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1. Introduction

Land systems have taken a central role in major environmental/climatic issues of the
Anthropocene, as they are the result of interacting natural and anthropic processes that are
crucial for life on Earth. Land provides essential resources, such as food and energy, as well
as important services (e.g., pollination, carbon sequestration, environmental protection) to
human society. Land-surface changes are both drivers and consequences of natural and
socio-ecological processes occurring over a huge range of temporal scales. Although the
spatial scales of single land systems are generally local, the aggregated effect of pervasive
land changes is a main factor in global environmental change [1]. Extensive scientific litera-
ture on multiple aspects of land dynamics is testimony to the increased interest of scholars
from many different research fields. However, recent progress in these studies is mainly
credited to major advances in the development and use of remote sensing technologies.
The availability of data from diverse sensor types (LiDAR, multispectral, hyperspectral,
laser and radar altimeters, stereographic pairs of aerial photographs, etc.) and different
platforms (satellite, aircraft, spacecraft, HAPS—High-Altitude Pseudo Satellites, buoy, ship,
helicopter, drone, etc.) is currently fuelling land dynamics research.

The richness of spatial and temporal observational scales, the development of “big
data” and machine learning methods to extract information are helping scientists to gain
new insights into the complexity of land conditions, enabling ever more reliable quantifi-
cations of rates and patterns of change. Satellite sensors, in particular, are able to provide
comprehensive records of global land change dynamics over long time scales [2], thereby
offering precious information on the spatial and temporal variability in land surface and
the interplay between different geographical areas and different scales.

The increasing demand of remote sensing and geo-spatial data has also primed the
development of Earth Observation programmes, such as the Copernicus Land Monitoring
Service (https://land.copernicus.eu/, last accessed on 16 November 2022), which offers free
and openly accessible products on the status and evolution of the land surface, or the USGS
(U.S. Geological Survey) Earth Explorer data portal (https://earthexplorer.usgs.gov/, last
accessed on 16 November 2022), which enables queries to view what data types are available
in specific locations. Asian repositories too are disseminating free data, including land
observation remote sensing images (e.g., https://www.isro.gov.in/VedasServices.html,
https://gportal.jaxa.jp/gpr/search?tab=0; last accessed on 16 November 2022). We cannot
neglect to mention the Google Earth Engine Platform, which includes a repository of
spatial datasets, with a specific section devoted to Land Cover data (https://developers.
google.com/earth-engine/datasets/tags/landcover; last accessed on 16 November 2022),
encompassing more than forty years of historical imagery and scientific datasets, which are
updated and expanded daily.

In such a context, the papers published in this Special Issue represent an interesting
sample of the variety of targets, application purposes, datasets and analysis tools (Table 1).
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Table 1. Main features of the contributions in the Special Issue on “Advances of Remote Sensing in
the Analysis of the Spatial and Temporal Variability of Land Surface”.

Reference Study Area Data Target Keywords

Chu L.
et al. [3] China

Global Human Modification (GHM);
MODIS 8-day Land Surface

Temperature

Island land cover
classes (forest;

shrubland; water;
grassland; wetland;
bareland; cropland;
impervious surface)

human modification;
land surface
temperature;

temperature zones;
coastal islands

Szabó et al.
[4]

Lake Tisza
(Hungary)

Landsat series surface reflectance
Level 2: Thematic Mapper (TM),
Enhanced Thematic Mapper Plus

(ETM+), Operational Land Imager
(OLI);

normalized difference vegetation
index (NDVI); modified normalized

difference water index (MNDWI);
digital bathymetry model (Water

Directorate of Central Tisza
Region—KÖTIVIZIG)

Wetlands:
artificial lakes

sedimentation and
vegetation spread.

remote sensing;
sedimentation; spectral

indices; time-series
analyses; vegetation

change; wetland
monitoring

Guo et al.
[5]

Altai Mountains,
Karakoram Mountains,

Western Himalayas,
Gongga Mountains,

Tian Shan, and
Nyainqentanglha

Mountains (China)

Landsat; Sentinel-2; Meteorological
data; MOD10A; SRTM DEM Glaciers

glaciers; SLA; temporal
variation; High
Mountain Asia;

temperature;
precipitation

Guo et al.
[6]

Qilian Mountains
(China)

Landsat; MOD10A; SRTM DEM;
Meteorological data; Equilibrium Line

Altitude Data
Glaciers

snowline altitude;
equilibrium line
altitude; Qilian

Mountains; climate

Nie et al.
[7]

