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Abstract: In recent years, dramatic progress in object detection in remote sensing images has been
made due to the rapid development of convolutional neural networks (CNNs). However, most
existing methods solely pay attention to training a suitable network model to extract more powerful
features in order to solve the problem of false detections and missed detections caused by background
complexity, various scales, and the appearance of the object. To open up new paths, we consider
embedding knowledge into geospatial object detection. As a result, we put forward a method of
digitizing knowledge and embedding knowledge into detection. Specifically, we first analyze the
training set and then transform the probability into a knowledge factor according to an analysis using
an improved version of the method used in existing work. With a knowledge matrix consisting of
knowledge factors, the Knowledge Inference Module (KIM) optimizes the classification in which
the residual structure is introduced to avoid performance degradation. Extensive experiments are
conducted on two public remote sensing image data sets, namely DOTA and DIOR. The experimental
results prove that the proposed method is able to reduce some false detections and missed detections
and obtains a higher mean average precision (mAP) performance than the baseline method.

Keywords: convolutional neural networks (CNNs); remote sensing images; object detection; knowl-
edge inference module

1. Introduction

Object detection classifies and locates geospatial objects in aerial images and is a
fundamental task in remote sensing. Recently, there have been great advances in object
detection in aerial images (ODAI) [1,2] with the advent of deep convolutional neural
networks. Because of this, applications in some fields, such as (UAVs) and wireless sensor
networks (WSNs), have also benefited dramatically [3,4]. Although a large number of
excellent methods [5–9] have been invented in the past few years, updating the previous
state-of-the-art methods, there are still problems, such as missing detections and false
detections caused by densely distributed objects, varied object sizes, and occluded objects.
To illustrate, Figure 1a is a visualization of false harbor and helicopter detection, where a
plane is detected as the harbor, and a piece of land is regarded as a helicopter. In Figure 1b,
a piece of agricultural land is detected as a soccer ball field. In Figure 1c, a shaded
basketball court is not detected. In the right of Figure 1d, two bridges are not detected,
which damages the detection performance. The traditional object detection paradigm only
takes the extracted feature into consideration. However, this is the bird eye view in aerial
images. Therefore, detection algorithm inference only uses the roof information from aerial
images. Moreover, due to its complex background features, such as the shape similarity and
appearance similarity between objects and the background, the wrong labels are predicted.
Because of the ambiguous appearance, those algorithms with an advantage in terms of
extracting features do not have a significant effect. This is because when the instances are
ambiguous, the extracted features are not that powerful, which leads to missed detection
and false detection.
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(a) (b) (c) (d)

Figure 1. False detection in red circle and missed detection in yellow circle: (a) false detection of a
helicopter and harbor; (b) false detection of a soccer ball field; (c) missed detection of a basketball
court; (d) missed detection of a bridge.

However, the human visual recognition system informs us how to tackle this problem,
because humans take their surroundings, as well as objects into account when conducting
recognition tasks [10], which might be beneficial for geospatial object detection. When
humans see one thing, it is common for them to think of another thing related to the seen
one. Normally, for instance, when a harbor comes into view, there might be ship parking
along the harbor. In addition, the ship and the harbor appear with water, which provides
the link between the water and the object. Relationships between objects and relationships
between a scene and objects can be assembled into a knowledge pool, which is then used
in the object detection task, the process of which is shown in Figure 2. With the utilization
of such a knowledge pool, the human visual recognition system is superior to the artificial
intelligent algorithm in terms of its detection performance. The visual recognition method
mentioned above benefits from the utilization of knowledge, which is worth adopting in
the object detection algorithm.

Figure 2. Relationships between the ship, harbor, and water assembled in the knowledge pool.

Obviously, it is by converting pictures into data that object detection algorithms
process converted data and can detect objects. Thus, in order to improve the detection
method added to work, such as the human visual system, the transformation of knowledge
into data is essential. Refs. [11,12] were our sources of inspiration. Li et al. [11] presented
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statistics regarding the probability of objects appearing in each scene and assembled these
data into a probability matrix with the aim of improving scene classification. Consequently,
thinking in opposition, it is profitable to use the probability of an object appearing in the
relevant scene to guide detection. In [12], Xu et al. utilized a class relation matrix to boost
the object detection performance. Specifically, they integrated a class relation matrix with
a high-dimensional feature to obtain an enhanced feature, which is not that intuitively
explainable due to the high-dimensional space. As a result, to deal with false detections,
such as a harbor being detected on land, in this work, we explored the co-relations between
the water area and objects by analyzing a data set. Moreover, in order to utilize the implicit
relation as knowledge, we analyzed the conditional co-occurrence probabilities of different
categories, which is the expression of the implicit relation.

In this paper, an approach to utilizing knowledge is proposed. Our overall contribu-
tions are as follows:

• We extract two kinds of knowledge in the form of probabilities, namely the corre-
lations between classes and the correlations between the water area and classes, by
analyzing the DOTA [13] and DIOR [2] training sets. Then, we transform the extracted
knowledge into a knowledge factor using a novel equation improved from [14].

