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Abstract: Dust emitted from arid and semi-arid areas of China is a main contributor to the global
atmospheric aerosols. However, the long-term spatial and temporal variations in dust concentrations
in China is still unknown. Here, we simulated the spatial and temporal variations in spring dust
concentrations in China from 2000 to 2020 using the Weather Research and Forecasting model coupled
with Chemistry (WRF-Chem). The results showed that the configured WRF-Chem model in this study
reproduced the spatial patterns and temporal variations of dust aerosols. The annual mean spring
dust concentration at the country level was 26.95 g kg−1-dry air and showed a slightly increasing
trend in China during 2000–2020. There were clear spatial differences and inter-annual variations in
dust concentrations. The dust concentration generally decreased from the dust source regions of the
northwest to the southeast regions of China. Obvious increasing and decreasing trends in spring dust
concentrations were identified in the regions of northern Xinjiang and Gansu and in the regions of
southern Xinjiang and western Inner Mongolia, respectively. In May, the dust concentration showed
an increasing trend in most regions of northwestern China. This provided the basic information for
insight into the long-term spatial and temporal variations in spring dust concentrations in China.

Keywords: dust emission; dust aerosol; dust concentration; WRF-Chem; China

1. Introduction

Dust is one of the main constituents of atmospheric aerosols [1]. Many studies have
shown that 1000 to 3000 million tons (Mt) of dust aerosols in the atmosphere each year come
from dust emissions from arid and semi-arid regions [2–4]. This dust can be divided into
natural dust and anthropogenic dust, according to the different types of dust sources [5–11].
Natural dust emissions are mainly generated from bare surfaces such as deserts, including
the Gobi Desert [10]. Dust aerosols can impact the climate through their direct effects on
radiative forcing and indirect effects on clouds and precipitation [1,12,13]. The deposition
of dust aerosols onto the land and oceans plays an important role in biogeochemical cycles,
both in continental and marine ecosystems [4,14–16]. In addition, dust aerosol is also a
main contributor to air pollution [17,18] and poses a threat to human health [4,19].

To accurately assess the impact of dust aerosols on the climate and the ecological
environment, it is essential to quantify the spatial and temporal distributions of dust
aerosols [20]. Some studies have assessed the spatial and temporal variations of dust events
by using meteorological observations [21–25]. To accurately quantify the distribution of
dust sources, the spatial and temporal variations of aerosol optical depth (AOD), or dust
emissions, were estimated based on remote sensing retrievals and dust emission modules
coupled with earth system models [26–29].

Remote Sens. 2022, 14, 6090. https://doi.org/10.3390/rs14236090 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14236090
https://doi.org/10.3390/rs14236090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0777-3116
https://orcid.org/0000-0002-2900-1651
https://doi.org/10.3390/rs14236090
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14236090?type=check_update&version=1


Remote Sens. 2022, 14, 6090 2 of 13

The dust concentration in the atmosphere is one of the important indicators used
to quantify health exposure and estimate dust transport and deposition [30–32]. Several
studies have used the ambient PM10 (particulate matter in aerodynamic diameter ≤10 µm)
concentration to represent the dust concentration, and investigated the spatial distribution
and temporal variation of dust concentrations in dust source regions, such as Xinjiang
Province and western Inner Mongolia, using environmental monitoring records [33–35].
Li and Zhang investigated seasonal variations from December 2010 to November 2011
using the observed hourly dust concentrations in the Horqin Sandy Land area of China [3].
Wang et al. estimated the dust concentration based on lidar remote sensing [36]. However,
these methods are difficult to use for large areas due to the limited number of observation
stations. Therefore, some studies estimated spatial distributions of dust concentrations over
a large area by using air quality models, including the Weather Research and Forecasting
model coupled with Chemistry (WRF-Chem) [37–40].

