improved the
overall reconstruction quality in challenging scenarios. MVSNet [11] is the first method
that introduced deep learning technology to depth-map-based MVS tasks [18–20]. The
subsequent learning-based MVS approaches emulate MVSNet [11] by constructing a 3D
cost volume, regularizing it with a 3D CNN, and regressing the depth. Since 3D CNNs
usually consume considerable time and GPU memory, some methods [21] downsample
the input during feature extraction and compute the cost volume and depth map at low
resolution. However, providing the depth map at low resolution may affect the accuracy
since low-resolution depth maps lose much of the original information. Thus, the quality
of the reconstructed point cloud is reduced.

To reduce memory consumption, some researchers have separated the memory require-
ments from the depth range and processed the cost volume sequentially at an additional
runtime cost [14,22]. Apparently, increasing runtime for lower GPU memory consumption
is not reasonable for efficient dense reconstruction. Another research direction [12,13] for
the lightweight MVS method is to predict a high-resolution depth map from coarse to fine
using a cascaded 3D cost volume. However, due to the limitation of 3D convolution, a
satisfactory balance of overall reconstruction quality and computational complexity cannot
be achieved. In summary, most learning-based MVS methods still experience high memory
and computational costs when constructing and adjusting cost volumes, making it difficult
to balance computational complexity and overall reconstruction quality.

To address the above problems, PatchmatchNet [23] and IterMVS [24] are proposed to
solve the challenge of simultaneously maintaining low computational complexity and excel-
lent overall quality. PatchmatchNet extends PatchMatch’s traditional propagation [5] and
cost evaluation steps with adaptive aggregation, which improves accuracy and efficiency.
Although PatchmatchNet has made significant progress, the F-scores on the Tanks and Tem-
ples benchmark and real-world applications show that its generalization performance is
limited. IterMVS [24] retains PatchMatchNet’s initialization and uses the iterative structure
of RAFT [25] in optical flow estimation. IterMVS [24] can achieve a better generalization
performance while maintaining fast inference speed and low memory consumption and is
the most advanced and efficient MVS method. However, these methods still have room
for improvement.

As shown in Figure 1, the details of the scene reconstructed by the existing efficient
methods in the complex environment are not sufficiently satisfactory. Specifically, there
are three important issues that have been overlooked. First, most efficient methods [23,26]
rely too much on attention mechanisms, resulting in limited generalization performance.
Second, many efficient approaches [21,23,24] only handle features at a single scale to lower
the time complexity and space complexity. Thus, having only a small receptive field limits
their ability to reconstruct details at weak and repetitive textures. Third, the efficient MVS
methods [23,24] generate depth maps with unrefined target edges. When handling large-
scale aerial images, this phenomenon is more obvious. The unrefined edges lead to more
noise in the corresponding local point cloud, affecting the quality of the final reconstructed
point cloud.
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(a) IterMVS (b) Details of IterMVS

(c) Ours (d) Details of ours

Figure 1. Comparison of point clouds on the BlendedMVS validation set. The scene is generated
from aerial images captured by drones, and the IterMVS [24] point cloud is unrefined in terms of
details such as eaves, while our point cloud is more explicit.

To address these three issues, we propose a high-efficiency multi-view stereo method
named EMO-MVS that aims to significantly improve the generalization performance. Our
comparison with current state-of-the-art methods is shown in Figure 2. In detail, EMO-MVS
mainly includes three core components. First, we propose an iterative variable optimizer
with a modified Conv-LSTM module as the core structure and optimize only the correction
amount of the depth information in each iteration. Such a design allows for a more accurate
perception of the amount of change in the depth information during depth optimization,
thus enriching the depth hierarchy. Updating only the amount of variation instead of
directly updating the depth map also better avoids overfitting. Second, modifications
to the multilevel absorption unit are implemented with the aim of fusing the multiscale
information in a more efficient and satisfactory manner. The updated module permits the
expansion of the receptive field, which allows the network to retain its efficiency attributes.
Third, we propose an error-aware enhancement module. The initial depth map is obtained
by the first and second parts above, and then we project the source images with the initial
depth map and calculate the projection error. After that, we optimize the projection error
to obtain the residual depth, and the initial depth plus the residual depth is the final
depth map. The experimental results show that EMO-MVS significantly improves the
generalization performance and is more efficient than most of the previous MVS methods.
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Figure 2. Comparison with the state-of-the-art learning-based MVS methods on Tanks and Temples.
The left graph shows the GPU memory and run-time of various methods (image size 1920 × 1024,
7 views). The right graph is the comparison of the F-score (↑). Where EMO-MVS-light is the version
without Error-Aware enhancement, EMO-MVS is our full version, our approach has the best balance
between computational costs and F-score.