• We propose a method, namely the Knowledge Inference Module (KIM), of integrating
knowledge into object detection in remote sensing images. Through an evaluation of
two public aerial data sets, our method obtains a higher mAP than the baseline model,
Oriented R-CNN [15] with fewer false and missed detections.

2. Related Work
2.1. Object Detection in Remote Sensing Images

It is obvious that remote sensing images are very different from natural scene im-
ages due to their large aspect ratio, arbitrary orientation, variation in appearance and
scale, densely distributed objects, etc., leading to difficulties in directly transferring object
detection in natural scene images to object detection in aerial images. Therefore, refer-
ences [9,16,17] proposed different ways to improve the detection performance. Han et al. [9]
used the Feature Alignment Module (FAM) to generate anchors, encode orientation in-
formation, and obtain orientation-sensitive features using the Oriented Detection Module
(ODM). Yang et al. [17] R3Det refined features by re-encoding the positional information of
the bounding box to the corresponding feature points through pixel-wise feature interpo-
lation. Ming et al. [16] constructed critical features through the Polarization Refinement
Module (PAM) and used the Rotation Anchor Refinement Module (R-ARM) to finally
obtain a powerful semantic representation. Yang et al. [7] used a circular smooth label
(CSL) to solve the problem of having discontinuous boundaries due to angular periodicity
or corner ordering. Ding et al. [6] proposed the RoI-Transformer, which contains Rotated
RoI Warping (RRoI Warping), which extracts rotation-invariant features, and the Rotated
RoI Learner (RRoI Learner), which acquires objects’ orientation information, to address
detection misalignment. The aforementioned [6] achieved great success in boosting the
detection performance. However, in this method, the amount of computation increases,
the detection speed decreases, and the GPU memory is burdened. Consequently, some
methods [15,18] with reduced computation have been proposed with the condition of
maintaining accuracy. Xie et al. [15] built the Oriented-RCNN including the Oriented
RPN to generate high-quality anchors and the Oriented R-CNN head, which has a faster
detection speed than the RoI-Transformer [6]. Han et al. [18] proposed a novel backbone,
the Rotation-equivariant ResNet (ReResNet), which has a reduction in parameters of over
60% compared to ResNet [19].

2.2. Utilization of Existing Knowledge

Works that integrate knowledge into object detection can be divided into two kinds.
One involves learning relationships between objects and scenes or relationships between
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categories during the training process; another makes use of existing knowledge to improve
the detection performance.

2.2.1. Utilization of Knowledge Learned in Training

Chen et al. [20] directly added a global image feature to an ROI feature, which is
a simple and effective method. Liu et al. [21] designed a Structure Inference Network
(SIN) with two parallel branches, one for global information extraction and another for
global information extraction. Though this method is more sophisticated and useful, the
GRU cell in each branch requires more GPU memory, making the process time-consuming.
Siris et al. [22] applied an Attention [23] mechanism to combine global information and
local information and produced a great performance in terms of salient object detection. Li
et al. [24] obtained local features and contextual features from the Region of Interest (RoI),
then integrated them into a Local-Contextual joint feature for geospatial object detection.
Zhang et al. [25] proposed CAD-net, which can learn correlations between objects and
scenes from global features and object features. Refs. [26–28] designed a module to enhance
scene or global information in order to capture contextual information.

2.2.2. Utilization of Existing Knowledge

In [11,29], the prior scene-class graph was adopted to infer the relationship between a
scene and an object through the Bayesian criterion. The adjacency matrix learned from
the visual feature was adopted in the relation-reasoning module in [30,31]. Shu et al. [32]
introduced the Graph Attention Network (GAT) and Graph Convolutional Network (GCN)
to learn hidden knowledge from the obtained co-occurrence matrix and scene–object matrix.
Fang [14] proposed a probability-based knowledge graph and graph-based knowledge
graph with a cost function containing a knowledge graph to carry out knowledge-aware
detection. In [33], an explicit knowledge module and an implicit knowledge module,
containing an explicit knowledge graph and an implicit knowledge graph, respectively,
were introduced, to enhance the RoI features.

3. Establishment of the Knowledge Matrix
3.1. Knowledge Matrix Establishment

In this section, the procedures used to create knowledge matrices, the category condi-
tional co-occurrence knowledge matrix and the water area knowledge matrix from the data
set are illustrated.

3.1.1. Conditional Co-Occurrence Knowledge Matrix

We first count the probability n(l) that every category appears in images using Equation (1)

n(l) =
Nimg(l)
Nallimg

. (1)

where Nimg(l) denotes the number of images in which category l occur, and Nallimg denotes
the number of images in the trainset. An analysis of the DOTA trainset is shown in Table 1,
and an analysis of DIOR is shown in Appendix A .
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Table 1. The number of images in which the category occurs Nimg(l) and the probabilities of the class
occurrence n(l).