Yangquan Coal Mine
area, Shanxi Province

(China)

Landsat series Level 1: Thematic
Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), Operational

Land Imager (OLI) and TIRS (Thermal
Infrared Sensor);

ASTER digital elevation
(GDEM—Global Digital Elevation

Model);
Google Earth satellite images;

precipitation and temperature data by
the China Meteorological Data

Network;
raw coal production from the Shanxi
Statistical Yearbook and China Coal

Industry Yearbook

Coal mining areas

topographic correction;
ecological environment
quality; temporal and

spatial evolution;
driving force; coal

mining area

Qian et al.
[8]

Guizhou province
(China)

MOD09A1:
surface reflectance; MOD11A1:

surface temperature and radiation rate
(LST); MOD13Q1:

normalized vegetation index and
enhanced vegetation index
(NDVI/EVI); MOD16A2:

transpiration product data; MOD43A3:
surface albedo (AD); and MCD12Q1:

IGBP global
land cover data;
ASTER GDEM

administrative division
map of the Guizhou province; China’s
National Forest Continuous Inventory

data (NFCI)

Karst environments

rocky desertification.
supervised

classification method;
MODIS data; feature

extraction;
spatial and temporal

distribution.
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Table 1. Cont.

Reference Study Area Data Target Keywords

Liu Y. et al.
[9] South America

Meteorological Data by the Climate
Research Unit (CRU) Version 4.05

(monthly average gridded daily mean
Temperature, Precipitation, and
Potential Evapotranspiration);

Hydrological Data (Actual
Evapotranspiration and changes of

terrestrial water storage (TWC) from
the Gravity Recovery and Climate

Experiment (GRACE) and its
following project GRACE-FO); surface
(Qs), subsurface (Qsb), and snowmelt
runoff (Qsm) simulated by the Noah

model by GLDAS; MOD13C2 Version
6; Future Climate data (CMIP6).

Land cover mosaics

actual
evapotranspiration;
multi-source remote
sensing data; boruta
algorithm; support
vector regression;

random forest; CMIP6

Mascolo L.
et al. [10] Spain Sentinel-1 Agricultural crops phenology; grid-based

filter; SAR; Sentinel-1

Sassu et al.
[11]

North-Eastern Sardinia
(Italy)

UAV: hexacopter with Canon EOS
750D, DJI Phantom 4 Pro;

GNSS Leica 900 RTK receiver;
Field Measurements: vineyard’s

height, width, and canopy volume.

Agriculture:
individual and

aggregate vineyard’s
canopy volume

precision viticulture;
TRV

(Tree-Row-Volume);
CHM (Canopy Height

Model); unmanned
aerial vehicle; digital

models; grapevine
canopy measurement

Filipponi
et al. [12] Italy

Sentinel-2;
European Vegetation Archive (EVA)

dataset
PhenoCam Dataset V2.0

Forests

plant phenology;
phenological metrics;
vegetation; EO time

series analysis;
temporal

discriminant; forest
ecosystems; land

surface phenology;
Sentinel-2

Yuan S.
et al. [13]

Middle-High Latitudes
of the Northern

Hemisphere

Global Land Surface Satellite (GLASS)
AVHRR albedo;

GLASS—Global Land Cover
(GLASS-GLC);

ERA5 reanalysis products

Stable land cover
types (cropland;
forest; grassland;

tundra; barren land;
snow/ice)

blue-sky albedo;
spatiotemporal

variation; snow cover;
soil moisture; LAI

Santarsiero
et al. [14]

Municipalities of
Potenza, Matera,
Scanzano Jonico,

Policoro, Pignola, Melfi
(Basilicata—Southern

Italy)

Landsat TM/OLI;
Orthophotos by the Italian Military

Geographic Institute (IGMI);
Geo-topographic regional database

(GTDB) of Regional Spatial Data
Infrastructure

Basilicata Region

Urban and peri-urban
areas

land take; remote
sensing; SVM

algorithm; change
detection analysis;

geographic
information system

Imbrenda
et al. [15]

Basilicata (Southern
Italy)

Landsat MT; field measurements;
orthophotos (1:10,000) from AGEA

(Italian Agency for
the Delivery in Agriculture) and

MATTM (Ministry of the Environment
and Protection

of Land and Sea of Italy)

Protected areas

Natura 2000; habitat
conservation;

controlled disturbance;
landsat; NDVI; land

degradation;
Southern Italy

Simoniello
et al. [16]

