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Abstract: Under the background of global warming, understanding the dynamic of vegetation
plays a key role in revealing the structure and function of an ecosystem. Assessing the impact of
climate change and human activities on vegetation dynamics is crucial for policy formulation and
ecological protection. Based on the Global Inventory Monitoring and Modeling System (GIMMS)
third generation of Normalized Difference Vegetation Index (NDVI3g), meteorological data and land
cover data, this study analyzed the linear and nonlinear trends of vegetation in northern China from
1982 to 2015, and quantified the relative impact of climate change and human activities on vegetation
change. The results showed that more than 53% of the vegetation had changed significantly, and
36.64% of the vegetation had a reverse trend. There were potential risks of vegetation degradation in
the southwestern, northwestern and northeastern parts of the study’s area. The linear analysis method
cannot disclose the reversal of the vegetation growth trend, which will underestimate or overestimate
the risk of vegetation degradation or restoration. Climate change and human activities promoted
76.54% of the vegetation growth in the study area, with an average contribution rate of 51.22% and
48.78%, respectively, while the average contribution rate to the vegetation degradation area was
47.43% and 52.57%, respectively. Vegetation restoration of grassland and woodland was mainly
affected by climate change, and human activities dominated their degradation, while cropland
vegetation was opposite. The contribution rate of human activities to vegetation change in the
southeastern and eastern parts of the study area was generally higher than that of climate change,
but it was the opposite in the high altitude area, with obvious spatial heterogeneity. These results
are helpful to understand the dynamic mechanism of vegetation in northern China, and provide a
scientific basis for vegetation restoration and protection of regional ecosystems.

Keywords: GIMMS NDVI3g; vegetation growth; ensemble empirical mode decomposition (EEMD)
method; climate change; human activities

1. Introduction

The dynamic change of vegetation can affect global carbon, the water cycle and energy
flow [1], and is considered an indicator of ecosystems’ health [2,3]. Vegetation plays an
indispensable role in maintaining regional ecological balance, especially in reducing soil
erosion [4]. Therefore, monitoring vegetation dynamics and analyzing their drivers are
very important for studying global climate change and ecological environment protection
and restoration [5,6].

The rapid development of satellite remote sensing provides a series of continuous
spatiotemporal observation data for scientific research [7]. Remote sensing data have
become an important source in the field of ecological environment monitoring because
of their advantages such as large space coverage, easy access, rich information and con-
tinuous time scale [8,9]. The normalized difference vegetation index (NDVI) calculated
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from red and near-infrared reflectances is considered an effective indicator to evaluate
vegetation growth state [7], and has good correlation with leaf area, photosynthetically
active radiation absorption, and vegetation productivity [10]; therefore, it is often used to
study vegetation dynamics and monitor the ecological environment [5,11]. The increase
(greening) or decrease (browning) of NDVI can directly reflect the enhancing or weakening
of vegetation activity [12]. Therefore, correctly describing vegetation dynamics is the key
to understanding the impact of climate change on terrestrial ecosystems [12].

Northern China includes several typical areas, such as the Loess Plateau, Xinjiang,
Inner Mongolia, Qilian Mountains and Qinghai Plateau, which are the key areas for water
and soil conservation, vegetation protection and restoration [13]. In the past few decades, in
order to protect and improve the regional ecological environment, the Chinese government
has launched a series of large-scale ecological protection and restoration projects, such as
the “Grain for Green Program” [13], “Natural Forest Conservation Program” [14], “Three
North Shelterbelt Development Program” [15], and the “Beijing-Tianjin Sand Source Con-
trol Program” [16]. The implementation of ecological projects can significantly improve the
vegetation coverage and ecological environment [17,18]. The driving factors of vegetation
dynamics can be divided into climate factors and human activities. An accurate description
of the vegetation dynamic process is helpful to accurately evaluate the relative contribution
of climate change and human activities to vegetation dynamics, and to divide the differ-
ent driving forces of vegetation dynamics, which is of great significance for ecosystem
protection and policy formulation [7].

At present, simple linear models are used by many researchers to describe the process
of vegetation change, assuming that the process of vegetation change is monotonic with a
constant trend [12]. However, the growth process of vegetation is unstable and nonlinear,
which changes with time [19]. Therefore, the linear trend analysis method may ignore
the potential greening or browning trend of vegetation during the study period [10,12]. A
nonlinear analysis method is considered effective for analyzing vegetation dynamics [7],
mainly including piecewise linear regression model [20], breaks for additive seasonal and
trend (BFAST) [21], detecting breakpoints and estimating segments in trend (DBEST) [22],
etc. The above methods are very sensitive to short-term fluctuations and abrupt changes,
which weakens their ability to detect trend shifts and turning points in long time series [12].
Wavelet analysis needs to select basic functions, which also limits its application in vegeta-
tion dynamics [23]. The ensemble empirical mode decomposition (EEMD) [24] is usually
used to study the time series trend of variables in signal and image processing [25], climate
diagnosis [26], hydrology [27] and other fields. EEMD does not need to determine the basic
function, and has good adaptability [12]. At the same time, EEMD decomposition can reveal
more potential information of nonlinear and non-stationary time series of vegetation [6],
which has been applied in the remote sensing field [10,23,28,29].