Object Categories Nimg(l) n(l)

Plane 197 0.1396
Baseball diamond 122 0.0864

Bridge 210 0.1488
Ground track field 177 0.1254

Small vehicle 486 0.3444
Large vehicle 380 0.2693

Ship 326 0.2310
Tennis court 302 0.2140

Basketball court 111 0.0786
Storage tank 161 0.1141

Soccer ball field 136 0.0963
Roundabout 170 0.1204

Harbor 339 0.2402
Swimming pool 144 0.1020

Helicopter 30 0.0212

Then, we determine the probability of conditional co-occurrence. In detail, we first
count Nimg(l|l′), the number of images in which class l and class l′ appear together. Then,
we use Nimg(l) diving Nimg(l|l′) .

Fang et al. [14] proposed Equation (2)

Sl,l′ = max(log
n(l|l′)Nallimg

n(l)n(l′)
, 0) (2)

where n(l) denotes the probability of occurrence for category l, and Nallimg denotes the
number of all images to transform the frequencies into a knowledge matrix. We applied
this formula to the DOTA and DIOR data sets.

However, this knowledge matrix has some disadvantages. On one hand, the numerical
dimension, which is over 10, is too large to be suitable for optimizing predicted class scores.
The oversized numerical dimension has an excessive influence on the predicted class
scores, causing the knowledge matrix to become the decisive element, whereas our original
intention was to make use of the knowledge matrix to improve predictions. On the other
hand, when two categories do not co-occur, the corresponding position in the knowledge
matrix will be set as 0, which is a rigid way to deal with the aforementioned situation.
Thus, we propose a novel processing approach that introduces a zero factor to replace
0. Additionally, simply setting zero could exert a negative impact on the generalization
performance. This is because the none-conditional-co-occurrence of two categories in the
data set only denotes that the two categories have little correlation, but it does not mean
that the two categories never co-occur in the real world.

In order to address aforementioned problems, we modify Equation (2) and propose
Equation (3).

Sl,l′ =


log n(l,l′)

n(l)n(l′) (n(l) + n(l′))

Nimg(l) + Nimg(l′)
n(l, l′) 6= 0

log ε
n(l)n(l′) (n(l) + n(l′))

Nimg(l) + Nimg(l′)
n(l, l′) = 0

(3)

The modifications are as follows:

1. We abandon the max() function, which means that the range of Sl,l′ extends to the
negative axis, which is suitable for situations where category l and category l′ do not
co-occur or barely co-occur;
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2. We regard the log part log n(l,l′)
n(l)n(l′) as a conditional co-occurrence factor and abandon

Nallimg and add (n(l)+n(l′))
Nimg(l)+Nimg(l′)

as a scale factor into the equation in order to the scale

knowledge factor into a proper numerical dimension and the make knowledge factor
adaptive to the probability of category occurrence;

3. We split our novel equation into two branches, where the upper one is for situations
where l and l′ appear together in the training set and the lower one computes the
knowledge factor when l and l′ do not co-occur;

4. In the lower branch, we replace n(l, l′) with the zero factor ε in Equation (4), where
Nobject denotes the number of instances belonging to category l, making the equation
more elegant when n(l, l′) equals 0.

ε =
1

Nobject(l)Nobject(l′)
(4)

3.1.2. Water Area Knowledge Matrix

In this section, we first count the number of images containing water areas and the
number not containing water areas and compute the occurrence probability of water ap-
pearing and not appearing as 0.5102 and 0.4898 in DOTA, respectively. Then, we determine
the probability of a class appearing with water area or not using Equations (5) and (6)

n(l|w) =
Nimg(l|w)

Nimg(l)
(5)

n(l|w) =
Nimg(l|w)

Nimg(l)
(6)

where n(l|w) and Nimg(l|w) denote the probability of class l in a water area and the number
of images in which class l does not occur in a water area. Those with a water area are
denoted by n(l|w) and Nimg(l|w) . Probabilities of classes of DOTA appearing in a water
area and not in a water area are demonstrated in Table 2. The probabilities of the classes of
DIOR appearing in a water area and not in a water area are demonstrated in Table A2.

Table 2. Probabilities of classes appearing with water area and not with water area. Column n(l|w)

denotes the probability of category l appearing with water area; n(l|w) is the probability of category
l not appearing with water area.

Object Categories n(l|w) n(l|w)

plane 0.1748 0.8252
baseball-diamond 0.5543 0.4457

bridge 0.9755 0.0245
ground-track-field 0.6462 0.3538

small-vehicle 0.2837 0.7163
large-vehicle 0.1584 0.8416

ship 0.9994 0.0006
tennis-court 0.2945 0.7055

basketball-court 0.2544 0.7456
storage-tank 0.9402 0.0598

soccer-ball-field 0.5215 0.4785
roundabout 0.6166 0.3834

harbor 1 0
swimming-pool 1 0

helicopter 0.0015 0.9985
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Similar to the conditional co-occurrence knowledge matrix, we also partly modify
Equation (2) and propose Equation (7)

Sl,∗ =


log n(l|∗)

n(l)n(∗)n(l)

Nimg(l)
n(l|∗) 6= 0

log ε
n(l)n(∗)n(l)

Nimg(l)
n(l|∗) = 0

(7)

where ε, taken as the zero factor, equals 1
Nobject(l)

, and n(*) is the probability of a water area

appearing, where * is w or w meaning that there is a water area and that there is no water
area, respectively. Equation (7) was also applied to DOTA and DIOR .