South-Eastern Sardinia
(Italy)

Airborne LiDAR data (RIEGL
LMS-Q560 Full-Waveform scanner);
Orthophotos (Digicam H39); Google

Earth satellite images

Shrublands
and rocky areas

full waveform; airborne
laser scanner; raw

intensity data; point
cloud classification;
balanced accuracy;

shrublands
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2. Contributions of the Special Issue

Chu et al. [3] assessed the link between human modifications (derived from the Global
Human Modification (GHM) dataset that provides the cumulative human modification
of terrestrial lands and their estimated impacts) and changes in land-surface temperature
(LST) by MODIS (Moderate-resolution Imaging Spectroradiometer) 8-day temperature
products. The case study is represented by the Hainan Island in China because this place
has attracted a variety of human activities in the past few decades by increasing the number
of residents and tourists and a high-speed urbanization, which have been linked to thermal
environmental changes. The analysis showed that there was a positive correlation between
the mean temperature (from the 17-year temperature in the period 2000–2016) and the hu-
man modification index for the analyzed year; comparing human modification against the
land-use categories, impervious surfaces showed the highest average human modification
index, while the forest land-cover classes the lowest. These results could contribute to the
development of sustainable management and coastal ecosystem conservation plans.

Szabó et al. [4] proposed a method to determine the risk of vegetation spread in lakes
using satellite images. Sedimentation and vegetation diffusion in artificial and natural
lakes represent a significant and worldwide problem for water storage and biodiversity
conservation. The method is based on time-series monitoring of the Normalized Difference
Vegetation Index (NDVI) and the Modified Normalized Difference Water Index (MNDWI)
because the presence of aquatic plants indicates sedimentation and shallow water. Deep
water is not favorable for most plant species that instead require shallow water; thus, the
higher the vegetation density, the higher the sedimentation. On this basis, the authors also
propose the Level of Sedimentation Risk Index (LoSRI) to account for the probability of
sedimentation. The approach was developed and tested on a Hungarian lake (Lake Tisza)
by analyzing a 33-year (1984–2017) Landsat time series and comparing bathymetry data.
The most threatened water basins were related to smaller basins or more vegetated areas
(high NDVI and low percentage of open water). By identifying sedimentation areas, the
proposed method can represent a useful support for water management in shallow lakes.

Guo et al. [5] used optical data at different spatial and temporal resolutions to monitor
glacier SnowLine Altitude (SLA), which is a fundamental parameter to evaluate glacier
equilibrium and possible links and feedbacks to climate change. It provides valuable infor-
mation for improving mass balance studies useful for snowmelt runoff and hydrological
models. Landsat, Sentinel-2 and MODIS data were used to derive the glacier SLA at the end
of the melt season across areas of High-Mountain Asia, impacted by different wind systems
(the westerlies in the northwest and the Indian monsoon in the southwest). The variety
of temporal and spatial resolution of the satellite datasets helped to reliably estimate SLA
and analyze its relationship with temperature and precipitation over the past ~30 years, in
a region where ground-based observations and/or regional-scale constraints are rare.

The analysis results show that the Altai and Karakoram mountains experienced an
average increase of up to 137 m over the past 30 years, whereas the Western Himalayas and
Gongga Mountains increased by 190–282 m in the same period. The study demonstrates
that summer mean temperature is the primary factor influencing the observed glacier SLA
changes across High-Mountain Asia, with precipitation also playing a major role in some
regions. Cloud cover, which is especially prevalent in the southeastern Tibetan imagery, is
the main drawback for reliable SLA estimations and represents the main limiting factor for
extending this methodology to the entire High-Mountain Asia region. In a successive study,
Guo et al. [6] focused on the Qilian Mountains by analysing Landsat and MODIS data.
The study results confirm that temperature is the main factor affecting SLA change, and
precipitation has a certain mitigating effect on glacier retreat caused by temperature rise.
Among the interesting results of the study, there is the influence of the water vapor content
in the summer air, which was observed to also increase at high altitudes. The importance
of this parameter is crucial as it significantly increases the efficiency of the melting of snow
and ice, which leads to further ice losses. Thus, the authors stress the need for further
studies on this topic in future research about glacier change.
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Nie et al. [7] introduced a topographic correction model to optimize the remote sensing
ecological index (RSEI) for the evaluation of coal-mining areas. The optimized RSEI was
adopted to assess the ecological status of the largest anthracite mine in China (Yangquan
Coal Mine in the Shanxi Province) by analyzing a Landsat time series (1987–2020). For
the study area, the evolution of the ecological environment quality is the result of the
combined effects of climate change and human factors, with human factors being the main
driving force. In particular, the found ecological improvement is mainly related to past
ecological-restoration activities. The effects of topography are particularly relevant for three
of the four indices required for RSEI: the humidity index (WET), the normalized differential
build-up and bare soil index (NDBSI) and the heat index (land-surface temperature—LST).
They are less relevant for the greenness index (normalized difference vegetation index—
NDVI). Thus, the authors suggest that topographic correction should be used as a necessary
element in data preprocessing in areas with large terrain fluctuations, which can improve
the practicability of the ecological environment quality evaluation model.