Although air quality models can reproduce the dust concentrations over a large region,
most of these studies mainly concentrated on specific dust episodes (e.g., Rizza et al., 2017;
Karagulian et al., 2019; Karegar et al., 2019) [41–43] or a short-term simulations
(e.g., Shahid et al., 2021) [40]. China is one of the major contributors to global dust aerosols [27,44].
Around half of the world’s dust aerosols come from northwest China [45,46]. However,
the quantification of spatial and temporal dynamics in dust concentrations, especially
regarding long-term variations, were still limited in China.

Therefore, it is necessary to estimate the long-term variations of dust concentrations
in China. To understand the long-term changes of dust concentrations in China, we first
evaluated the performance of the WRF-Chem model in the simulation of dust aerosols by
using meteorological data from the National Climatic Data Center (NCDC) of the National
Oceanic and Atmospheric Administration (NOAA) and then simulated the long-term dust
concentrations in China over the past 20 years.

2. Materials and Methods
2.1. Model Setup and Input Data

WRF-Chem is an online coupled atmospheric chemistry transport model that can
simultaneously simulate meteorological and chemical processes in the atmosphere [44].
A single domain which covered nearly the entire East Asia region (Figure 1) was used to
simulate hourly dust concentrations. Table 1 shows the domain configuration and the main
parametrizations of physics and chemistry. The domain had 193 × 163 grid points, with a
horizontal resolution of 27 km × 27 km. The central point of the simulation domain was
105.0◦E, 37.5◦N. All the points were projected onto a Lambert conformal grid. There were
28 layers from the surface to 100 hPa in the vertical dimension.

The parameterization scheme of the model has an important impact on the simulation
of meteorological fields (e.g., temperature, wind speed and direction, radiation) as well as
physicochemical reactions and aerosol formation. Therefore, we localized the parameters
of the model before performing the simulation. The major physics parameterizations of
the WRF-Chem model include the Lin (Purdue) method [47], the New Goddard longwave
and shortwave radiation scheme [48], the Noah land surface model [49], the MYJ planetary
boundary layer [50], and the Betts–Miller–Janjić (BMJ) cumulus scheme [50]. The Goddard
Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model [51] was
adopted to calculate the dust emission and concentrations in this study. Dust simulations
were conducted from 18 February to 31 May, 2000–2020. The simulation of the first ten days
for each year were discarded as spin-up (18–28 February). We initialized the meteorological
conditions of WRF-Chem using the National Center for Environmental Prediction (NCEP)
Final Analysis (FNL) data. The FNL meteorological inputs have a 1◦ × 1◦ horizontal
resolution, 26 pressure levels from 1000 hPa to 10 hPa, and are available every six hours.
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Figure 1. The simulation domain of the WRF-Chem model and the meteorological (red triangles) 
and air quality (black circles) observation sites. 

Table 1. The WRF-Chem model configurations. 

Domain Configuration Physics and Dust Parameterizations 
Number of grids in east-north 193 Microphysics Lin (Purdue) 

Number of grids in north-south 163 Longwave radiation New Goddard 
Vertical layers 28 Shortwave radiation New Goddard 

Horizontal resolution 27 km Land surface Noah 
Map projection Lambert Planetary boundary layer MYJ 
Central latitude 37.5°N Cumulus cloud BMJ 

Central longitude 105.0°E Dust emission and aerosol 
scheme GOCART 
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Figure 1. The simulation domain of the WRF-Chem model and the meteorological (red triangles) and
air quality (black circles) observation sites.

Table 1. The WRF-Chem model configurations.

Domain Configuration Physics and Dust Parameterizations
Number of grids in east-north 193 Microphysics Lin (Purdue)

Number of grids in north-south 163 Longwave radiation New Goddard
Vertical layers 28 Shortwave radiation New Goddard

Horizontal resolution 27 km Land surface Noah
Map projection Lambert Planetary boundary layer MYJ
Central latitude 37.5◦N Cumulus cloud BMJ

Central longitude 105.0◦E Dust emission and
aerosol scheme GOCART

2.2. Observation Data and Model Evaluation

Meteorological conditions can directly affect the accuracy of dust process simulations.
Here, we used hourly observed data of the 2 m air temperature (T2), the wind speed at a
height of 10 m (WS), wind direction at a 10 m height (WD), and the precipitation (PCP)
to verify the findings of the WRF-Chem model. The hourly meteorological data at 416
observational sites were obtained from the NCDC of NOAA.