In summary, the contributions of this paper include the following:

• We propose a low-memory consumption, high-accuracy, and fast-inference-speed
EMO-MVS framework for MVS tasks. The previous efficient MVS methods usu-
ally produce unrefined depth maps in large-scale aerial datasets, and EMO-MVS
dramatically alleviates this problem.

• Specifically, we propose three core modules, including an iterative variable estima-
tor that optimizes the depth variation, a multilevel absorption unit for efficient fu-
sion of multiscale information, and an error-aware module that enhances the initial
depth map.

• We validate our method’s effectiveness on the DTU and Tanks and Temples datasets.
The results prove that our approach is the most competitive in terms of balancing
performance and efficiency.

This paper is organized as follows. Section 2 introduces the current research sta-
tus. Section 3 presents the proposed EMO-MVS model in detail. Section 4 conducts the
experimental results and corresponding analysis. Section 5 summarizes our work.

2. Related Work
2.1. Conventional MVS

Conventional MVS methods have been widely used in many fields, such as robotics [27]
and 3D maps [28]. Based on the scene representations, conventional MVS methods can be
divided into three categories: voxel-based [29–31], point-based [7,32–34], and depth map-
based [8,10,16,35–37]. Voxel-based methods estimate the relationship between each voxel
and the surface, but they consume too much memory. Point-cloud-based methods directly
process 3D points to densify the results iteratively, but the algorithm parallelism is not
satisfactory. Depth map reconstruction methods use only one reference and a few source
images for single depth map estimation. Point clouds can be generated by using depth map
fusion, and the mesh can be reconstructed even further. Compared with the direct operation
in three-dimensional space, this kind of mapping method from two-dimensional images
to three-dimensional space has significant advantages in terms of flexibility and compu-
tational cost. However, although the conventional methods have achieved impressive
results, they consume considerable computational resources and have limited effectiveness
in complex scenarios.
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2.2. Learning-Based MVS

Conventional methods have difficulties in estimating depth accurately in low-textured
surfaces and under complex lighting environments. Recently, learning-based solutions [16]
have addressed these issues and further enhanced the reconstruction quality. MVSNet [11]
first proposes a differentiable homography and leverages the 3D cost volume in a learning
pipeline; it also aggregates contextual information through a 3D convolutional network.
However, its high computational cost and high memory consumption limit its ability to
reconstruct large scenes. To construct an efficient and lightweight MVS pipeline, most
researchers mainly prefer a cascade structure [13,38], which solves the MVS problem in
a coarse-to-fine manner assuming decreasing depth hypotheses along the reference cam-
era frustum at each stage. However, the cascade approaches have difficulties recovering
details from errors introduced by coarse resolution. To this end, R-MVSNet and D2HC-
MVSNet [14,22] use an RNN module to regularize the 2D cost maps along the depth
direction, which is equivalent to sequentially processing the cost volume. This opera-
tion significantly reduces memory consumption but correspondingly greatly increases the
runtime. Overall, devising approaches that simultaneously achieve fast inference speed,
low memory consumption, and high overall reconstruction quality has always been a
challenging problem. On the other hand, some methods [39,40] that ignore computational
resource consumption and only emphasize performance have begun to consume increasing
computational resources. However, the improvement in terms of accuracy and generaliz-
ability is not apparent. Since the performance improvement has encountered a bottleneck,
it is currently more urgent to improve the running speed and memory utilization efficiency
while maintaining high accuracy.

PatchmatchNet [23] extends the traditional propagation and cost evaluation steps in
PatchMatch [5] with an adaptive aggregation method and achieves satisfactory results in
terms of the balance between computational complexity and overall reconstruction quality.
Although PatchmatchNet has made encouraging advancements, its generalization perfor-
mance is still inadequate for some specific cases, which means that its application expansion
in diverse real-world scenarios is also limited. IterMVS [24] takes advantages of Patchmatch-
Net and uses the iterative structure that has proven effective in stereo matching to achieve
better generalization performance. However, a higher level of generalization performance
is required in practical applications, especially when processing aerial photography images
that contain large-scale scenes, which require a very excellent generalization performance.

Currently, the main reasons affecting the generalization performance of efficient MVS
methods include overly simple information optimization processing mechanisms, small
perceptual fields, and depth maps with unrefined target edges. In this paper, our iterative
variable optimizer uses a modified Conv-LSTM structure with a strategy that optimizes the
amount of depth variation reasonably and satisfactorily, and the multilevel absorption unit
expands the receptive field with high computational efficiency. Therefore, our EMO-MVS
generates depth maps with a more distinct depth hierarchy. On the other hand, the accuracy
and completeness of the point cloud are significantly improved because our error-aware
enhancement adequately combines the initial depth map, the projection error between
views, and the original image with a large amount of high-frequency information.