The paper by Qian et al. [8] focused on the building of an automatic model to extract
rocky desertification areas in the region of Guizhou (China) at the aim of following their
spatio-temporal evolution. The detection of degraded zones was achieved by mixing
remote sensing observations and a suite of data encompassing bedrock exposure rate,
temperature difference, humidity and other ancillary factors. Remote sensing data used to
detect vegetation coverage relied on various MODIS time-series products, all conveniently
resampled at a spatial resolution of 250 m, which is consistent with the natural scale of
distribution of rocky desertification phenomena. Forest inventory data were used as the
ground truth to validate the presence of rocky desertification. Three data-driven models
(i.e., logistic regression; random forest—RF; and support vector machine—SVM) were
developed and tested. Major results of the study are that the joint use of the SVM model,
the vertical spatial structure of vegetation and the differences in seasonal phase are an
effective way to improve the modeling accuracy of rocky desertification.

Liu et al. [9] developed a framework based on multiple currently popular machine
learning models and multi-source remote datasets from CRU (Climate Research Unit),
GLDAS (Global Land Data Assimilation System), MODIS, GRACE-FO (Gravity Recov-
ery and Climate Experiment—Follow-On) and CMIP6 (Coupled Model Intercomparison
Project), covering meteorological, vegetation and hydrological variables for Actual Evap-
oTransipration (AET) evaluation and prediction. Although the limitation due to the lack
of substitutes on the Potential EvapoTranspiration (PET) prediction dataset from CMIP6
did not allow one to calibrate some relevant parameters for the AET prediction product,
results showed that the proposed method performed well in trend assessment and related
determinant factor identification at the regional scale for South America.

In Mascolo et al. [10], a novel approach, based on the optimal Bayesian Filter, the
Grid Based Filter (GBF), was proposed to estimate phenological stages of agricultural crops
with SAR data. The optimal GBF is properly employed by considering crop phenology as
a discrete variable with a finite number of stages, in accordance with the numerical scales
commonly employed (e.g., Biologische Bundesanstalt, Bundessortenamt and CHemische—
BBCH). Moreover, both state transitions and SAR observable evolution were properly
modeled from the statistics of the (training) data, instead of relying on curve-fitting tech-
niques and statistical assumptions. The method was applied to dual-polarization Sentinel-1
SAR time series to estimate rice crop phenology in different years and high accuracies are
achieved. The results obtained confirm the soundness of the proposed approach.

Sassu et al. [11] tested the operational use of UAV Red–Green–Blue (RGB) digital
camera data for canopy volume estimation in vineyards. In particular, UAV data are
integrated in TRV (Tree–Row–Volume) estimations by following two approaches: one
processed in ArcGIS based on the digital surface model (DSM) and digital terrain model
(DTM) to derive the canopy height mode (CHM) and the second processed in MATLAB
by solely analyzing the DSM. The correlations with TRV based on field measurements
were performed on an experimental vineyard for three years (2016, 2017 and 2019). The
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empirical results obtained confirm the appropriateness of replacing or integrating field
measures with UAV data. Taking into account the crucial role in determining the treatment
doses appropriate for a given vineyard, the possible overestimation of TRV based on
field measures can be limited with the proposed approaches, helping to reduce the use of
chemicals and increase the economic performances and environmental sustainability of
productive farms.

Filipponi et al. [12] focused on the fine-tuning of an automated and transferable
procedure combining robust and validated statistical methodologies to exploit satellite
Sentinel-2 time series. The aim of the work was to provide information about plant phenol-
ogy, as a crucial discipline for supporting crop and forest management and evaluating the
responses of ecosystems to global changes. In particular, multivariate statistical analysis
was adopted to demonstrate the ability of the generated smoothed vegetation curve, tem-
poral statistics and phenological metrics to serve as temporal discriminants to detect forest
ecosystem responses to environmental gradients. Interestingly, the observed phenological
metrics were validated adopting in situ PhenoCam data, located in the Alpine areas of
Italy, with satisfactory results. This study highlights the importance of integrated data and
methodologies to support vegetation recognition and monitoring activities.