Most of the PM10 was caused by windblown dust in the dust source areas [44,52].
We evaluated the simulated PM10 concentrations simulated by WRF-Chem that did not
consider the anthropogenic emissions by using the hourly PM10 measurements at 205
national air quality monitoring stations in northwest China, obtained from the Ministry
of Ecology and Environment of China (Figure 1). In addition, we also compared the
aerosol optical depth (AOD) simulated by WRF-Chem with the AOD products of Moderate-
Resolution Imaging Spectroradiometer (MODIS) and the earth system modeling and data
assimilation of the Modern-Era Retrospective Analysis for Research and Applications
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(MERRA2) from the spring of 2015. The spatial resolution of the monthly AOD of MODIS
and MERRA2 are 1◦ × 1◦ and 0.625◦ × 0.5◦, respectively.

The statistical metrics of mean bias (MB), normalized mean error (NME), normalized
mean bias (NMB), root mean square error (RMSE), and correlation coefficient (R) were
selected to quantify the performance of the WRF-Chem model [44,53]. The detailed calcula-
tion method of these metrics can be referred to in the work of Zhang et al. (2006) [53]. These
metrics have been widely used to evaluate the performance of the WRF-Chem model [44].

3. Results
3.1. Performance of the WRF-Chem Model

Table 2 shows the statistical summary of the WRF-Chem model performance regarding
simulated spring meteorological variables and PM10 concentrations during 2000–2020.
Although the WRF-Chem model underestimated the air temperature, wind speed, wind
direction, and precipitation, to a certain extent, it was able to reproduce well the nature
of temporal changes in the observed and simulated meteorological parameters (Table 2).
The MB, NMB, and R of the air temperature were −0.76 ◦C, −6%, and 1.0, respectively,
indicating that among several meteorological variables, the temperature simulations were
the closest to those in the observations. For the PM10 concentrations, the MB, NMB, and R
values were 5.68 µg m−3, 5%, and 0.4, respectively, which also indicated that the WRF-Chem
model can simulate the dust aerosol concentrations well. Figure 2 shows the comparison
of simulated and observed PM10 and PM2.5 concentrations in four cities selected in the
dust source area of northwest China from 2015 to 2020. It can be seen that although the
WRF-Chem model underestimated the PM10 and PM2.5 concentrations, to a certain extent,
in Hohhot, it can generally well simulate the temporal variations in concentrations of PM10
and PM2.5. This is mainly due to the fact that we did not consider the anthropogenic
emission in WRF-Chem model.

Table 2. Performance of the WRF-Chem model in simulations for meteorological variables and PM10

concentrations.

Variables OBS SIM MB NMB (%) NME (%) RMSE R

TEM (°C) 13.53 12.78 −0.76 −6 12 2.67 1.0
WD (◦) 204.07 180.62 −23.45 −11 19 77.17 0.3

WS (m s−1) 4.04 3.83 −0.21 −5 22 1.11 0.4
PRE (mm) 1.31 0.19 −1.12 −86 95 5.38 0.3

PM2.5 (µg m−3) 38.66 25.39 −13.28 −34 65 36.42 0.3
PM10 (µg m−3) 109.69 115.37 5.68 5 76 121.07 0.4