3. Method
3.1. Overview

EMO-MVS estimates the depth maps from multiple overlapping RGB images. Specifi-
cally, our method accepts one reference image I0 and N-1 source images {Ii}N−1

i=1 as input
and then obtains the depth map of the reference image. First, EMO-MVS constructs a
correlation volume and an initial hidden state using the features extracted by FPN. Second,
the above results are input into the first-order implicit optimizer at each iteration; this
optimizer consists of our modified Conv-LSTM unit, which estimates information about the
change in the depth values. In the first-order implicit optimizer, we also use a multilevel
absorption unit to fuse the output states of the modified Conv-LSTM at three scales. After
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optimization, the initial depth map is obtained. Finally, the initial depth map is enhanced
by optimizing the pixel error of the geometric projection transformation to obtain the final
depth map. Our main structure is shown in Figure 3.
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Figure 3. EMO-MVS architecture. EMO-MVS first extracts features via an FPN. Then, the initial-
ization depth (depthinitial) is obtained by using the initialization module, and the iterative variable
optimizer optimizes the initialization depth (depthinitial). Inside the iterative variable optimizer, we
use multilevel absorption units to aggregate the multiscale information, and after several optimiza-
tion iterations, we obtain the initial depth map. Finally, we input the initial depth map into our
error-aware enhancement module to obtain the final depth map.

3.2. Feature Extractor and Initialization

Feature Extractor: The FPN (Feature Pyramid Network) has been proven to have excellent
feature extraction results in many visual tasks. Given N input images of size W × H, we
adopt I0 and {Ii}N−1

i=1 to denote the reference image and the source images. Then, we adopt
a feature pyramid network (FPN) for feature extraction of the input reference image and
the source images. The feature extraction module generates feature maps at three scales Fl ,
where l = 1, 2, 3, and the channel is 16, 32, 64, respectively.
Correlation Volume: To find the dense correspondence between different views, we use
the extracted features for de-homogenization [11], following most learning-based MVS
methods, we warp the source features into front-to-parallel planes. Specifically, for a pixel p
in the reference view and the j-th depth hypothesis, dj:=dj(p) with known intrinsic {K}N−1

i=0
and relative transformations {R0,i|T0,i}N−1

i=1 between reference view 0 and source view i, we
can compute the corresponding pixel pi,j:=pi(dj) in the source view as:

pi,j = Ki.(R0.i.(K−1
0 .p.dj) + T0,i), (1)

After de-homogenization, we obtain the feature Fi of the source image in the reference
image coordinate frame, and we use Fi and F0 (which are features of the reference image)
to calculate the correlation volume and matching similarity [23,24].
Initialization: To initialize the hidden state h of Conv-LSTM, before the iterative update,
we use the previously-obtained matching similarity and correlation volume to generate
the initial hidden state H and depthinitial [23,24], which are the inputs to the iterative
variable optimizer.

3.3. Iterative Variable Optimizer

In other related fields that utilize 3D vision, iterative structures have proven to be
quite effective methods [25,41], and most approaches use the GRU as their iterative update
unit. However, in our research, Conv-LSTM cells with a finer gate structure have better
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performance. The GRU-based optimizer has only one hidden state h transfer between
iterations, while the LSTM-based optimizer has two (h and C). Since the updated matrix
of the depth map is coupled with the hidden state h, introducing an extra hidden state C
to decouple the update matrix and the hidden state h can retain more effective semantic
information across iterations.

To obtain a strong Conv-LSTM cell, our main improvements to the current Conv-
LSTM are as follows: (1) We use a fusion head to simultaneously receive multiscale or
single-scale information as needed. This approach allows us to use multiscale information
more flexibly when passing through the subsequent multilevel absorbing units. (2) We use
dilated convolutions instead of regular convolutions to obtain a larger receptive field, which
helps recover challenging details. (3) By removing the bias from the original Conv-LSTM,
we avoid redundant computation. Our modified Conv-LSTM is also comparable to the
GRU in terms of efficiency.

In detail, we input the initialized hidden state H into our modified Conv-LSTM
module, and our Conv-LSTM is as follows:

Xlist = Cat([x1 . . . . . . xn]), (2)

fk = σ(DilateConv f ([hk−1, Xlistk], W f )), (3)

ik = σ(DilateConvi([hk−1, Xlistk], Wi)), (4)

gk = tanh(σ(DilateConvg([hk−1, Xlistk], Wg))), (5)

Ck = Ck−1 � fk + ik � gk, (6)

ok = σ(DilateConvo([hk−1, Xlistk], Wo)), (7)

hk = ok � tanh(Ck), (8)

where σ is the sigmoid nonlinearity, and � is the Hadamard product. The subscript
k (k = 0 . . . . . . K) denotes the index of iterations, hk and Ck are the outputs of the k− th
iteration of our Conv-LSTM module, and the correlation volume and the matching sim-
ilarity are integrated to obtain xn. To simultaneously receive single-scale or multiscale
information, we aggregate the input information as follows: Xlist = Cat([x1 . . . . . . xn]).