The vegetation types in northern China are complex and diverse, with most of them
being located in semi-arid and arid areas, and the natural ecological environment is very
complex and fragile [30]. Therefore, analyzing the nonlinear change characteristics of
vegetation will help us to better understand the dynamics of vegetation and its relationship
with driving factors [7]. At present, most of the relevant studies focus on typical ecological
study areas [7,31], while few studies focus on the whole of northern China, lacking a
comprehensive analysis of the spatial distribution of vegetation greening, browning and
trend reversal. Therefore, in order to deeply understand the vegetation dynamics and
its driving mechanism in northern China, the purpose of this study is to (a) analyze the
spatial pattern of linear and nonlinear changes in vegetation, (b) analyze the nonlinear
characteristics of vegetation in different land cover and climatic zones, (c) assess the
response of vegetation with different trends to climate change, and (d) quantify the relative
contributions of climate change and human activities to vegetation change.
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2. Materials and Methods
2.1. Study Area

The study area is located in northern China, which lies between 73◦37′–125◦57′E and
31◦41′–53◦18′N, with a total area of about 4,497,784 km2. This study area covers three
steps of China’s terrain, with obvious differences in altitude, ranging from −156 to 7347 m.
The altitude in the west and southwest of the study area is relatively high, while that
in the east is relatively low. The monthly average temperature is about 4.37 ◦C, and the
monthly average precipitation is about 23.48 mm. According to the precipitation, it can
be divided into arid, sub-arid, sub-humid and humid areas, of which arid and semi-arid
areas are the main types of the study area. According to the climatic zone, it is divided
into subtropical, warm temperate, middle temperate, cold temperate, and plateau climate
zones. The study area is mainly covered by warm temperate, middle temperate and plateau
climate zones [32] (Figure 1). Therefore, there are regional differences in hydrothermal
environment in the study area (Table 1), forming a unique terrestrial ecosystem. Grassland
is the main land cover type in the study area (Figure 1c).

Table 1. Detailed information on 11 climate zones in the study area.

Code Climate Condition Code Climate Condition

CTH Cold-temperate humid zone WTA Warm temperate arid zone
MTH Middle temperate humid zone PCSH Plateau climate sub-humid zone

MTSH Middle temperate sub-humid zone PCSA Plateau climate sub-arid zone
MTSA Middle temperate sub-arid zone PCA Plateau climate arid zone
MTA Middle temperate arid zone SH Subtropical humid zone

WTSH Warm temperate sub-humid zone

2.2. Data and Preprocessing
2.2.1. GIMMS NDVI3g

GIMMS NDVI3g, with 8 km spatial resolution and 15-day temporal resolution, is
composed of upper and lower scene data every month, and the time span ranges from July
1981 to December 2015. Although the spatial resolution of GIMMS NDVI3g is relatively low,
its time series is the longest and can reflect the change trend of NDVI more comprehensively
than other products [33]. Therefore, GIMMS NDVI3g has been widely used for global
or regional scale vegetation change monitoring [12]. High quality NDVI time series data
are of great significance for regional and global ecological and environmental application
research. In this study, spatial–temporal Savitzky–Golay (STSG) filter proposed by Cao [34]
was used to smooth NDVI data, so as to further improve the quality of GIMMS NDVI3g.
Finally, the filtered GIMMS NDVI3g was aggregated into monthly NDVI data by Maximum
Value Composite (MVC) [35]. Combined with previous studies, the vegetation growth
season was defined as April to October [36], and the NDVI in the growth season (GSN)
was obtained by calculating the average value from April to October.

2.2.2. Meteorological Datasets

The meteorological data included precipitation and temperature, which came from
the daily value dataset of surface climate data (V3.0) provided by China Meteorolog-
ical Data Service Center (http://data.cma.cn/ (accessed on 21 May 2018)), including
829 meteorological stations, with a time range from 1981 to 2015. The monthly raster data
with the same spatial resolution as GIMMS NDVI3g were obtained by interpolating the
meteorological station data with digital elevation model (DEM) data and
ANUSPLIN 4.2 software [37]. The DEM data were collected from the NASA Shuttle Radar
Topographic Mission [23].

http://data.cma.cn/
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Figure 1. Geographical location of the study area (a); elevation and climate zone (b); unchanged land
cover (c), precipitation conditions (d); and temperature zone (e) in the study area.

The monthly radiation raster data were downloaded from ERA5 of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int/ (accessed
on 12 July 2019)), which was the fifth generation ECMWF atmospheric reanalysis of the
global climate covering the period from January 1950 to present, with a spatial resolution
of 0.25 degrees. Similarly, we used ANUSPLIN 4.2 software and DEM data to interpolate
the solar radiation data to match the spatial resolution of GIMMS NDVI3g.

Finally, we calculated the mean temperature (GS-Tem), cumulative precipitation (GS-
Pre) and mean solar radiation (GS-SR) in the growing season of vegetation.

https://www.ecmwf.int/
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2.2.3. Other Geospatial Ancillary Data

The land cover data and climate zone data were derived from Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC, http:
//www.resdc.cn (accessed on 1 August 2019)). The land cover data contain seven pe-
riods of land cover data, with a spatial resolution of 1 km and a time span from 1980 to
2015. The first-class classification accuracy exceeds 94.3% [38], and has been widely used
in relevant research on a regional scale [30,39,40]. The land cover data were resampled
to the same spatial resolution as GIMMS NDVI3g using the nearest neighbor resampling
method. In order to reduce the impact of land cover change and classification errors, we
only selected the grids with unchanged land cover types from 1980 to 2015. The vegetation
cover types included cropland, woodland and grassland, which accounted for 18.43%,
16.02% and 65.55% of the total area (referring to the total area of cropland, woodland and
grassland).

2.3. Method
2.3.1. Sen Median Trend Analysis and Mann–Kendall Test

Sen median trend analysis and the Mann–Kendall test are widely used in trend analysis
of meteorological, hydrological and remote sensing time series [33,41]. Sen median trend
analysis can avoid the interference of outliers well, which is more suitable for studying
vegetation change trend [42]. The calculation formula can refer to previous studies [42].