In order to evaluate the simulation performance of the WRF-Chem model for the size
variations in the dust aerosols, we compared the remote sensing AOD with the model
simulated AOD (Figure 3). Figure 3 shows an example of the spatial distributions of spring
AOD generated from MODIS (Figure 3a,d), MERRA2 (Figure 3b,e), and the WRF-Chem
model (Figure 3c,f) in 2015 and 2019. Overall, the AOD simulated by the WRF-Chem model
had a similar spatial pattern to the AOD of MODIS and MERRA2 in the dust source region
of northwest China. The AOD of MODIS was generally higher than that of the MERRA2
and the WRF-Chem model simulation, especially in eastern China. The main reason for the
overestimation is that MODIS retrieved all types of aerosols, such as black carbon, sulfate,
and anthropogenic organic carbon, which were not included in the current WRF-Chem
model or MERRA2. The comparison of the simulation results with data from MERRA2
shows that the simulated AOD has a similar distribution pattern to that of MERRA2,
indicating that the WRF-Chem model can capture the spatial variations of the dust AOD.
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Figure 2. Comparison of monthly PM10 and PM2.5 concentrations between the spring simulations
(SIM) and observations (OBS) from 2015 to 2020 in selected cities of Hohhot (a), Baotou (b), Erdos (c),
and Yulin (d).

3.2. Inter-Annual Variations of Dust Concentrations

Figure 4 shows the inter-annual variations of dust concentrations in March, April,
May, and the entire spring, during 2000−2020 within China, at the national scale. The
annual mean dust concentrations at the national scale in China were 16.89 µg kg−1-dry
air (µg kg−1), 29.90 µg kg−1, 34.13 µg kg−1, and 26.95 µg kg−1, respectively. Overall, the
spring dust concentration showed a slight upward trend of 0.167 µg kg−1 yr−1 (R2 = 0.088,
P = 0.19) over the past 20 years. The maximum and minimum spring concentrations of
dust aerosol occurred in 2018 (35.42 µg kg−1) and 2008 (20.13 µg kg−1), respectively. The
spring dust aerosol concentration increased continuously from 2000 to 2004, then the dust
aerosol concentration showed a downward trend from 2005 to 2008, and then showed a
slow growth trend until 2020.

The average dust concentration in May was higher than that in March and April
during the analysis period. The dust concentration in May increased significantly at a rate
of 0.637 µg kg−1 yr−1 (R2 = 0.377, P = 0.003) from 2000 to 2020. The minimum and maximum
dust concentrations in May also appeared in 2008 and 2018, which were 35.42 µg kg−1

and 48.42 µg kg−1, respectively. In March, the dust concentration was significantly lower
than that in April and May, showing a slightly decreasing trend of 0.178 µg kg−1 yr−1

(R2 = 0.120, P = 0.123). The maximum and minimum dust concentrations in March were
24.58 µg kg−1 and 11.80 µg kg−1 in 2004 and 2019, respectively. Except for during May of
2000–2003, the dust concentration in April was clearly higher than that in March and lower
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than that in May. Similar to May, the maximum and minimum dust concentrations in April
also occurred in 2018 (43.09 µg kg−1) and 2008 (21.88 µg kg−1), respectively.
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(red line), and spring (green line) during 2000−2020 in China.

3.3. Spatial Variations of Dust Concentrations

Figure 5 shows the spatial variations of annual mean dust concentrations in March,
April, May, and the entire spring during 2000–2020. We can see that the spatial distribution
pattern of dust concentrations in spring was generally similar to that in March, April, and
May. The high dust concentrations were mainly distributed in the dust source regions of
northwest China, where dust events are prone to occur under strong wind conditions. In
general, the spring dust concentration decreased gradually from the northwest to southeast,
and the highest spring dust concentrations were mainly distributed in the Taklimakan
Desert of southern Xinjiang and the deserts of Badain Jaran and Tengger in western Inner
Mongolia (Figure 5d).
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March (a), April (b), May (c), and spring (d) during 2000−2020.

In March, the spatial pattern of high dust concentration (>500 µg kg−1) was similar
to that in April and May, mainly concentrated in southern Xinjiang and western Inner
Mongolia, and the maximum dust concentration reached 1270 µg kg−1. The coverage
area of high dust concentration in April was larger than that in March, and the maximum
dust concentration was 1625 µg kg−1. In addition, the coverage of the dust aerosol also
expanded to the southeast and spread to the west of Zhejiang and the north of Guangxi.
In May, the coverage of dust aerosol was larger than that in March and April, and its
maximum concentration was1503 µg kg−1. The eastward transportation of dust aerosol
can affect the Korean Peninsula.