In addition, each update of our Conv-LSTM hidden state only contains information
about the depth change amount rather than the entire depth map. This design avoids the
overfitting that may occur as the number of iterations increases. Our final hidden state
h f inal

k for depth prediction at each iteration is calculated as follows:

h f inal
i =

k

∑
i=1

hi. (9)

We utilize the output h f inal
k of the iterative variable optimizer for probability regression

and depth prediction [24] to obtain the depth map depthk of the k-th iteration.

3.4. Multi-Level Absorption Unit

To achieve low memory consumption and high efficiency, some efficient approaches,
such as [24,26], often only incorporate feature information from single-scale processing for
subsequent depth estimation. A broader receptive field in the MVS task enables the net-
work to deliver more precise depth estimations in areas with poor texture details. The most
direct way to expand the receptive field is to use a multiscale fusion strategy. Nonetheless,
multiscale strategies usually incur high computational costs, which affect inference speed
and memory usage more significantly. Accordingly, we design an accurate and efficient
multilevel absorption unit (MAU) that expands the receptive field by interactively absorb-
ing low-scale information through a high-scale Conv-LSTM. MAU effectively balances
accuracy, speed, and memory usage.



Remote Sens. 2022, 14, 6085 8 of 19

Specifically, we downsample the initialized hidden states to obtain the medium-scale
and low-scale hidden states. We also widen our iterative structure to handle the other
two scales of hidden states. In the update stage of multiscale information, the lowest
resolution modified Conv-LSTM units are fused across scales by introducing features of
medium resolution. These medium-resolution modified Conv-LSTM units are fused by
introducing features of low and high resolution, and the highest-resolution units are fused
by introducing features of both medium and low resolution.

The multiscale fusion mechanism is as the following formulas:

Ck
l , hk

l = CLSTMCell(Ck−1
l , hk−1

l , ctx, pool(hk−1
m )), (10)

Ck
m, hk

m = CLSTMCell(Ck−1
m , hk−1

m , ctx, pool(hk−1
h ), interp(hk−1

l )), (11)

Ck
h, hk

h = CLSTMCell(Ck−1
l , hk−1

l , ctx, depthk−1, interp(hk−1
m ), interp(hk−1

l )), (12)

FinalOutput = hk
h, (13)

where l, m, and h denote low, middle, and high resolution, respectively. CLSTMCell is
our modified Conv-LSTM module, and pool and interp denote the downsampling and
upsampling methods, respectively. k is the number of iterations, and ctx is the integration
of the correlation volume and matching similarity. The input to each iteration of our process
uses the output of the previous iteration. For the highest resolution, the module not only
makes use of upsampled middle and low resolution but also accepts the depth map of the
(k− 1)th iteration as input.

A multilevel absorption unit (MAU) can effectively fuse information from multiple
scales due to the cross-pollination of information between hidden states at multiple scales,
and most of the low- and middle-scale information is absorbed by the high-scale hidden
states. On the one hand, since we only output the highest-scale information at the end, the
inference speed and memory usage is almost the same as that when using only single-scale
information. On the other hand, since we avoid the computational cost of multiscale
information fusion for the final output, our computational cost is smaller than that of the
common multiscale fusion method. Therefore, our method is faster than the common
multiscale update module.

3.5. The Structure of Error-Aware Enhancement

Depth maps with unrefined target edges can result in anomalous noise in the final
point cloud during the depth map fusion step [42,43]. The filtering process based on
geometric restrictions can remove a significant portion of the apparent noise, but it still
retains noise near the edge of the target point clouds. Therefore, to improve the accuracy
and completeness of the final point cloud, it is necessary to enhance the initial depth map
generated by the efficient MVS method. Therefore, we propose error-aware enhancement
with the structure shown in Figure 4.
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First, by using inverse-project wrapping, the reconstructed source image can be cal-
culated using the reference image and the initial depth estimate. Then, subtraction is
performed to obtain the error map. Finally, the error map, reference image, and initial
depth map are fused and input into the hourglass network, and the refined depth map
is calculated.

3.5.1. Inverse Projection and Error Calculation

To convert the error of the inaccurate initial depth (Dinitial) into a projection error, we
project the source images Ii into the coordinate system of the reference image I0 by using
the initial depth. Then, we calculate the projection error by using the difference between the
reference image and the new source image produced by the projection. The mathematical
formula is as follows:

p′i = (RiR−1
0 (d(p)K−1

0 − T0) + Ti)Ki, i = {1. . . . . . . N − 1}, (14)

where {K0,Ki}, {R0,Ri}, {T0,Ti} denote the cameras intrinsic rotations and translations of
the reference image and source images, respectively. A point on the reference image is
represented by p, and the new point that p warps to on the source image is indicated
by p′i. The depth value predicted by point p on the initial depth map is denoted by the
notation d(p).