4. Methods

In this paper, we propose a knowledge-inferencing module that uses a residual struc-
ture to optimize the predicted class scores, which helps the detector to perform better. Our
method can be applied to any two-stage object detection framework. In this work, we chose
the Oriented R-CNN [15] as the framework and baseline model. The overall structure of the
framework filled with the knowledge-aware bounding box head is presented in Figure 3.

Figure 3. The overall structure of the framework filled with the Knowledge Inference module, a
two-stage detector. Feature extraction module first extracts multi-scale features fed into the Oriented
RPN. Region proposals are generated by the Oriented RPN and used for classifying and regression
in the Oriented RCNN head. Finally, the classification scores are fed into the Knowledge Inference
Module, resulting in knowledge-enhanced classification scores.

4.1. Feature Extraction

Resnet-50 [19] and FPN [34] are adopted into the Feature Extraction module to extract
multi-scale features with which size-various objects can more easily be detected. Figure 4
shows the overall structure of the Feature Extraction module. In the bottom–up part, the
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input image is first input into a series of convolutional layers to generate low-semantic
feature maps and high-semantic feature maps {C1, C2, C3, C4, C5}. Moreover, the top–down
part obtains more powerful features by fusing features. To be specific, M4 is equal to the
sum of the result of the upsampling of M5 and the result of the 1× 1 convolution of C4. In
this way, M3 and M2 are generated. P2, P3, P4, and P5 are obtained by feeding M2, M3, M4,
and M5 into a 3 × 3 convolutional layer, and P6 is obtained by maxpooling P5. Finally, this
module outputs the fused multi-scale features {P2, P3, P4, P5, and P6}.

Figure 4. The overall structure of the Feature Extraction module.

4.2. Oriented RPN

The oriented RPN takes {P2, P3, P4, P5, and P6} as the input and output region proposals
with location information and an objectness score. Figure 5 shows the structure of the
Oriented RPN.

We set three horizontal anchors with aspect ratios of {1:2, 1:1, and 2:1} for every location
in the features of all scales. The anchors correspond to {P2, P3, P4, P5, and P6} and have pixel
areas of {322, 642, 1282, 2562, and 5122}, which are represented by a 4-dimensional vector
a = (ax, ay, aw, ah). ax and ay denote the horizontal and vertical locations of the anchor
center; aw and ah correspond to the width and height of the anchor. The upper branch of
Figure 5, i.e., the regression branch, outputs the offset δ = (δx, δy, δw, δh, δα, δβ) of proposals
related to anchors. We decode the offset using Equation (8) to obtain oriented proposals
(x, y, w, h, ∆α, ∆β), where (x, y) denotes the location of the proposed center coordinate, w
and h correspond to the width and height of the external rectangle box of the proposal, ∆α
and ∆β denote the offsets of the proposal box vertex oriented to the midpoints of the top
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and right sides of the corresponding external rectangle. The lower branch of Figure 5, i.e.,
the classification branch, outputs objectness scores.

∆α = δα · w, ∆β = δβ · h
w = aw · eδw , h = ah · eδh

x = δx · aw + ax, y = δy · ah + ay

(8)

Figure 5. The structure of the Oriented RPN, which contains a 3× 3 convolutional layer and two
sibling 1× 1 convolutional layers for classification and regression, respectively.

To represent the oriented object in elegant manner, the midpoint offset representation
is introduced, the schematic of which is illustrated in Figure 6. In detail, the black horizontal
box, i.e., the external rectangle of the blue one, is obtained from the anchor, where aw and ah
are the width and height of the anchor, and the blue oriented box is the predicted oriented
proposal box. The black dots and the light green dots are the midpoint of the external
rectangle edges and the vertices of the oriented box, respectively. The predicted oriented
proposal box can be represented as O = (x, y, w, h, ∆α, ∆β), which can be computed by
Equation (8). Furthermore, the vertices of predicted oriented proposal are denoted by a
set of coordinates v1, v2, v3, v4. Similarly, ∆β is the distance between v2 and the midpoint
(x, y− h

2 ) of the top side, and because of the symmetry, the distance between v3 and the
midpoint (x, y+ h

2 ) of the bottom side equals−∆α. It is noticing that ∆α is distance between
v1 and the midpoint (x, y− h

2 ) of top side, and because of the symmetry distance between
v3 and the midpoint (x, y + h

2 ) of bottom side equals to −∆α. Similarly, ∆β is the distance
between v2 and the midpoint (x + w

2 , y) of the right side, and the distance between v4 and
the midpoint (x, y + h

2 ) of the left side equals −∆β. As a result, the vertices of the oriented
proposal {v1, v2, v3, v4} can be computed using Equation (9).

v1 = (x, y− h
2
) + (∆α, 0)

v2 = (x +
w
2

, y) + (0, ∆β)

v3 = (x, y +
h
2
) + (−∆α, 0)

v4 = (x− w
2

, y) + (0,−∆α)

(9)
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Figure 6. Schematic of the midpoint offset scheme.