The Mann–Kendall test was used to judge the significance of time series trend. The
formula of the Mann–Kendall test can refer to previous studies [30]. In the study, α was set
to 0.05, and the NDVI trend was divided into three types: monotonic browning (B to B)
(ρ < 0, |Z| > 1.96, p < 0.05), monotonic greening (G to G) (ρ > 0, |Z| > 1.96, p < 0.05) and
non-significant change (Non-sig) (|Z| ≤ 1.96, p > 0.05).

2.3.2. Ensemble Empirical Mode Decomposition (EEMD) Method

Wu [24], aiming at overcoming the shortcomings of empirical mode decomposition
(EMD), proposed ensemble empirical mode decomposition (EEMD) based on EMD. EEMD
uses Gaussian white noise to assist the original data. After the amplitude of white noise
meets certain conditions, after several calculations, the set average is enough to make
the white noise cancel each other, and its value will not have a significant impact on
the decomposition results. EEMD method has strong adaptability and avoids human
experience interference [12]. Therefore, we used EEMD to study the nonlinear change
characteristics of vegetation, and obtained the trend component that could reflect the long-
term trend of the original time series data. The decomposition steps of EEDM can refer to
previous studies [12,29].

Considering the calculation time and robustness of EEMD [12], the number of Gaussian
white noise added in this study was set to 100, and the noise amplitude was 0.2 standard
deviation of the original time series data.

In order to compare with the linear trend, we used the average changing rate of
instantaneous trend as the average EEMD trend of NDVI time series during the study
period [12,28], which was the EEMD trend of the last year divided by the time interval.

Trendeemd =
Rn(tend)− Rn(t0)

tend − t0
(1)

where t0 and tend represent the time at the beginning and end of the study, respectively.
Similarly, we used the method of Pan et al. [12] to test the significance of EEMD

trend. According to the significance test and extreme points, the EEMD trend of NDVI was
divided into five types:

(1) Non-significant (Non-sig): the trends were not significant at any year (p > 0.05).
(2) Greening to greening (G to G): the trends were monotonic increasing and were

statistically significant for at least one year (p < 0.05).

http://www.resdc.cn
http://www.resdc.cn
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(3) Browning to browning (B to B): the trends were monotonic decreasing and were
statistically significant for at least one year (p < 0.05).

(4) Greening to browning (G to B): the trends contained one local maximum, which
changed from increasing trend to decreasing trend, and were statistically significant
for at least one year (p < 0.05).

(5) Browning to greening (B to G): the trends contained one local minimum, which
changed from decreasing trend to increasing trend, and were statistically significant
for at least one year (p < 0.05).

Four pixels in the study area were randomly selected to show different types of NDVI
EEMD trends (Figure 2). The trend component Rn represents the long-term change trend of
NDVI time series. For trends with one extreme value, the location of the extreme value is
identified as the turning point (TP). Monotonic greening and browning were collectively
referred to as monotonic trend. Greening to browning and browning to greening were
collectively referred to as reversal trend.

Figure 2. Four different types of NDVI EEMD trends.

2.3.3. Partial Correlation Analysis

For multivariate correlation analysis, Pearson correlation analysis cannot exclude the
impact of mutual correlation between other climate factors on NDVI. Therefore, a partial
correlation coefficient (PCC) was used to calculate the impact of a single climate factor on
vegetation growth by treating other climate factors as control variables. For three climate
factors, PCC is as follows:

R12,34 =
R12,3 − R14,3 × R24,3√(
1− R2

14,3

)
×
(

1− R2
24,3

) (2)

R12,3 =
R12 − R13 × R23√(

1− R2
13
)
×
(
1− R2

23
) (3)

where R12,34 refers to the PCC of variables 1 and 2, and variables 3 and 4 are the con-
trol variables; R12,3 refers to the PCC of variables 1 and 2, and variable 3 is the control
variable; R12 refers to the correlation coefficient of variables 1 and 2. Similarly, other vari-
ables have similar meanings. Variable 1 refers to NDVI, and variables 2, 3, and 4 represent
three climatic factors, respectively. The PCC between NDVI and each climatic factor was
calculated. The t-test was used to estimate the significance of the calculated PCC in the case
of p < 0.05.

2.3.4. Residual Trend (RESTREND) Analysis

The driving factors of vegetation dynamics include climate and non-climate factors,
with non-climate factors usually being considered as human activities [43]. The residual
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trend analysis method is usually used to distinguish the impact of human activities and
climate change on vegetation change [39,44]. Firstly, multiple linear regression is used to
simulate the predicted value of NDVI under the influence of climate change (NDVIc). Then,
calculate the NDVI value affected by human activities (NDVIh), which is the difference
between the actual NDVI and NDVIc. The positive or negative slopes of NDVIc and
NDVIh indicate whether climate change and human activities promote vegetation growth,
respectively.

NDVIc = p0 + p1Tem + p2Pre + p3SR + ε (4)

NDVIh = NDVI − NDVIc (5)

where Tem, Pre, and SR are the temperature, precipitation, and solar radiation, respectively;
p0 p1, p2 and p3 are the fitting coefficients; and ε is the residual error term.

According to previous studies [28,41,44], climate change and human activities can be
divided into six scenarios according to the positive and negative relationship among NDVI,
NDVIc and NDVIh slopes, as shown in Table 2.

Table 2. Assess the relative contribution of climate change (CC) and human activity (HA) drivers in
vegetation dynamics under six scenarios.