After obtaining the mapping point p′i, we utilize Gi(p′i) to represent the grayscale
value of p′i. The grayscale error between point p and point p′i is then available to us and is
calculated as follows:

Error = Gi(p′i)− G0(p), (15)

ErrorMap = Gi − G0, (16)

where Gi and G0 are the grayscale representations of source image Ii and reference image I0,
respectively. After obtaining the grayscale error Error of a single pixel, we use ErrorMap to
represent the projected error map between the source image Ii and the reference image I0.

To measure the error between all views, we need to calculate the total projection error
for all views, which is obtained by weighting the sum of ErrorMap for all views. We call it
the total error map, and it is denoted by Tmap. The mathematical formula is as follows:

Tmap =
N−1

∑
i=1

Wi(Gi − G0), (17)

Since the source images from different angles have different target overlap areas
relative to the reference image, the weight of each error map in the core error map should
also be different. We propose a simplified version of the two-view matching similarity
Si [23,44,45] for calculating the weight Wi as follows:

Si = 〈Gi.G0〉r + 〈Gi.G0〉g + 〈Gi.G0〉b, (18)

Wi =
Si

∑N−1
j=1 Sj

, (19)

where r,g,b denote the three channels of the original image, and 〈 . 〉 denotes the dot product.

3.5.2. Information Fusion and Optimization

To further enhance the details of the initial depth map Dinitial , we introduce the rich
high-frequency features in the reference image I0 and then fuse this feature information
with the initial depth map Dinitial and the total error map Tmap as follows:

Fusion = Cat(Conv1(Cat(Tmap, I0)), Conv2(Dinitial)). (20)
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Finally, we use the hourglass optimizer to optimize the fusion result Fusion to obtain
the depth residual map Dresiduals, and the final result of the depth map D is computed
as follows:

Dresiduals = Hourglass(Fusion), (21)

D = Dinitial + Dresiduals, (22)

Overall, we apply the projection relationship of geometric mapping between multiple
views to the learning-based optimization module, which incurs small computational costs
while improving the accuracy. In addition, weighting the projection error of each image
in accordance with the variations is implemented through diverse shooting angles, which
improves the generalization performance of our module for various scenarios.

4. Experiments
4.1. Datasets

We tested our experiment on three public datasets. DTU [46] is an indoor dataset
under laboratory conditions that contains 124 scenes with 49 views and 7 illumination
conditions. We adopted the same training, validation, and evaluation split as defined
in [47]. DTU can effectively verify the MVS data fitting ability. BlendedMVS [48] is a
large-scale synthetic dataset that contains 106 training scans and 7 validation scans. Tanks
and Temples [49] is a public benchmark that provides realistic video sequences divided
into intermediate and more challenging advanced sets. This division makes the MVS task
practical for validating the generalization of deep learning methods.

4.2. Implementation Details

To demonstrate the proposed method’s high efficiency, we compare the lightweight
methods without error-aware enhancement to EMO-MVS-light, which is slightly more
efficient than the full version of EMO-MVS. Following common practice [40,50], EMO-MVS
is first trained on the DTU training set and evaluated on the DTU test set; then, it is fine-
tuned on BlendedMVS before being tested on the Tanks and Temples benchmark. We adopt
a resolution of 640× 512 for the input images and set the view number parameter to N = 5
for training on DTU. In the BlendedMVS dataset, we adopt a resolution of 768× 576 for
the input images and set the view number parameter to N = 5 for the training process.
In all of the experiments, to balance computational complexity and overall reconstruction
quality, the number of iterations K is set to 4 during the training stage. In addition, we use
Adam [51] as our optimizer. The learning rate is initially set to 0.001 and is halved every
four epochs. We train a total of 20 epochs, and the batch size is 4 on DTU and 2 on the
BlendedMVS dataset. Our models are trained on a single Nvidia Tesla V100 GPU. Finally,
we predict a depth map for each reference image and fuse the predicted depth map into
the point cloud. We adopt the same parameters for depth map fusion and the same loss
function as in [24].

