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Abstract: Understanding forest tree phenology is essential for assessing forest ecosystem responses
to environmental changes. Observations of phenology using remote sensing devices, such as satel-
lite imagery and Unmanned Aerial Vehicles (UAVs), along with machine learning, are promising
techniques. They offer fast, accurate, and unbiased results linked to ground data to enable us to
understand ecosystem processes. Here, we focused on European beech, one of Europe’s most com-
mon forest tree species, along an altitudinal transect in the Carpathian Mountains. We performed
ground observations of leaf phenology and collected aerial images using UAVs and satellite-based
biophysical vegetation parameters. We studied the time series correlations between ground data
and remote sensing observations (GLI r = 0.86 and FCover r = 0.91) and identified the most suitable
vegetation indices (VIs). We trained linear and non-linear (random forest) models to predict the
leaf phenology as a percentage of leaf cover on test datasets; the models had reasonable accuracy,
RMSE percentages of 8% for individual trees, using UAV, and 12% as an average site value, using
the Copernicus biophysical parameters. Our results suggest that the UAVs and satellite images can
provide reliable data regarding leaf phenology in the European beech.

Keywords: leaf phenology; European beech; Fagus sylvatica; UAVs; vegetation indices; Copernicus
biophysical parameters; machine learning prediction

1. Introduction

Leaf phenology is a phenomenon that arises from biological processes in plant leaves,
which also control the carbon and water cycles [1]. It is the study of monitoring leaf
expansion, coloration, and leaf drop during the plant growing season [2]. By monitoring
plants’ phenology, one can quantify changes in ecosystem processes such as photosynthesis
and transpiration [3] and evaluate the impacts of climate change on ecosystems [4]. Seasonal
changes can be studied from a global scale to individual trees and describe the intra- and
inter-species tree strategies of adaptability [5]. Currently, there is a trend of increasing
annual temperatures, which becomes more noticeable during the tree species’ growing
season [6]. The effects of this trend on the Earth’s surface can be identified in the prevalence
of processes such as desertification and melting glaciers; melting glaciers cause rising sea
levels, indirectly affecting soil erosion [7]. As a result of climate changes, forest tree species
are forced to adapt and react through their regulation mechanisms. Therefore, the abilities
of forest tree species to respond to the effects of climate change will be increasingly put
under pressure and even pushed to their limits of survival. Therefore, it is of growing
interest to explain the phenological patterns in the context of these changes [8], especially by
reading the spectral variation during the growing season through high-resolution images
from both UAVs and satellites [9].
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Field observations of tree phenology offer valuable information regarding tree-level
monitoring, but they are labor-intensive [10]. Time series observations of spring phenology
and senescence may lead to a better understanding of the effect of climate variability or
climate change on plant biological events in direct correlation with temperature and precip-
itation [11], and genetic variability among bio-groups could be determined with a spatial
assessment [12]. Often, in multi-layered stands or closed canopies, evaluation from the
ground by a single observer can be complex, and errors can occur. Lately, remote sensing
technology, such as UAVs, and satellite imagery, have gained attention for their potential
use in monitoring phenology and other biological processes [13]. Images collected from
satellite sensors have provided essential information regarding the quantification of leaf
phenology. However, they are limited by weather conditions (clouds, wind, rain, and fog)
and their resolution, providing insufficient data, as seen in some studies regarding individ-
ual tree-level analyses [14]. Phenocams have been used successfully in the quantification of
forest leaf phenology at individual tree levels, with high frequency, without being obscured
by weather conditions [15]. However, they have provided insufficient sample sizes for
intra- and interspecific variation analyses, being limited to certain specific trees. Another
type of near-surface remote sensing technology that can capture species-specific phenol-
ogy [16], UAV-mounted sensors, has also been proven effective in providing information
for intra- and interspecific variation analyses. Images collected from UAVs provide a clear,
unobstructed overview of a canopy and can be used to monitor individual phenological
patterns in relatively large areas [4] and for a high number of trees [10], but they also
offer a good overview of the tree crown at a branch-level resolution [3,17], which can be
linked with ground measurements of trees [3]. UAV devices are becoming more affordable
and abundant, thus becoming a viable technology that will probably be complementary
to satellite and plane image collection [18]. UAV observations are a robust approach to
quantifying the start and the end of the growing season at the individual level [17]. Satellite
imagery is considered a large-scale product [18], and monitoring intraspecific tree biological
processes such as phenology is challenging. Cloud conditions influence the images, and it
can be time-consuming to produce a clear product. However, the Copernicus Global Land
Service is a free and open-access data platform that offers access to a series of biophysical
products regarding the status and evolution of the land surface at a global scale. Satellites
are the only instrument used for extensive and global-scale monitoring. The biophysical
parameters of the Copernicus program have a high potential to monitor the changes in the
ecosystems, habitats, and land cover. These high spatial resolution products provide means
to quantify the phenology and productivity [19] and interannual variability of ecosystems.