SNDVI SCC SHA

Relative
Contribution

of CC

Relative
Contribution

of HA
Driving Forces of Vegetation Dynamics

+
+ + |SCC |

|SCC |+|SHA |
|SHA |

|SCC |+|SHA |
Both CC and HA induced NDVI increase (ICH)

+ − 100 0 CC induced NDVI increase (ICC)
− + 0 100 HA induced NDVI increase (IHA)

−
− − |SCC |

|SCC |+|SHA |
|SHA |

|SCC |+|SHA |
Both CC and HA induced NDVI decrease (DCH)

− + 100 0 CC and induced NDVI decrease (DCC)
+ − 0 100 HA induced NDVI decrease (DHA)

Abbreviations: SNDVI, SCC and SHA represent the slopes of NDVI, NDVIc and NDVIh, respectively.

To better explain the overall process of this study, Figure 3 shows the flow chart.
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3. Result
3.1. Temporal Variations of GSN from 1982 to 2015

The linear trend showed that the average GSN fluctuated and increased significantly,
with an average rate of 0.008/10a (p < 0.01) (Figure 4). Among them, the increasing rate of
cropland GSN was the highest and that of grassland vegetation was the lowest, which were
0.016/10a (p < 0.01) and 0.006/10a (p < 0.01), respectively. According to EEMD method,
GSN of all vegetation land also showed a significant increase trend (p < 0.05), and the
change rate increased over time from 0.010/10a in 1983 to 0.013/10a in 2015. The EEMD
trend of GSN of the three vegetation types increased significantly (p < 0.05), and the change
rates of cropland and grassland increased over time, from 0.018/10a and 0.007/10a in
1983 to 0.020/10a and 0.012/10a in 2015, respectively, while the change rate of woodland
decreased from 0.007/10a in 1983 to 0.006/10a in 2015. In order to compare with the
linear trend, we calculated their average EEMD trend, which were 0.012/10a, 0.019/10a,
0.006/10a and 0.009/10a, respectively. The average EEMD trend of cropland and grassland
was significantly higher than the linear trend, while that of woodland was the opposite.
The EEMD trends of cropland and grassland in the later stage were higher than those in
the earlier stage, indicating vegetation greenness accelerating, while the EEMD trend of
woodland was decreasing, indicating slow vegetation greenness.
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3.2. Spatial Pattern of Linear and Nonlinear Trends of GSN

Figure 5a,b show that the spatial distribution of high and low values of the change rate
of Sen trend and average EEMD trend is relatively similar. The linear trend indicated that
the area with a significant monotonic greening trend (G to G) was slightly larger than that
with a non-significant trend (Non-sig), accounting for 47.69% and 46.55% of the total area,
respectively. The area with a significant monotonic browning trend (B to B) was the lowest,
accounting for only 5.76% (Figure 5c). The regions with a monotonic greening trend of GSN
were mainly distributed in the WTSH, SH, PCA, and the southern MTA. The areas with a
monotonic browning trend of vegetation were mainly concentrated in the northeastern and
southwestern parts of the study area.
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The area with vegetation monotonic trend (monotonic greening and monotonic brown-
ing) detected by EEMD accounted for 23.41% of the total area, of which the area with
monotonic greening trend accounted for 22.29%, and the area with monotonic browning
trend accounted for only 1.12%. According to EEMD, 36.64% of the region’s vegetation
growth trend had shifted, of which 16.17% had changed from greening to browning, and
20.47% had changed from browning to greening. The areas with vegetation monotonic
greening trend were mainly distributed in the southeastern and southern parts of the study
area, while monotonic browning areas were small and scattered. The areas with greening
to browning trend of vegetation mainly occurred in the northeastern, eastern, northwestern
and southwestern parts of the study area. The areas with browning to greening trend were
mainly distributed in the central and western parts of the study area and the northern of
the plateau climate zone (Figure 5d).

Regardless of linear or nonlinear methods, the area with vegetation monotonic brown-
ing trend was the smallest, accounting for 1.12% and 5.76% of the total area, respectively
(Table 3). Compared with EEMD method, the Mann–Kendall method can only distinguish
three types (B to B, G to G and Non-sig), and it is impossible to judge whether there is a
reversal trend of vegetation growth. For example, in the central and eastern regions of the
study area, the results of the Mann–Kendall method showed a monotonic greening, while
the trend obtained by EEMD method was from browning to greening and from greening to
browning. The vegetation in about 30.70% of the study area showed a non-significant trend
using the two methods, but the vegetation in 9.36%, 4.50%, 1.77% and 0.22% of the areas
showed greening to browning trend, browning to greening trend, monotonic greening
trend and monotonic browning trend for the EEMD method, while the Mann–Kendall
method showed a non-significant change. About 20.52% of the vegetation in the study
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area showed a monotonic green trend for the two methods, but about 7.23%, 4.16% and
15.78% of the vegetation showed a non-significant trend, greening to browning trend
and browning to greening trend for the EEMD method, while the Mann–Kendall method
showed a significant monotonic greening trend. Only 0.90% of the vegetation in the study
area showed monotonic browning trend for the two methods, but about 2.02%, 2.65% and
0.19% of the vegetation for the EEMD method was a non-significant trend, greening to
browning trend and browning to greening trend, while the Mann–Kendall method showed
a significant monotonic browning trend. The area percentage of monotonic greening trend
for the Mann–Kendall method was much larger than that for the EEMD method, which
was 47.69% and 22.29%, respectively (Table 3). The results showed that EEMD is necessary
to analyze the actual evolution of vegetation and the deficiency of linear trend, while
linear trend analysis underestimates the potential possibility of vegetation restoration or
degradation.

Table 3. Superposition statistics of linear and nonlinear trend type results (%).