In the training process, we assign positive and negative samples using the following
rules:

1. An anchor that has an Intersection-over-Union(IoU) over 0.7 with any ground-truth
box is regarded as a positive sample;

2. An anchor that has an IoU over 0.3 with a ground-truth box and the IoU is the highest;
3. An anchor that has an IoU lower than 0.3 is regarded as a negative sample;
4. Anchors that do not belong to the above cases are discarded during the training

process.

4.3. Oriented RCNN Head with the Knowledge Inference Module

In this section, we apply our proposed Knowledge Inference module to the Oriented
RCNN head in order to reduce missed and wrong detections by improving the predicted
class scores. Specifically, the proposed module is applied on two kinds of knowledge:
conditional co-occurrence knowledge and water area knowledge. Thus, the proposed
module has two similar inferencing modes. The details can be seen in the middle part of
Figure 3.

The oriented RCNN head first takes {P2, P3, P4, P5, and P6} and the oriented proposals
from the oriented RPN as the input. In detail, feature vectors are obtained by rotating
the RoI alignment to extract rotated RoI features according to the oriented proposals and
transform them into fixed-length vectors. This is followed by two fully-connected layers.
Then, we use two fully-connected sibling layers outputting classification scores and location
predictions. For each image, we generate 512 predictions. Thus, the classification scores
are denoted by the tensor of shape [512, K + 1], where K + 1 denotes the number of classes
plus the background, and the location predictions are denoted by the tensor of shape
[512, 5]. With the aim of optimizing the predicted classification scores with the knowledge
matrix, we propose the Knowledge Inference Module, the structure of which is illustrated in
Figure 7. To be specific, Figure 7a shows the structure of the Knowledge Inference module
applied to class conditional co-occurrence knowledge. The class scores [512, 16] are first fed
into the main-class-seeking-module to compute the major class in the image outputting the
index of the main class. Then, the conditional co-occurrence matrix is sliced in terms of
the main class index. The sliced matrix denotes the relationship between the main class
and other classes, which is represented by the tensor of shape [1, 16]. Therefore, the ∆
class score is a tensor with knowledge integrated. It is obtained by dot-multiplying class
scores [512, 16] and transposing the sliced matrix [16, 1]. However, our initial idea is to
use knowledge to guide detection, so we apply a residual structure [19] into our proposed
module, avoiding degradation brought about by using ∆ class scores only. Enhanced
class scores are the result of ∆ class scores plus class scores. Additionally, the Knowledge
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Inference module on water area knowledge is shown in Figure 7b and is similar to that of
the category conditional co-occurrence matrix. The difference is that the Main Class Seeking
module and the main class index are replaced by water information showing whether there
is a water area in the image.

The structure of the Main-Class-Seeking module is illustrated in Figure 8. We first slice
the tensor class scores [512, 16] into 512 small tensors [1, 16] and encode them into values
of 1 to 512. Then, the sliced class scores are fed into the argmax() function outputting the
classes with the highest classification scores. The function max check() is used to count the
number of each category in the 512 predictions. This is performed sequentially, where the
class with largest number is the main class.

(a)

(b)

Figure 7. Structures of the Knowledge Inference module applied on two kinds of knowledge:
(a) the structure of the Knowledge Inference module applied on conditional co-occurrence knowledge;
(b) the structure of the Knowledge Inference module applied on water area knowledge.

Figure 8. The Main Class Seeking module consists of a slice operation, argmax() function and a max
check() function.
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4.4. Loss Function

To train the Oriented RPN and Oriented RCNN head, we introduce Cross-Entropy
Loss Lcls for the classification task and Smooth L1 Loss Lreg for the regression task. The
whole loss function L is defined as follows:

L(pi, ti) =
1
N

N

∑
i

Lcls(pi, p∗i ) +
1
N

N

∑
i

p∗i Lreg(ti, t∗i ) (10)

Lcls(pi, p∗i ) = −[p∗i log(pi) + (1− p∗i )log(1− pi)] (11)

Lreg(ti, t∗i ) =

{
0.5(ti − t∗i )

2 i f |ti − t∗i | < 1

|ti − t∗i | − 0.5 otherwise
(12)

where N and i are, respectively, the number and index of the predicted anchors in a image,
pi is the probability of predicted anchors, p∗i denotes the ground-truth label that belongs to
{0, 1}, i.e., negative and positive, and ti and t∗i are the predicted box and the ground-truth box.

5. Experiments

In this section, we introduce the two geospatial object data sets used in this work.
Then, evaluation metrics and implementation details are illustrated.

5.1. Data Sets

To evaluate the proposed method, we conduct experiments on two public aerial image
data sets, i.e., DOTA and DIOR.

DOTA is the most popular large-scale data set for geospatial object detection, contain-
ing 2806 images and 188,282 instances with arbitrary-oriented objects. Moreover, there
are 15 classes in the data set: bridge, harbor, ship, plane, helicopter, small vehicle, large
vehicle, baseball diamond, ground track field, tennis court, basketball court, soccer ball
field, roundabout, swimming pool , and storage tank. The image width ranges from 800 to
4000 pixels. In this work, the training set was used for training, and the validation set was
used for evaluation.