The VIs are single values based on various combinations of reflected radiation of two or
more wavelengths derived from vegetation’s reflectance properties. Typically, they quantify
the red, green, blue, and near-infrared (NIR) band lengths. They are widely used to monitor
tree phenology [5,10,18,20] and crop plant development [21,22] by quantifying chlorophyll
or leaf nitrogen content [23–25]. The image acquisition conditions such as brightness, angle
of reflectance, or stability can significantly impact the VIs observed values [21] of the same
scene. Although the Normalized Difference Vegetation Index (NDVI) is a widely used
VI to monitor the vegetative cover [4,13,16] and is strongly correlated with chlorophyll
content [23] by using near-infrared light (NIR), it is limited to multispectral or hyperspectral
cameras. Nevertheless, good results in monitoring tree phenology during the growing
season were obtained using VIs collected with image sensors based only on red, green, and
blue (RGB) colors [4,26].

The European beech (Fagus sylvatica L.) has a large distribution area and high economic
value. However, the competitive capacity of the European beech might be reduced due
to climate change [27], as it is a tree species that prefers a moderate climate, avoiding
extremities in temperature [28]. Thus, to more effectively understand local adaptation, it is
necessary to monitor and analyze the phenological expressions of forest tree species with
regard to climate factors [29]. The European beech stores high quantities of carbon in its
biomass and has good malleability in terms of adaptation to new ecological conditions,
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a wide range of products of wood use, and resistance to pests and diseases. All of these
characteristics provide reasonable justification for the study of this forest tree species [30].

In this paper, we aimed to assess the potential of studying the leaf phenology of the Eu-
ropean beech in both individual trees by UAV systems equipped with an RGB camera and
as average site percentage of leaf cover through the biophysical parameters collected from
the Copernicus data platform. The main objective was to assess leaf phenology (leaf unfold-
ing and senescence) during a growing season across an altitudinal gradient. Specifically,
we asked: (1) What are the most useful UAV-based imagery VIs for assessing/ predicting
leaf phenology at individual tree levels? (2) what are the most appropriate biophysical
parameters derived from the Copernicus satellite for assessing site-level leaf phenology?

2. Materials and Methods
2.1. Study Sites

The study was performed along an altitudinal transect in the South-Eastern Carpathi-
ans Mountains (Figure 1). The distribution of beech trees in the studied area covers an
altitude ranging from 1450 m in Site 1 to 550 m in Site 5 (Table 1, Figure 1). In each of the
five study sites, 30 individual adult beech trees located at a minimum distance of at least
25 m from each other were analyzed. All individuals were selected on north-facing slopes.
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Figure 1. Topographic map of the study area in Brasov region, and the five sites, red circles across the
altitudinal gradient (left-hand corner map). Study sites are numbered following Table 1.

The study sites overlapped with the natural beech range in the Brasov area, located
on a 20 km transect with a 900 m elevation difference. These were chosen in mixed stands,
where the European beech forms mixtures with other deciduous trees, such as hornbeam
and sycamore, and conifers, such as the Norway spruce and silver fir. The age of these
stands ranges from 80 to 120 years.
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Table 1. Description of study sites.