Trend Types
Nonlinear Trend Base on EEMD

Non-Sig G to B B to G G to G B to B Total

Mann-
Kendall
result

B to B 2.02 2.65 0.19 0 0.90 5.76
Non-sig 30.70 9.36 4.50 1.77 0.22 46.55
G to G 7.23 4.16 15.78 20.52 0 47.69
Total 39.95 16.17 20.47 22.29 1.12 100

Abbreviations: Non-sig: Non-significant, G to B: Greening to browning, B to G: Browning to greening, G to G:
Monotonic greening, B to B: Monotonic browning.

Based on EEMD, the TP of vegetation growth was obtained, which mainly occurred
before 1995, accounting for 63.65% of the area with the reversal trend, especially before
1990, which accounted for 38.29%, mainly concentrated in the central part of the study area
(Figure S1). The average EEMD trend of vegetation increased from 0.004/10a before the
TP to 0.008/10a after the TP. The trend increased significantly, which was twice more than
before the TP. Before the TP, the trend of vegetation degradation was mostly concentrated in
the range of −0.001 to 0 (Figure 6). Before and after the TP, the browning to greening trend
can be divided into monotonic browning and monotonic greening trend, and the greening
to browning trend can be divided into monotonic greening and monotonic browning trend.
The vegetation restoration trend was obvious, from −0.007/10a of browning trend to
0.026/10a of greening trend. Similarly, the risk of vegetation degradation was very high,
from 0.018/10a of greening trend to −0.016a/10a of browning trend. After the TP, the
vegetation growth and restoration effect in the central part of the study area was obvious
and maintains a high greening trend, while the vegetation changed from a high greening
trend to a high browning trend in the southwestern, northwestern, and northeastern parts
of the study area, with a high risk of degradation (Figure 6). Therefore, it is necessary to
pay more attention to the shift trend of vegetation and evaluate the degradation risk of
different vegetation.

3.3. EEMD Trend of Vegetation in Different Climatic Zones and Land Cover

The cropland area with an increasing trend (monotonic greening and browning to
greening) accounted for 56.67%, which was much higher than that with degradation or
potential degradation trend (monotonic browning or greening to browning) (accounting
for 19.20%) (Table 4). The vegetation of many croplands had changed from previous
degradation to restoration. The trend of woodland was mainly non-significant, accounting
for 42.44% in area. Among the significant trends, the monotonic greening area was the
largest (23.06%), followed by greening to browning (20.63%). Similarly, the area of grassland
with the non-significant trend accounted for 43.80%. Among the significant trends, the
browning to greening area accounted for the largest (21.74%), followed by monotonic
greening (18.84%). The areas of cropland, woodland and grassland with reverse trend were
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higher than that with monotonic trend, which accounted for 41.05% vs. 34.82%, 33.24% vs.
24.32%, 36.22% vs. 19.98%, respectively. The potential degradation risk of woodland was
higher, followed by cropland (Table 4).
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Table 4. The trend of vegetation GSN in different land cover types for EEMD (%).

Land Cover
Types

Nonlinear Trend Base on EEMD

Non-Sig G to B B to G G to G B to B Total

Cropland 24.13 18.28 22.77 33.90 0.92 100
Woodland 42.44 20.63 12.61 23.06 1.26 100
Grassland 43.80 14.48 21.74 18.84 1.14 100

Abbreviations: Non-sig: Non-significant, G to B: Greening to browning, B to G: Browning to greening, G to G:
Monotonic greening, B to B: Monotonic browning.

The cropland in SH, WTSH, WTA and MTSH showed an obvious increasing trend,
accounting for 73.06%, 61.58%, 62.33% and 57.25% of the total cropland area in the corre-
sponding climate zones, respectively (Table S1). The increasing trend of woodland in SH
and WTSH was obvious, accounting for 54.70% and 63.54% of the total woodland area
in the corresponding climate zone, respectively, of which the monotonic greening trend
accounted for 44.16% and 44.52%, respectively. The area proportion of the woodland with
the non-significant trend in CTH, MTSH and MTSA was higher than 50%, and the potential
risk of vegetation degradation was high. The potential degradation risk of grassland in
PCSH was the highest, followed by the CTH (the number of pixels in MTH was small and
could be ignored), and the areas from greening to browning trend were 48.49% and 30.68%,
respectively. Grassland had been significantly improved in MTA, WTSH, WTA, PCA and
SH, accounting for 43.60%, 79.92%, 42.13%, 58.83% and 73.94% of the grassland area in the
corresponding climate zones, respectively. Among them, the monotonic greening trend of
grassland in WTSH and SH was 42.06% and 58.79, respectively, which was significantly
better than that in other climatic zones.

3.4. Relationship between Vegetation Dynamics and Climate Factors
3.4.1. Correlation between Vegetation Dynamics with Reversal Trend and Climate Factors

The PCCs between GSN and GS-Tem, GS-Pre, and GS-SR were abbreviated as RTem,
RPre and RSR, respectively. Before the TP, RTem, RPre and RSR were mainly positive correla-
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tion, accounting for 58.92%, 68.83% and 56.15%. The regions with RTem < 0 were mainly
distributed in the northwestern WTSH and the southern MTA. Regions with RPre < 0 were
mainly distributed in the southern part of plateau climate zone and central WTSH. The
regions with RSR < 0 were mainly concentrated in the central MTA, the western PCSA, the
western WTSH and the high altitude region (Figure 7a,c,e). After the TP, the area with
RTem > 0 and RSR > 0 decreased from 58.92% to 50.47% and 56.15% to 52.48%, respectively,
while the area with RPre > 0 increased slightly from 68.83% to 70.25%. Before and after the
TP, the areas of RTem, RPre and RSR passing the significance test of p < 0.05 increased from
13.26%, 9.73% and 7.38% to 26.48%, 36.52% and 29.13%, respectively (Figure 7b,d,f).