4.3. Main Results on DTU Dataset
4.3.1. Effect Verification on DTU

We compare conventional and learning-based methods, where learning-based methods
are classified as emphasizing accuracy or efficiency. We set the number of input views to 5
and the resolution to 1160 × 1152. The quantitative results on the DTU evaluation set are
summarized in Table 1, which indicates the excellent performance of our method. Although
Gipuma [8] leads in accuracy and PatchmatchNet [23] achieves completeness, the overall
performance (the average of accuracy and completeness) of our method is significantly
stronger than both.
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Table 1. Quantitative results of reconstruction quality on the DTU evaluation dataset (↓). A and B
are the conventional methods and high-accuracy learning-based methods, respectively. C and D are
high-efficiency learning-based methods. Bold font represents the best.

Method Acc. Comp. Overrall

A Tola 0.342 1.190 0.766
Gipuma 0.283 0.873 0.578

B

MVSNet 0.396 0.527 0.462
R-MVSNet 0.383 0.452 0.417
CIDER 0.417 0.437 0.427
P-MVSNet 0.406 0.434 0.420
CasMVSNet 0.325 0.385 0.355
D2HC-RMVSNet 0.395 0.378 0.386
CVP-MVSNet 0.296 0.406 0.351
AA-RMVSNet 0.376 0.339 0.357
Vis-MVSNet 0.369 0.361 0.365
EPP-MVSNet 0.413 0.296 0.355

C
Fast-MVSNet 0.336 0.403 0.370
PatchMatchNet 0.427 0.277 0.352
IterMVS 0.373 0.354 0.363

D EMO-MVS-light (ours) 0.372 0.345 0.358
EMO-MVS (ours) 0.360 0.328 0.344

Our depth map estimation for a reflective sample is shown in Figure 5; it demonstrates
that our method is barely disturbed by reflections and that we have better edge effects. Our
point reconstruction for a low-textured sample is shown in Figure 6. The red boxes reflect
the higher accuracy of our method for weak textures, and the colors of the reconstructed
point clouds are closer to the ground truth. In addition, the blue box reflects the higher
completeness of our point cloud in the areas where the structured light camera does not
provide ground truth.

Original image PatchMatchNet IterMVS Ours

Figure 5. Depth estimation of scan1 on DTU. Our method has a clear advantage in reflections and
edges, as shown in the red boxes.
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(a) PatchMatchNet (b) IterMVS

(c) Ours (d) Ground-Truth

Figure 6. Point reconstruction of scan13 on DTU evaluation dataset.

4.3.2. Efficiency Verification on DTU

The core of the high-efficiency MVS method is to maintain fast inference speed and
low memory consumption without reducing overall reconstruction quality as much as
possible. All tests were performed on an RTX2080ti GPU. Our experiments compare the
inference speed and memory usage of various methods under the same environmental
conditions. As shown in Table 2, our lightweight approach achieves excellent overall results
while maintaining excellent inference speed and the lowest memory consumption.

Table 2. Comparison of memory consumption and runtime on DTU evaluation dataset (↓) [46]. Bold
font represents the best.

Method Input Size Memory (GB) Time (s) Acc. (mm) Comp. (mm) Overall (mm)

UCS-Net 1600 × 1184 7.76 0.964 0.340 0.349 0.345
CVP-MVSNet 1600 × 1200 9.86 1.912 0.296 0.406 0.351
CasMVSNet 1600 × 1200 9.58 0.796 0.325 0.385 0.355
Fast-MVSNet 1600 × 1200 6.05 0.642 0.331 0.401 0.366
PatchmatchNet 1600 × 1200 2.68 0.345 0.427 0.277 0.352
IterMVS 1600 × 1152 2.26 0.278 0.373 0.354 0.363
EMO-MVS-light(ours) 1600 × 1152 2.24 0.281 0.372 0.345 0.358
EMO-MVS(ours) 1600 × 1152 3.83 0.446 0.360 0.328 0.344

Furthermore, our full version obtains the best overall results but still maintains efficient
runtime and memory consumption levels. Compared to UCSNet [52], our runtime and
memory consumption are less than half of those of UCSNet, which indicates that our
error-aware enhancement significantly enhances the initial depth map while incurring a
small computational cost.

4.4. Main Results on the Tanks and Temples Dataset

Since the Tanks and Temples [49] dataset has many complex outdoor scenes and
variable lighting environments, the validation results on this dataset can fully reflect the
generalization performance of learning-based MVS methods. As with most methods, we set
the number of input views to 7 and the resolution to 1920 × 1080. The camera parameters
and depth ranges are estimated with OpenMVG [53], and the corresponding quantitative
results on both the intermediate and advanced sets are reported in Table 3. Compared to
IterMVS [24], our lightweight method is significantly better (from 56.94 to 57.91) in terms
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of generalization performance, and it benefits from our highly accurate iterative variable
optimizer and efficient fusion strategy with its enlarged receptive field.

Table 3. Quantitative results of different methods on the Tanks and Temples benchmark. ’Mean’
refers to the mean F-score of all scenes (↑). Bold font represents the best.