DIOR is another data set that is widely used for geospatial object detection. It con-
tains 23,463 optimal remote sensing images and 192,472 object instances annotated by a
horizontal bounding box. There are 20 object classes in total, namely, airplane, airport,
baseball field, basketball court, bridge, chimney, dam, expressway service area, expressway
toll station, harbor, golf course, ground track field, overpass, ship, stadium, storage tank,
tennis court, train station, vehicle, and windmill. The image size of the DIOR data set is
800 × 800 pixels. We trained the network on the training set and evaluated the method on
the validation set.

5.2. Evaluation Metrics

To evaluate the performance of the proposed method, we utilized four popular eval-
uation metrics, i.e., precision, recall, average precision, and mean average precision, the
calculation formulas of which are shown as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

TN, FN, and FP denote the number of true positives, the number of false negatives,
and the number of false positives, respectively. Precision measures the number of correctly
identified positive detections of the total number of positive detections and Recall measures
the fraction of correctly identified positive detections of all positive samples.
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AP is computed by calculating the average value of precision from recall = 0 to
recall = 1.

AP =
∫ 1

0
P(R)dR (15)

mAP is used to describe the multi-class object detection performance.

mAP =
1

Nclass

Nclass

∑
j=1

∫ 1

0
Pj(Rj)dRj (16)

where Nclass is the number of data set classes, j denotes the index of the class, and Pj and
Rj are the precision rate and recall rate of the j-th class.

5.3. Implementation Details

The experiments were conducted on a single CPU, Intel Xeon CPU E5-2650 V4 at
2.20 GHz with a single GPU, NVIDIA Tesla P40 24 GB. The operating system was Ubuntu
18.04. The MMrotate [35] repository provided the training strategy. The size of the training
image was 1024 × 1024, and the original DOTA images were split. All images in DIOR
were 800 × 800 in size. Thus, there was no need to split the DIOR images. The objects
in DIOR were annotated in the horizontal direction by the left-top vertex (x1, y1) and
right-bottom vertex (x1, y1). Thus, we converted the annotations into a form suitable for
the Oriented RCNN: (x1, y1, x2, y1, x2, y2, x1, y2), corresponding to the vertices of oriented
ground truth box in clockwise order. As for the hyperparameters, the optimizer was the
stochastic gradient descent (SGD) with a learning rate of 0.005, a momentum of 0.9, and a
weight decay of 0.0001. The batch size was 1, and the number of training epochs was 12.

6. Results

In this section, the results of the experiments on DOTA and DIOR are displayed.

6.1. DOTA Results

We applied the knowledge inference module to two kinds of knowledge: class co-
occurrence knowledge and water area knowledge. The results show that our method
achieved increases in mAP of 1.0% and 0.6%, respectively. Table 3 reports the compar-
ison between the baseline model Oriented RCNN and our proposed method, in which
the proposed method basically maintains the performance for both kinds of knowledge
and improves the accuracy of several classes, for example 8.7% for the term helicopter
with conditional co-occurrence knowledge, and 2.9% for the soccer ball field with water
area knowledge.

Table 3. Comparison between the baseline model Oriented RCNN and our proposed method on
DOTA data set.

METHOD PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R3Det [17] 88.8 67.4 44.1 69.0 62.9 71.7 78.7 89.9 47.3 61.2 47.4 59.3 59.2 51.7 24.3 61.5
CSL [7] 88.1 72.2 39.8 63.8 64.3 71.9 78.5 89.6 52.4 61.0 50.5 66.0 56.6 50.1 27.5 62.2

S2A-net [9] 89.1 72.0 45.6 64.8 65.0 74.8 79.5 90.1 60.2 67.3 49.3 62.2 60.6 53.4 37.6 64.8
FR-O [5] 89.3 76.0 49.3 74.7 68.1 75.5 87.1 90.7 64.2 62.3 57.0 65.8 66.6 59.6 38.2 68.3

RoI Trans [6] 89.9 76.5 48.1 73.1 68.7 78.2 88.7 90.8 73.6 62.7 62.0 63.4 73.7 57.2 47.9 70.3
Baseline [15] 89.8 75.7 50.2 77.3 69.4 84.8 89.3 90.8 69.2 62.6 63.1 65.0 75.3 57.5 45.3 71.0
Water area 89.6 75.6 50.3 76.4 68.4 84.3 89.4 90.7 72.9 62.6 66.0 67.2 75.6 56.5 48.8 71.6

Co-occurrence 89.6 76.0 50.7 77.0 68.3 84.4 89.3 90.7 73.6 62.4 63.8 66.8 75.1 57.6 54.0 72.0

The baseline is the Oriented RCNN [15], the Water area denotes the Knowledge Inference module on water
area knowledge, and Co-occurrence is the Knowledge Inference module applied on conditional co-occurrence
knowledge, where: PL: plane, BD: baseball diamond, BR: bridge, GFT: ground field track, SV: small vehicle,
LV: large vehicle, SH: ship, TC: tennis court, BC: basketball court, ST: storage tank, SBF: soccer ball field, RA:
roundabout, HA: harbor, SP: swimming pool, and HC: helicopter.
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Moreover, to a certain degree, some missed detections and wrong detections were
improved. Figures 9 and 10 display the reductions in missed detection and wrong detection
using conditional co-occurrence knowledge and water area knowledge, respectively. In
each subfigure, the left half is the result of the baseline model and the right half is the result
of the proposed method. We use yellow circles to draw missed detections and red circles to
draw false detections. Additionally, the first three subfigures shown in Figures 9 and 10
display missed detections, and the second three subfigures in Figures 9 and 10 display the
false detections. The positive detections are shown in Figure 11.