Before and after the TP, the correlation between GSN and the three climate factors had
changed significantly (Figure 7a–f). According to the square value of RTem, RPre and RSR, the
dominant climate factors of vegetation growth were obtained (Figure 7g,h). Before the TP,
the temperature-dominated area accounted for 39.34%, followed by precipitation (34.78%).
After the TP, vegetation growth was mainly controlled by precipitation (43.70%), and the
area controlled by solar radiation (28.83%) was slightly higher than that controlled by
temperature (27.47%). The performance of different type vegetation was slightly different.
Before the TP, cropland and grassland was mainly affected by temperature (38.57% and
39.11%), followed by precipitation (35.38% and 37.09%), while woodland was mainly
affected by temperature and solar radiation (41.49% and 34.88%) (Table 5). After the TP,
precipitation became the dominant factor, accounting for 48.41% and 43.40% of cropland
and grassland, and the effects of temperature and solar radiation on cropland and grassland
were close. The woodland was mainly affected by precipitation and solar radiation (38.39%
and 36.34%), and there was little difference in the percentage of their dominant area
(Table 5). The climate dominant factor of vegetation growth changed from temperature
to precipitation in the northwestern WTSH and the central and southern MTA, while
from temperature to solar radiation in PCSH. The correlation between vegetation and
climate factors reversed or increased before and after the TP, indicating that the response of
vegetation to climate change shifted after the TP.

Table 5. Area percentage of vegetation controlled by different climate factors in different land cover
types (%).

Land Cover
Before the Turning

Point After the Turning Point Monotonic Trend Non-Significant Trend

Tem Pre SR Tem Pre SR Tem Pre SR Tem Pre SR

Cropland 38.57 35.38 26.05 25.00 48.41 26.59 45.76 39.02 15.22 20.68 57.97 21.35
Woodland 41.49 23.63 34.88 25.27 38.39 36.34 36.12 22.84 41.04 23.77 28.04 48.19
Grassland 39.11 37.09 23.8 28.74 43.40 27.86 52.71 33.90 13.39 25.95 55.15 18.90

ALL 39.34 34.78 25.88 27.47 43.70 28.83 48.04 33.47 18.49 24.99 50.85 24.16

Abbreviations: Tem, Pre, SR represent temperature, precipitation, and solar radiation, respectively.

3.4.2. Correlations between Vegetation Dynamics with Monotonic Trend and
Non-Significant Trend and Climate Factors

The GSN with monotonic trend was mainly positively correlated with GS-Tem, GS-
Pre and GS-SR with 89.16%, 91.51% and 77.19% the area percentage (Figure 8a,c,e). The
area with significant positive correlation between GSN and GS-Tem was slightly higher
than that with non-significant positive correlation (Figure 8a). The areas with significant
positive correlation between GSN and GS-Pre and GS-SR accounted for 37.01% and 15.77%,
respectively (Figure 8c,e). The vegetation growth in the northern and western regions of
WTSH, the WTA and plateau climate area was mainly controlled by temperature. Veg-
etation growth was mainly affected by precipitation in the northwestern part of WTSH
and the southern part of MTA. The vegetation growth dominated by solar radiation was
mainly distributed in the eastern part of SH, southern of WTSH and CTH (Figure 8g). The
significant positive correlation area between NDVI and temperature was higher than that
of precipitation and solar radiation. Overall, the vegetation growth with monotonic trend
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was mainly controlled by temperature, accounting for 48.04% of the study area, followed
by precipitation (33.47%) (Figure 8g). The order of main climatic factors affecting cropland
and grassland was consistent with the overall vegetation, while woodland was mainly
affected by solar radiation (41.04%), followed by temperature (36.12%) (Table 5).
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The GSN with non-significant trend was positively correlated with GS-Tem, GS-
Pre and GS-SR, accounting for 63.56%, 78.52% and 52.77%, respectively (Figure 8b,d,f).
The area with significant positive correlation between GSN and GS-Pre accounted for
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31.11%, which was much higher than that between GS-Tem and GS-SR (10.58% and 7.47%,
respectively). The regions with significant RPre > 0 were mainly distributed in MTSA and
MTA. The regions with significant RSR > 0 were mainly concentrated in the northeastern
and southeastern parts of the study area (Figure 8b,d,f). The vegetation with non-significant
trend was mainly controlled by precipitation (accounting for 50.85%), which was mainly
distributed in arid and semi-arid areas. The vegetation in the plateau climate area was
mainly controlled by temperature, while the vegetation dominated by solar radiation
was mainly concentrated in the northeastern and southeastern parts of the study area
(Figure 8h). Similarly, the impact of precipitation on cropland and grassland was larger
than solar radiation and temperature, while solar radiation had the greatest impact on
woodland, followed by precipitation (Table 5).

3.5. Identity the Driving Forces in Vegetation Dynamics

Climate change and human activities were conducive to the vegetation growth in
most areas, accounting for 76.54% of the total area (Figure 9). A total of 61.50% of the
vegetation restoration in the study area was affected by the interaction of climate change
and human activities (ICH), of which the average contribution of climate change and
human activities to ICH was 48.71% and 51.29%, respectively (Figure 9). ICH-induced
vegetation restoration was mainly concentrated in the central, southeastern, southern and
western parts of the study area. IHA-induced vegetation restoration was mainly distributed
in MTSA, accounting for 5.80% of the study area. However, 9.24% of the area was only
affected by ICC, which was distributed in CTH, PCSH and PCSA. The vegetation on
23.46% of the study area had degraded, which was mainly distributed in the northeastern,
southwestern and northwestern parts of the study area. DCH was the main driving force of
vegetation degradation, accounting for 14.63% of the total area, followed by DHA (5.13%)
and DCC (3.70%). The average contribution of climate change and human activities to
DCH was 50.79% and 49.21%, respectively (Figure 9).