Intermediate Dataset Advanced Dataset

F-Score Fam. Franc. Horse Light. M60 Pan. Play. Train Mean Audi. Ballr. Courtr. Museum Palace Temple Mean

OpenMVS 71.69 51.12 42.76 58.98 54.72 56.17 59.77 45.69 55.11 24.49 37.39 38.21 47.48 27.25 31.79 34.43

MVSNet 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 43.48 - - - - - - -
R-MVSNet 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 48.40 12.55 29.09 25.06 38.68 19.14 24.96 24.91
CIDER 56.79 32.39 29.89 54.67 53.46 53.51 50.48 42.85 46.76 12.77 24.94 25.01 33.64 19.18 23.15 23.12
Point-MVSNet 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06 48.27 - - - - - - -
CasMVSNet 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 56.84 19.81 38.46 29.10 43.87 27.36 28.11 31.12
UCS-Net 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 54.83 - - - - - - -
CVP-MVSNet 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 54.03 - - - - - - -
D2HC-RMVSNet 74.69 56.04 49.42 60.08 59.81 59.61 60.04 53.92 59.20 - - - - - - -
Fast-MVSNet 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91 47.39 - - - - - - -
PatchMatchNet 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 53.15 23.69 37.73 30.04 41.80 28.31 32.29 32.31
MVSTR 76.92 59.82 50.16 56.73 56.53 51.22 56.58 47.48 56.93 22.83 39.04 33.87 45.46 27.95 27.97 32.85
PatchMatch-RL 60.37 43.26 36.43 56.27 57.30 53.43 59.85 47.61 51.81 24.28 40.25 35.87 44.13 22.43 23.73 31.78
RayMVSNet 78.56 61.96 45.48 57.58 61.01 59.76 59.20 52.32 59.49 - - - - - - -
IterMVS 76.12 55.80 50.53 56.05 57.68 52.62 55.70 50.99 56.94 25.90 38.41 31.16 44.83 29.59 35.15 34.17
EMO-MVS-light (ours) 76.07 55.09 51.81 56.10 60.23 56.27 54.33 53.35 57.91 25.88 38.90 31.94 44.48 29.94 36.72 34.65
EMO-MVS (ours) 77.85 59.69 54.73 57.69 58.62 56.40 56.19 54.88 59.51 24.42 40.71 33.62 46.40 30.38 38.35 35.65

In addition, the full version of our method even surpasses the latest nonefficient
method, RayMVSNet [54], in terms of generalization performance while still maintaining
fast inference speed and low memory consumption. We report a depth map comparison
in a large and complex outdoor scene, as shown in Figure 7. Our approach has sharper
edges for most objects and is more robust in terms of depth estimation for small objects,
which are susceptible to interference. Our depth map is also more explicit at the stone
pillars and stairs, which shows that our method can handle repeated textures better. Such
obvious advantages show that the error-aware enhancement fully exploits and optimizes
the projection error, significantly improving the generalization performance.

Original image PatchMatchNet IterMVS Ours

Figure 7. Depth estimation of Temple on Tanks and Temples [49].
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4.5. Ablation Study
4.5.1. Core Modules

We conduct an extensive ablation study to validate the enhancements that the pro-
posed modules contribute. Here, we use the DTU training set to train our method, and all
tests were performed on the DTU evaluation set, as shown in Table 4.

Table 4. Ablation Study on DTU dataset [46] (↓). Our baseline consists of the depth initialization
in Figure 3, followed by a single-scale GRU iterative optimization operator. Bold font represents
the best.

NO. Baseline Iterative Variable Optimizer Multi-Level Absorption Error-Aware Acc. Comp. Overall

1
√

0.373 0.354 0.363
2

√
0.369 0.352 0.360

3
√ √

0.370 0.347 0.358
4

√ √ √
0.360 0.328 0.344

We can summarize the following conclusions: First, compared with No. 1 and No. 2,
the iterative variable optimizer significantly improves precision and completeness com-
pared to the baseline, which shows the effectiveness of the iterative variable optimizer.
Second, compared with No. 3 and No. 4, a single-scale strategy, multi-level absorbing units
improve the completeness of reconstruction while maintaining similar accuracy, which
indicates that expanding the receptive field can better restore the details at weak textures,
thus making up for the integrity of the point cloud. Finally, compared with No. 4 and
No. 5, we report the effect with and without the error-aware enhancement module, which
shows the validity of the error-aware enhancement module.