(a)

(b)

Figure 9. Cont.
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(c)

(d)

(e)

Figure 9. Cont.
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(f)

Figure 9. Visualization of the results of the Knowledge Inference module applied to category
occurrence knowledge. (a) missed detection of swimming pools; (b) missed detection of roundabouts;
(c) missed detection of basketball courts; (d) false detection of baseball diamonds; (e) false detection
of storage tanks; (f) false detection of basketball courts.

(a)

(b)

Figure 10. Cont.
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(c)

(d)

(e)

Figure 10. Cont.
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(f)

Figure 10. Visualization of the results of the Knowledge Inference module applied to water area
knowledge. (a) missed detections of ships in the middle of the image; (b) missed detection storage
tanks; (c) missed detection of harbors; (d) false detection of large vehicles; (e) false detection of
harbors; (f) false detection of baseball diamonds.

(a) (b) (c)

(d) (e) (f)

Figure 11. Cont.
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(g) (h) (i)

(j)

Figure 11. Visualization of the positive results. (a) basketball courts and tennis courts; (b) baseball
diamonds; (c) bridge and storage tanks; (d) bridges; (e) harbors and ships; (f) large vehicles and small
vehicles; (g) planes and helicopters; (h) roundabouts; (i) ground field tracks and soccer ball fields;
(j) swimming pools.

Improvement occurs due to the utilization of knowledge. On the one hand, knowledge
is used to optimize the predicted class scores. Thus, the performance of the classification is
promoted; on the other hand, the class predictions optimized by knowledge can help the
network iterate better during backpropagation. As a result, the more powerful features can
be extracted by the network.

In terms of the inferencing speed, we compared the baseline and Knowledge Inference
module for two kinds of knowledge, as shown in Table 4. With the Knowledge Inference
module, there was no significant drop in speed.

Table 4. Comparison of the inferencing speed and accuracy between the baseline and proposed
methods for two kinds of knowledge in the DOTA data set.

METHOD FPS mAP

Baseline 11.8 71.0
Water area 11.7 71.6

Conditional co-occurrence 11.5 72.0

6.2. DIOR Results

The experiments conducted on the DIOR data set achieved a better performance. The
ap values and mAP values are shown in Table 5. As can be seen, both kinds of knowledge
had beneficial impacts on the detection performance, and the mAP values increased by
0.5% and 3.9%, respectively. Similarly, missed detections and wrong detections were
effectively eliminated.
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Table 5. Comparison between the baseline model Oriented RCNN and our proposed method on
DIOR data set .

METHOD APL APT BF BC BR CM DA ESA EST GF

R3Det [17] 89.6 6.40 89.5 71.2 14.4 81.7 8.90 26.5 48.1 31.8
CSL [7] 90.9 2.60 89.4 71.5 7.10 81.8 9.30 31.4 41.5 58.1

S2A-Net [9] 90.8 14.0 89.9 72.7 17.6 81.7 9.50 32.9 50.1 50.9
RoI Trans [6] 90.8 12.1 90.8 79.8 22.9 81.8 8.20 51.3 54.1 60.7

FR-O [5] 90.9 13.1 90.7 79.9 22.0 81.8 10.4 49.8 53.1 58.5
Baseline 90.9 17.0 90.7 80.6 33.5 81.8 19.2 59.8 53.1 56.7

Water area 90.9 21.2 90.7 80.3 34.2 81.8 20.7 60.0 52.9 55.1
Co-occurrence 90.9 23.3 90.8 80.9 38.0 81.8 20.5 62.2 53.7 61.3

GTF HA OPS SP STD ST TC TS VEH WD mAP

65.6 8.20 33.4 69.2 51.9 72.9 81.1 21.4 54.2 44.7 48.5
63.2 17.5 26.6 69.3 53.8 72.8 81.6 18.4 47.2 46.3 49.0
70.9 16.3 43.6 80.1 52.5 75.7 81.7 23.9 59.0 45.6 53.0
77.2 30.6 40.5 89.9 88.2 79.5 81.8 20.6 67.9 55.1 59.2
75.4 35.5 41.6 89.1 85.4 79.3 81.8 32.7 66.4 55.5 59.6
76.9 26.1 54.5 89.9 88.8 79.6 81.8 30.2 68.3 55.1 61.7
76.7 26.8 54.6 89.8 88.3 79.5 81.8 35.5 68.7 55.6 62.2
81.3 32.1 56.6 90.0 88.3 79.7 90.1 44.3 69.2 56.5 64.6

The baseline is the Oriented RCNN, the Water area denotes the Knowledge Inference module’s knowledge
on a water area, and conditional co-occurrence is the Knowledge Inference module for category conditional
co-occurrence knowledge. APL: airplane, APT: airport, BF: baseball filed, BC: basketball court, BR: bridge, CM:
chimney, DA: dam, ESA: expressway service area, ETS: expressway-toll-station, GF: golf field, GTF: ground track
filed, HA: harbor, OPS: overpass, SP: ship, STM: stadium, ST: storage tank, TC: tennis court, TS: trainstation, VEH:
vehicle, WD: windmill.