Figure 6 shows the spatial distribution of the dust concentration linear trends during
2000−2020 in March, April, May, and spring. We can see that the linear trends for the
monthly and spring dust concentrations clearly showed spatial and temporal variations. In
spring, the dust concentration showed an obvious increasing trend in northern Xinjiang and
Gansu, while the dust concentration showed a clearly decreasing trend southern Xinjiang
and western Inner Mongolia (Figure 6d). However, there was no obvious change in other
regions of China. The dust concentration in March showed an obvious increasing trend
in the central and eastern regions of Xinjiang, but it showed a downward trend in regions
of southern Xinjiang, western Qinghai, central and western Inner Mongolia, and central
China (Figure 6a). The spatial variations in the linear trends of the dust concentrations in
April were similar to those found in March. However, the dust concentration in April in
most parts of northern Xinjiang showed an upward trend, while the decreasing trend in
southern Xinjiang was clearly weaker than that found in March, and the decreasing trend
in western Inner Mongolia was more obvious than that in March. Compared with March
and April, the dust concentrations showed an upward trend in May over most regions of
northwestern China, especially in eastern Xinjiang (>15 µg kg−1-dry air yr−1) (Figure 6c).
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4. Discussion

In general, the simulation results indicated that the WRF-Chem model can well simu-
late the meteorological conditions and PM10 concentrations. Many previous studies have
confirmed that the main source of PM10 is dust emissions [4,54–57]. In this study, we did
not consider the anthropogenic emissions, but the simulated PM10 concentration over the
dust source region was still close to those found in the observations. This also confirmed
that the main source of PM10 is dust emission, especially in dust source areas. The spa-
tial pattern of simulated AOD was similar to the remote sensing observations over arid
source zones, but was significantly lower than that in southeastern China, especially in the
central and eastern regions. This is mainly due to the fact that we did not considering the
anthropogenic emissions of air pollutants, resulting in low AOD values in regions with
large anthropogenic emissions.

The monthly dust concentrations simulated in this study for China in spring peaked at
34.13 µg kg−1 in May, which was consistent with the previous findings that the contribution
of dust emission to PM10 over most regions of China is the largest in May [3,35,56,57]. The
inter-annual variations in spring dust concentrations in this study were similar to the
spring PM10 concentrations in Xinjiang during 2000–2013 and 84 Chinese cities during
2000–2006 [35,58]. The slightly increasing trend in dust concentrations simulated in this
study was consistent with the upward trend in annual dust emissions in China [44]. The
maximum dust concentration occurred in 2018, which was mainly due to the highest
dust frequency in 2018 [56,59]. The major reason for the increase in sand and dust is that
precipitation in central and eastern Inner Mongolia, as well as in eastern Mongolia, was
scare in 2017, resulting in poor vegetation growth and weak dust suppression conditions
compared with those of the previous years of 2000–2016 [60–62], which caused the dust
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frequency in northern China to be significantly higher in 2018 than that in the spring of
other years from 2000–2020.

In 2008, the lowest spring dust concentration was mainly due to the fact that the dust
frequency and intensity were lower than those in the same period during
2000–2020 [63,64]. The main reason for the significantly weak dusty weather in spring
of 2008 was as follows. In the summer and autumn of 2007, the precipitation in the dust
source regions of northwestern China and western Inner Mongolia was higher than the that
for the same period during other years of the study period, which caused the vegetation
to grow well in northwestern China [65,66]. In addition, East Asia received significant
rain and snow, and the snow cover was large in the spring of 2008 [67]. Meanwhile, the
zonal circulation was dominant in northern China in the spring of 2008 [68], which was
not conductive to the activity of cold air in the spring, and provided a circulation back-
ground for the weak dust events. These land surface and weather conditions made the
dust source regions unfavorable for the formation of dust events, resulting in the lower
dust concentrations in the atmosphere.