4.5.2. Comparison of Details

Multi-level absorption unit and Common multiscale fusion unit: To demonstrate
the excellent performance and fast-inference-speed of the multilevel absorption unit so-
lution, we compare it with the common multiscale solutions. The results are shown in
Table 5, and our efficiency improves by 30% compared to common multiscale fusion. The
common multiscale scheme has a slight advantage in terms of completeness, but our overall
performance is still better. To be fair, the Fusion module of the common multiscale approach
uses only a simple 2D convolution, and the mathematical formula is as follows:

Ck
l , hk

l = CLSTMCell(Ck−1
l , hk−1

l , ctx), (23)

Ck
m, hk

m = CLSTMCell(Ck−1
m , hk−1

m , ctx), (24)

Ck
h, hk

h = CLSTMCell(Ck−1
l , hk−1

l , ctx), (25)

FinalOutput = Fusion(hk
l , hk

m, hk
h). (26)

Before the error-aware enhancement, the reconstruction accuracy mainly depends on
the accuracy of the highest-scale Conv-LSTM update unit for updating the depth change
amount. The reconstruction’s better completeness depends on incorporating more low-
scale information in the optimized output. Incorporating more low-scale information
means better perceptual field expansion and, thus, better performance in weak textured
regions. We think the reason for the lack of satisfactory completeness is that before the
error-aware enhancement, the reconstruction accuracy mainly depends on the accuracy
of the highest-scale Conv-LSTM update unit for updating the depth change amount. The
reconstruction’s better completeness depends on incorporating more low-scale information
in the optimized output. Incorporating more low-scale information means better perceptual
field expansion and, thus, better performance in weak textured regions.
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Table 5. Comparison of two multi-scale fusion approaches on DTU [46] dataset (↓).

Method Acc. (mm) Comp. (mm) Overall (mm) Runtime (s)

Common multiscale fusion 0.380 0.339 0.359 0.412
Multi-level absorption unit 0.370 0.347 0.358 0.281

The method for generating the total error map: For the error-aware enhancement, we note
that different ways of computing the total error map can produce significantly different
results, especially for the generalization performance. In our experimental comparison,
we consider the DTU dataset, where all environments are indoor scenes, and the Tanks
and Temples dataset, which contains complex outdoor scenes. The results are shown in
Table 6. The weighted summation shows a slight improvement in the overall metric on
the DTU dataset, and it contributes a significant improvement on the Tanks and Temples
dataset. We speculate that this result is due to the complex lighting in the outdoor scene and
the matching interference of other outdoor objects (e.g., buildings, tree branches), which
differ in each view. Therefore, the error map generated by each source view should have a
different impact on the final total error map.

Table 6. Comparison of two ways to calculate the total error map.

Method
DTU (↓) Tanks and Temples (↑)

Acc. (mm) Comp. (mm) Overall (mm) F-Score (mean)

Summation 0.361 0.332 0.346 58.80
Weighted Summation 0.360 0.328 0.344 59.51

Comparison of depth estimates using the aerial photography dataset: To demonstrate
the advantages of our method in high-altitude aerial scenes, we compare the depth maps
with IterMVS [24] on the BlendedMVS [48] validation set. To demonstrate the generalization
performance of our method, all methods are trained only on the DTU dataset. The results
are shown in Figure 8. Our method has a better depth hierarchy due to the larger perceptual
field obtained by the multiscale strategy, and because it benefits from optimizing the
projection error with the error-aware module, our depth map has sharper object edges.

(a) Reference Image (b) IterMVS (c) Ours

Figure 8. Comparison of depth estimation on the BlendedMVS validation set. Our depth map is
significantly finer than IterMVS [24] in terms of target edge effect and depth level.



Remote Sens. 2022, 14, 6085 16 of 19

Comparison with and without error-aware enhancement: To reflect the effect of enhance-
ment, we compare EMO-MVS and EMO-MVS-light (without enhancement) by visualizing
scan4 in DTU. As shown in Figure 9, EMO-MVS is more robust to edge depth estimation,
while some parts are more susceptible to matching interference. In addition, EMO-MVS
produces a depth map with more sharpened edges in all details. These results reflect the
outstanding contribution of enhancement to improving the edge effect.

Original image EMO-MVS-light EMO-MVS

Figure 9. Comparison with and without Error-Aware enhancement.

5. Conclusions

In this paper, to balance between accuracy and efficiency, we propose a novel MVS
method, EMO-MVS. First, we use an RNN-based iterative structure to estimate the update
matrix of depth in each iteration and accumulates to get the depth map. In the process,
to expand the receptive field while maintaining high efficiency, we adopt an absorbing
multiscale fusion strategy where the final hidden state is only output at the highest scale
to increase inference speed and save memory consumption. In addition, we adopt the
perceptual projection error method to refine the depth map, which dramatically improves
the performance at a lower computational cost. Our error-aware enhancement module can
be easily integrated into other existing MVS frameworks. Finally, the experimental results
prove that our method is the most competitive one among the current low-memory and
high-efficiency methods. In the future, we plan to explore the integration of our modules
into stereo matching or other related fields.
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