For the DIOR data set, we also visualized the impacts of two kinds of knowledge on
the baseline, as shown in Figures 12 and 13. As for the visualization of the DOTA data set,
the yellow circle and red circle denote missed detections and false detections, respectively.
The positive detections are shown in Figure 14.

(a)

Figure 12. Cont.
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(b)

(c)

(d)

Figure 12. Visualization of the results of the Knowledge Inference module applied on category
occurrence knowledge: (a) missed detection of airports; (b) missed detection of expressway service
areas; (c) false detection of bridges in the purple box and vehicles; (d) false detection of expressway
toll stations.
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(a)

(b)

(c)

Figure 13. Cont.
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(d)

Figure 13. Visualization of the results of the Knowledge Inference module applied on category
occurrence knowledge. (a) missed detection of overpasses; (b) missed detection of windmills; (c) false
detection of harbors; (d) false detection of storage tanks.

(a) (b) (c)

(d) (e) (f)

Figure 14. Cont.
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(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 14. Visualization of the positive results. (a) airplanes; (b) airports; (c) basketball courts and
tennis courts; (d) baseball fields; (e) bridges; (f) chimneys and storage tanks; (g) dams; (h) expressway
service areas; (i) golf fields; (j) harbors and ships; (k) overpasses; (l) ground track fields and stadiums;
(m) train stations; (n) expressway toll stations; (o) windmills.

A comparison of the inferencing speed and accuracy between the baseline and pro-
posed methods for two kinds of knowledge is shown in Table 6. As can be seen, the
Knowledge Inference module improved the detection accuracy with a negligible negative
influence on the inferencing speed.

Table 6. Comparison of the inferencing speed and accuracy between the baseline and proposed
methods for two kinds of knowledge in the DIOR data set.

METHOD FPS mAP

Baseline 9.3 61.7
Water area 9.1 62.2

Conditional co-occurrence 9.1 64.6



Remote Sens. 2022, 14, 6103 25 of 27

7. Conclusions

In this paper, in order to utilize knowledge to reduce false detections and missed
detections caused by variation in the object appearance, varied object sizes, and complicated
backgrounds, a series of steps were taken. We first established a knowledge matrix between
the classes and a knowledge matrix between water areas and classes by analyzing the
training set and proposed a novel equation, which can effectively avoid generalization
degradation, to transform the relationship into form applicable for inferencing. Then, we
proposed a method, the Knowledge Inference module, for integrating knowledge into
object detection. The experiments were conducted on two public remote sensing data sets:
DOTA and DIOR. The experimental results show that, compared to the baseline model,
the proposed method achieved higher mAP values with fewer false detections and missed
detections at an almost equal inferencing speed.
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Appendix A

Table A1. The number of images where the category occurs Nimg(l) and the probabilities of class
occurrences n(l).

Object Categories Nimg(l) n(l)

airplane 344 0.0586
airport 326 0.0556

baseball field 552 0.0941
basketball court 336 0.0573

bridge 378 0.0644
chimney 202 0.0344

dam 238 0.0406
expressway service area 279 0.0475
expressway toll station 285 0.0486

golf field 216 0.0368
ground track field 537 0.0916

harbor 329 0.0561
overpass 410 0.0699

ship 649 0.1107
stadium 289 0.0493

storage tank 390 0.0665
tennis court 605 0.1032
train station 244 0.0416

vehicle 1561 0.2662
windmill 404 0.0689
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Table A2. Probabilities of classes of DIOR appearing with water area and not appearing with water
area. Column n(l|w) denotes the probability of category l appearing with water area; n(l|w) is the
probability that category l appears with no water area.

Object Categories n(l|w) n(l|w)

airplane 0.0412 0.9588
airport 0.4482 0.5518

baseball field 0.0714 0.9286
basketball court 0.0981 0.9019

bridge 0.9525 0.0475
chimney 0.1228 0.8772

dam 1 0
expressway service area 0.2719 0.7281
expressway toll station 0.1335 0.8665

golf field 0.9114 0.0886
ground track field 0.1293 0.8707

harbor 1 0
overpass 0.1179 0.8821

ship 0.9998 0.0002
stadium 0.1126 0.8874

storage tank 0.3126 0.6874
tennis court 0.1366 0.8634
train station 0.2398 0.7602

vehicle 0.2140 0.7860
windmill 0.0489 0.9511
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