Yuan et al. [13] combined Global Land-Surface Satellite (GLASS) products and ERA5
reanalysis products to investigate the spatiotemporal variation in blue-sky albedo for stable
land-cover types in the middle-high latitudes of the Northern Hemisphere (30~90◦N) from
1982 to 2015. The analysis is important because it shows the main drivers affecting the
blue-sky albedo of different land-cover types (snow cover; soil moisture; LAI). Because, in
this study, the temporal analysis is only on the interannual scale and given that there are
studies pointing out the obvious seasonal differences in blue-sky albedo and the impact on
blue-sky albedo due to the changing land cover type, the authors highlight the importance
of carrying out further studies in the near future to explore the spatiotemporal variation in
blue-sky albedo with stable and changing land-cover types on the seasonal scale.

Santarsiero et al. [14] exploited remote sensing data (Landsat TM/OLI) to extract
land use/land cover (LULC) for a diachronic analysis of land-take processes in Mediter-
ranean areas. Satellite data were classified through a supervised algorithm: the support
vector machine (SVM) change detection analysis. To achieve a high level of labelling of
land-take processes, satellite classification was supported by comprehensive land infor-
mation (regional geo-topographic database—GTDB), integrated in a free and open-source
GIS environment. The procedure allowed for a quick and cost-effective extraction of de-
tailed land-take maps (overall accuracy greater than 90%) useful to perform effective soil
monitoring and to assist land planning in a sustainable perspective.

Imbrenda et al. [15] proposed a procedure for the monitoring of protected areas
through the use of satellite imagery (Landsat TM data) and GIS tools, combined in a
straightforward and cost-effective methodology to assess quality conditions of terrestrial
habitats belonging to the Natura 2000 network of Basilicata (Southern Italy) and detect
habitat-degradation processes at an early stage. The core of the procedure was the detection
of vegetation anomalies (signs of stress, cover fragmentation), by analyzing the statistical
distributions of standardized NDVI (Normalized Difference Vegetation Index) for all the
habitats, supported by field data to provide public administrations with indications about
habitat priority areas (HPA), i.e., areas needing priority interventions and the overall habitat
status (DHC—Degree of Habitat Consistency). The use of freely available satellite images
and GIS tools allowed for the devised procedure to be used in the operational monitoring
of protected areas to capture incoming degradation, rationalize field measurements and
assess the effectiveness of the implemented measures.

Simoniello et al. [16] implemented a procedure to separate rocks and improve the
accuracy of shrubland vegetation classes in low-density airborne laser scanner (ALS)
acquisitions. Shrublands, such as the Mediterranean maquis, have a height and shape
very similar to those of rock spikes and outcrops; thus, in low-density ASL point clouds,
they are not discernable by adopting standard procedures based on height features. The
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procedure, based on the integration of geometric features with segmented laser intensity,
was tested in a typical rural Mediterranean environment, with a mixture of maquis with
shrubs, rocks and stones, providing an accurate class separation (preserved also for ALS
clouds with very-low-point density, <1.5 pts/m2). Moreover, the analysis of classification
errors corroborates the relevance of adopting suitable accuracy metrics (multiclass balanced
accuracy) and provides a hint for the Lambertian assumption for sclerophyllous shrubs with
minimal impact for NIR-based full-waveform LiDAR acquisitions with a small footprint.
The improvements in shrub-class accuracy, obtainable with the proposed procedure, can
better support ecological studies for biodiversity conservation and carbon-stock estimation.

3. Concluding Remarks

The topics addressed in this Special Issue cover many of the challenges faced by
research into land systems and their complexities. The fourteen research papers use a wide
variety of remote data and analysis approaches to answer important questions related
to land dynamics and their link to climate change, with a particular focus on vegetation
cover. These studies can help to advance our understanding of how remotely sensed data
can further improve knowledge on land processes at different spatial and temporal scales
to support sustainability studies. We believe that readers will benefit from the insightful
discussions and presentations in the Special Issue, which propose new scientific approaches
towards further development. They can be a valuable support for researchers who aim to
contribute to remote analyses of land cover/use, promoting ever more rapid progress.
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