The spatial distribution pattern of high dust concentrations identified in this study
was consistent with that of the dust source regions in northwest China [27,44,69], which
also indicated that the WRF-Chem model configured in this study can capture the spatial
variations of dust concentrations well. Previous studies found that the dust aerosol de-
creased over the past 20 years in northwest China [7,70]; however, the spatial variations of
trends regarding dust aerosols was still unclear. Here, we found increased spring dust con-
centrations in northern Xinjiang and western Gansu over the past 20 years. Dust emission
can directly influence the dust aerosol concentration in the atmosphere [7,71,72], which is
determined by the complex interactions among vegetation, climate, soil properties, and
land use [13,44]. Previous studies have reported that the vegetation greenness increased
in Xinjiang over the past 20 years [73–77], but some studies found that the vegetation
degraded in northern Xinjiang, and the vegetation cover decreased in spring [75,78,79],
which may be partly responsible for the increase in dust concentrations due to the increased
spring dust emissions in this region [44].

The underlying surface wind speed and precipitation are two main impacting factors
of the dust emission [13,27,44,55]. Precipitation has been recognized as the primary driving
factor of vegetation dynamics and soil moisture in arid and semi-arid areas [25,80,81], which
can inhibit dust emissions by promoting vegetation growth and increasing soil moisture.
Many previous studies have found a clearly increasing trend in precipitation in northwest
China over the past several decades [82,83]. Our results showed that the spring precipitation
over the dust source regions of northwest China can obviously inhibit dust concentrations,
but cannot decrease the dust concentrations in western Inner Mongolia (Figure 7a). This
is due to the fact that the surface vegetation condition is the main limiting factor of dust
emissions in eastern Inner Mongolia, and the spring precipitation cannot decisively impact
the vegetation coverage in this region in spring. The increased precipitation did not reduce
the spring mean dust concentration in northern Xinjiang, but rather increased the mean dust
concentration in this region. The averaged wind speed in China showed a decreasing trend
over the past 50 years, but it has begun to increase significantly since 2000 in northwest
China [84,85]. We also found that there is a significant positive correlation between dust
concentrations and wind speed in this region (Figure 7b), indicating that wind speed may
be the primary driving factor for the increased dust concentration during this period.

The simulated spatial and temporal variations in natural dust aerosol concentrations in
northern China over the past two decades can provided an important scientific basis for un-
derstanding the evolutionary characteristics of dust aerosol concentrations. Anthropogenic
dust is the soil particles that are emitted by modifying or disturbing soil particles through
direct (e.g., the construction and driving of vehicles) and indirect (e.g., the wind blowing
over agricultural land) human activities [8,86]. It has been recognized that anthropogenic
dust emission is a non-negligible contributor to dust concentrations (around 20% of the
total dust aerosol) [10,11,87,88], especially in urban and rural areas where human activities
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are more intense. However, current dust emission mechanisms are mainly aimed at soil
wind erosion sand dust particles under natural conditions, which is one of the main reasons
for the underestimation of the dust concentrations found in this study. Therefore, it is
urgent to consider anthropogenic dust sources when studying dust aerosol.
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5. Conclusions

This WRF-Chem model simulated the spatial and temporal process of spring dust
concentrations in China over the past two decades by using the WRF-Chem model. The
configured WRF-Chem model can well capture the spatial and temporal variations in dust
concentrations. The annual mean concentration was 26.95 µg kg−1 and showed a slight
upward trend from 2000 to 2020. The highest and lowest concentrations of spring dust
aerosols in China occurred in 2018 (35.42 µg kg−1) and 2008 (20.13 µg kg−1), respectively.
The dust concentration gradually decreased from northwest to southeast, and the dust
concentration was the highest in southern Xinjiang and northwestern Inner Mongolia. In
northern Xinjiang and Gansu, the dust concentration showed a clear increasing trend, while
it showed a clear decreasing trend in southern Xinjiang and western Inner Mongolia.
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