Number Name Geographic
Coordinates

Altitude Range
(Meters) Mean Temperature (◦C) 1 Mean Precipitation

(Millimeters) 1

Site 1 Ruia 45◦34′25.41′′N
25◦33′11.67′′E 1300–1450 3.5 1023

Site 2 Lupului 45◦34′54.64′′N
25◦32′36.43′′E 1000–1150 5.2 957

Site 3 Solomon 45◦36′59.75′′N
25◦33′39.87′′E 800–1000 6.2 855

Site 4 Tampa 45◦38′18.86′′N
25◦35′38.56′′E 650–750 7.2 791

Site 5 Lempes 45◦43′34.88′′N
25◦39′30.66′′E 550–610 7.5 712

1 data extracted from WorldClim.

2.2. Ground Phenological Observations

The methodology proposed by Vitasse [31] was used during the fieldwork. It is
an observation procedure of the phenology that showed promising results [32]. The
populations studied were sampled along the altitude gradient following the clinal variation.
This sampling was justified by the subsequent possibility of performing analyses on buds,
specifically to determine apical bud phenology.

In these five study sites, we monitored the timing of leaf unfolding (LU) and senes-
cence during the 2021 growing season. We visited each population twice a week, from
April to June and September to November, to carry out phenological observations. These
observations were made with the naked eye or using binoculars, with a magnifying power
of 10×. These observations were always carried out by the same observer, approximately
15 m away from the individual.

2.2.1. Leaf Unfolding

The development stages of buds, from dormancy to LU, were correlated with values
of the following scale (Table 2):

Table 2. Phenological stages linked to the observed percentage of leaf cover.

Code Phenological Stage (3) Range of the Percentage of Leaf
Cover (%) (2)

0 Dormant winter bud <25
1 Bud-swollen 26–50
2 Bud-burst 51–75
3 At least one leaf unfolding >75

Furthermore, this quality scale comprising the stages of the phenophase of bud open-
ing and LU for the European beech (Table 2) was converted into a quantitative scale in order
to determine the units of exact measurement and to compare them with the results obtained
from the processing of images taken from the UAV devices and biophysical parameters
from Copernicus.

Subsequently, we visually assessed the proportion of buds in the last stage of devel-
opment. These stages were assigned to each tree via linear interpolation between two
consecutive data field observations. For a bud, we considered the LU stage to have been
reached when at least one of its leaves was fully unfolded. For an individual tree, we con-
sidered the leaf unfolding date (LUD) to be when at least 50% of the buds had reached this
stage. We calculated the LU for each study site population as the average of the estimated
LUD for the 30 sampled individuals.
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2.2.2. Senescence

In autumn, we assessed the percentage of missing leaves and the percentage of colored
leaves from the total remaining ones in the canopy visually, according to the following
formula [31]:

%CFL = (%CL × (100 − %FL))/100 + %FL,

where: %CFL is the % of colored or fallen leaves, %CL is the % of colored leaves, %FL is
the % of fallen leaves.

2.3. Time Series Data Collection of Phenological Observations and Image Processing Using UAVs
2.3.1. Image Acquisition

In Site 2 and Site 3 (Table 1), the 60 studied trees and the ground control point’s precise
coordinates were collected using Global Navigation Satellite System (GNSS) surveying
equipment. Simultaneously with the field observations of trees’ phenological state in two
studied sites, aerial images were collected using a UAV.

We used a Phantom 4 Pro v2 model equipped with a Red Green Blue sensor (RGB)
of 1-inch CMOS with 20 Megapixel (effective pixels) and lens FOV 84◦ 8.8 mm/24 mm
(35 mm equivalent format) f/2.8 − f/11. The automatic flight missions were created using
PIX4Dcapture [33] software to cover the studied trees. Due to the rough terrain in the
two sites (Appendix A Figure A1), we used double grid missions to capture pictures at a
70◦ camera angle and 80%/ 60% overlap for a high-quality result of the Digital Surface
Model, which increased the quality of the resulted ortho-photo. The flight missions were
performed at an altitude of 150 m (minimal ground sample distance, GSD of 4 cm/px). For
each flight, we used the same parameter flight missions. All flights were performed, as
much as possible, at midday with constant light conditions, either the clear sky or overcast.
The flight speed ranged according to the wind condition and was controlled automatically
by the software.