On the whole, the average contributions of climate change and human activities were
50.33% and 49.67%, with 51.22% and 48.78% for the vegetation restoration area, and 47.53%
and 52.57% for the vegetation degradation area, respectively (Table 6). In general, climate
change was the dominant factor in the vegetation restoration area, and human activities
were the main driving force in the vegetation degradation area, but the dominant factors of
different types of vegetation were significantly different. In the vegetation restoration area,
the growth of woodland and grassland was mainly controlled by climatic factors, while
the cropland was mainly affected by human activities. In the vegetation degradation area,
human activities were the main factors of leading woodland and grassland to degrade,
while cropland was mainly controlled by climatic factors. Overall, the contribution of
climate change to the dynamics of woodland and grassland was higher than that of human
activities, and the contribution of human activities to the dynamics of cropland was much
higher than that of climate change (Table 6). The dominant factors of vegetation restoration
and degradation had significant spatial heterogeneity (Figure 9a,b). The contribution of
human activities was significantly higher than that of climate change in the southeastern
part of the study area, while it is generally lower than that of climate change in the western
and northwestern parts of the study area.
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Figure 9. The relative contribution of climate change (a) and human activities (b) to vegetation
change, and the spatial distribution of driving forces of vegetation dynamics (c). (ICH: NDVI increase
caused by climate change and human activity; IHA: NDVI increase caused by human activity; ICC:
NDVI increase caused by climate change; DCH: NDVI decrease caused by climate change and human
activity; DCC: NDVI decrease caused by climate change; DHA: NDVI decrease caused by human
activity).

Table 6. The contribution rate of climate change (CC) and human activities (HA) to different types of
vegetation dynamics in the study area from 1982 to 2015 (%).

Types Cropland Woodland Grassland ALL Land Cover

CC HA CC HA CC HA CC HA

Vegetation
restoration 37.10 62.90 57.62 42.38 54.31 45.69 51.22 48.78

Vegetation
degradation 56.80 43.20 33.23 66.77 49.72 50.28 47.43 52.57

Overall study area 39.73 60.27 51.04 48.96 53.14 46.86 50.33 49.67

4. Discussion

This study showed that the trend of NDVI has an increasing rate over time for the
EEMD method (Figure 4), which indicated that the process of vegetation was not linear, but
nonlinear and variable [10]. Due to its simplicity and convenience, linear trend analysis is
still used by many researchers [14,44]. However, linear trend analysis can only obtain the
average change rate of vegetation during the study period, and judge the type of change
trend [10]. It is easy to underestimate or overestimate the potential risk of vegetation
restoration or degradation [12]. The long-term trend obtained by EEMD reveals the change
process and trend of vegetation growth over time [23], and has been applied in many
studies [6,23,42].
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This study showed that the TP of vegetation from browning to greening happened in
the early 1990s, which was consistent with the results of Xu et al. [23], while the time of
vegetation growth from greening to browning in high altitude areas, such as the southern
of the plateau climate zone and the northwestern of the study area, the eastern WTSH,
and the CTH was usually later than that in other greening to browning areas (Figure S1).
The TP of vegetation has obvious geographical heterogeneity. However, some researchers
obtained one or two turning points based on a piecewise linear regression method [45,46]
for large-scale regional vegetation change analysis, which will not accurately reflect the real
situation of vegetation change. In addition, the vegetation growth trend in Central Asia,
Eastern Europe and East Africa [10,12,47,48] had also been reversed on a large scale, which
may provide early warning for ecosystem changes under global environmental change [23];
therefore, researchers should pay more attention.

The vegetation in the high altitude area in the northwestern and southwestern parts
of the study area experienced a trend transfer process from greening to browning
(Figures 5 and 6), which was the same as Liu’s research results [30], but not consistent
with the increasing trend considered by other researchers using linear trend analysis [49,50].
From 1982 to 2015, the temperature and solar radiation showed an increasing trend, while
the precipitation changed from decreasing to increasing (Figure S2). When the temperature
rises, the snow on the mountain will melt, which increases the surface runoff and soil
moisture [51–53]. In addition, the increase of temperature can improve the root activity of
vegetation, improve the photosynthesis rate of vegetation, and contribute to the growth
of vegetation [54]. However, the rapid rise in temperature may promote vegetation tran-
spiration, thus accelerating soil water loss [55]. When forced by soil water, vegetation
photosynthesis will slow down, which then depresses the growth of vegetation [56]. In
addition, the increase in precipitation in high altitude areas means the shortage of sunshine
time and the reduction in solar radiation, and the photosynthesis of vegetation will also be
suppressed, which is not conducive to the growth of vegetation [57,58]. On the other hand,
human activities, such as excessive grassland grazing, are also an important contributor
to the vegetation growth trend from greening to browning [59,60]. The vegetation in the
central part of the study area, especially the Loess Plateau, had experienced a process
from browning trend to greening trend (Figures 5 and 6), which was closely related to
ecological projects implemented in China, such as Natural Forest Conservation Program,
Grain for Green Program and grazing management, which can promote the significant
increase in vegetation coverage [61]. In the early stage, the increase in temperature and
solar radiation and the decrease in precipitation triggered the degradation of vegetation in
central Inner Mongolia [36]. However, in the later period, the increase in precipitation and
the implementation of the Beijing-Tianjin Sand Source Control Program effectively resisted
the adverse impact of climate, and promoted the reversal of vegetation growth trend from
browning to greening [36,45].

According to different geographical locations and vegetation types, climate change
and human activities play different roles in vegetation dynamics [60]. The change rate
of cropland is significantly higher than that of woodland and grassland (Figure 4), with
cropland generally being distributed in low altitude areas (Figure 1). Therefore, it is
highly affected by human activities, such as artificial irrigation, application of chemical
fertilizer, and change of planting structure or varieties, which are conducive to vegetation
greening [58]. However, the cropland located in the northeastern part of WTSH has a
high potential degradation risk (Figures 5 and 6), which may be related to the population
increase and the rapid development of urbanization in this area [58]. In the CTH, MTSH
and MTSA climate zones, woodland was accompanied by a high potential degradation risk
(Table S1). The woodland in CTH was mainly affected by temperature and solar radiation,
while in MTSH and MTSA, it was mainly affected by temperature and precipitation [36].
From 1990 to 2006, temperature and solar radiation showed increasing trends, while
the precipitation showed a decreasing trend, while from 2006 to 2015, the trend was
opposite [36]. The growth of woodland in arid and semi-arid areas requires significantly
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higher water conditions than that in humid climate areas, so the potential degradation
risk of woodland may be caused by adverse factors of climate conditions. In addition, the
rapid development of social economy and more urban construction activities may seriously
damage the ecological environment, reduce the vegetation coverage, and lead to vegetation
degradation [45,62].

The geographical difference of grassland change trend was obvious (Figure 5). Ad-
verse factors of climate change and unreasonable human activities, such as long-term
overgrazing, have reduced the self-recovery ability of grassland vegetation and caused the
degradation of most natural grasslands to varying degrees [63,64], which seriously affects
the sustainable development of grassland animal husbandry and the stability and devel-
opment of economic and social in pastoral areas. However, favorable climatic conditions
and reasonable ecological restoration measures, such as reducing grazing intensity and
extending the restoration time of pasture, can effectively improve vegetation productivity
and promote vegetation restoration [65]. In addition, human activities can also play a posi-
tive role in vegetation restoration under adverse climatic conditions [45]. Therefore, active
human intervention and measures can promote the restoration of degraded ecosystems
and promote regional sustainable development [66].

The methods used in this study have been widely recognized [12,41,44], but there are
still some shortcomings. GIMMS NDVI3g data with 8km spatial resolution cannot reflect
more detailed spatial information, and it is difficult to reflect the changes of local vegetation
within the pixel scale. Therefore, the NDVI products with higher spatial resolution should
be used in future study. Because of the difference in geographical location, the response of
vegetation to climate factors has different lag effects [43]. Therefore, in future studies, the
lag effects between vegetation and climate factors will be considered in order to improve
the accuracy of assessment [41]. In the study, climate factors only selected temperature,
precipitation and solar radiation, ignoring the impact of other factors on vegetation change,
such as CO2 [67], nitrogen deposition [68], and soil moisture [69]. The interactive effect
of temperature, precipitation and solar radiation is also not considered in this study. In
addition, extreme climate events have a great impact on different ecosystems, and the
impact on vegetation changes shows regional diversity [70,71]. Therefore, more climate
factors will be considered to analyze the impact of climate change on vegetation change,
which will help comprehensively understand the relationship between vegetation and
climate, and more accurately assess the contribution of human activities to vegetation
change. At present, human activities are analyzed as a whole, and how to quantitatively
evaluate the impact of different types of human activities on vegetation change is still an
important issue [72].

5. Conclusions

This study analyzed the linear and nonlinear trends of vegetation in northern China
from 1982 to 2015, assessed the response of different types of vegetation to climate change,
and quantified the relative impact of climate change and human activities on vegetation
change. The results show that the vegetation in most areas has undergone significant
changes during the whole study period. The vegetation growth in 36.64% of the areas had
a reverse trend. There were potential risks of vegetation degradation in the southwestern,
northwestern and northeastern parts of the study area. The potential degradation risk of
woodland was higher than that of cropland and grassland vegetation.

The correlation between vegetation and climate factors was reversed or enhanced
before and after the turning point. Temperature and precipitation were the main climatic
factors affecting the vegetation with a monotonic trend, and precipitation dominated the
vegetation with a non-significant trend. The areas affected by temperature were mainly
located in high altitude areas, arid and sub-arid areas were mainly affected by precipitation,
and humid and sub-humid areas were mainly affected by solar radiation.

Climate change and human activities had promoted vegetation growth in 76.54% of the
study area. Overall, the average contribution rates of climate change and human activities
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to vegetation change were 50.33% and 49.67%, respectively. The vegetation restoration of
grassland and woodland was mainly dominated by climate change, and human activities
mainly dominated the vegetation degradation, while the cropland vegetation had the
opposite performance. The contribution rate of human activities to the vegetation change
in the southeastern and eastern parts of the study area was generally higher than that
of climate change, but it was opposite in the higher altitude area, with obvious spatial
heterogeneity. The results are helpful to understand the dynamic changes of vegetation in
northern China, and provide important reference value for regional ecological protection
and restoration.
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.3390/rs14236163/s1, Figure S1: the timing of the turning points of NDVI in growing season with
EEMD method (p < 0.05). Figure S2: EEMD long-term trend of temperature, precipitation and solar
radiation in the study area from 1982 to 2015. Table S1: statistical proportion of NDVI EEMD trend in
vegetation growing season under different climatic zones (%).
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