A total of 32 flights (total for both locations) were conducted in the growing season of
2021, which collected images during LU and senescence (Figure 2).
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length values.
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2.3.2. UAV Image Processing

A total of 6080 pictures were collected, averaging 190 pictures per flight. The collected
images were processed using Open Drone Map [34], open-source software, resulting in
an RGB ortho-rectified image for each flight. For all the ortho-photo processing, we used
the same workflow parameters, (1) align photos, choosing high accuracy; (2) build dense
point cloud, choosing high quality; (3) build Digital Elevation Model; (4) build ortho-photo,
choosing blending mode Mosaic. The ortho-photo products were georeferenced using
ground control points and QGis software [35]. For each resulted ortho-photo, shady areas
were identified by filtering pixels that matched a threshold of RGB values (which were
initially estimated from sample identification) and replaced with null values using the
raster package in R (Appendix A Figure A2).

Crown delineation was conducted manually for each of the 60 trees, and using rgdal
package, the VIs were calculated, and the mean, median and standard error of pixel values
was collected at each flight (Table 3).

Table 3. Estimated vegetation indices used in the analysis.

No. Name Abbreviation Equation Reference

1 Digital number for red band R red/255 [36]
2 Digital number for green band G green/255 [36]
3 Digital number for blue band B blue/255 [36]
4 Green Red Ratio Index GRRI G/R [37]
5 Blue Green Ratio Index BGRI B/G [38]
6 Green Blue Difference Index GBDI G − B [23]
7 Red Blue Difference Index RBDI R − B [23]
8 Excess of green index ExG 2G − R − B [39]
9 Grayscale Index GRAY (R + G + B)/3 [24]

10 Chromatic coordinates for red/
Normalized red of RGB NRRGB R/(R + G + B) [39]

11 Chromatic coordinates for green/
Normalized green of RGB NGRGB G/(R + G + B) [39]

12 Chromatic coordinates for blue/
Normalized blue of RGB NBRGB B/(R + G + B) [39]

13 Normalized Green Red
Difference Index NGRDI (G − R)/(G + R) [40]

14 Kawashima index KAW (R − B)/(R + B) [23]

15 Normalized Green Blue
Difference index NGBDI (G − B)/(G + B) [41]

16 Green Leaf Index GLI (2G − R − B)/(2G + R + B) [42]

17 Modified Green Red
Vegetation Index MGVRI (G2 − R2)/(G2 + R2) [43]

18 Red Green Blue Vegetation Index RGVBI (G − B × R)/(G2 + B × R) [43]

19 Visible Atmospherically
Resistant Index VARI (G − R)/(G + R − B) [26]

The dataset used for phenology prediction consists of a matrix of 60 trees at 16 different
timelines in the growing season, 960 observations, and 48 predictors.

Based on the resulting ortho-rectified images after each flight, each tree was evaluated
using the same phenological scale in order to be able to make the first comparison between
the ground observations and image assessments. The phenology evaluation was made by
experts who were not involved in the fieldwork.

2.4. Time Series Data Collection of Phenological Observations and Image Processing Using
Copernicus Biophysical Parameters
2.4.1. Data Collection

The Copernicus Global Land Service is a free and open-access data platform that is
a part of the European Union’s Earth observation program [44]. It produces a series of
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bio-geophysical products related to the status and evolution of the land surface at a global
scale, which can cover long-term time series.

The remote sensing products in raster format, available from the Copernicus Land
Monitoring service portal [44], were collected between April and November 2021 for 19-
time dates for each of the five studied locations. The biophysical parameters are provided
at a resolution of 300 m, based on Sentinel-3/OLCI data (for the period from 2014-present),
at a near real-time (10-daily). To estimate the phenological stage of each studied site, the
pixel values of five biophysical parameters were collected: the dry matter productivity, the
fraction of absorbed photosynthetically active radiation, the fraction of vegetation cover,
the Leaf Area Index, and the Normalized Difference Vegetation Index. The parameters
extracted from Copernicus were collected from datasets in a similar period to the ground
observations (Table 4).

Table 4. Copernicus biophysical parameters used to study leaf phenology.

No. Name Abbreviation Description

1 Dry Matter Productivity DMP
the overall growth rate or dry

biomass increase of the vegetation
(kg/ha/day) [44]

2
Fraction of Absorbed

Photosynthetically Active
Radiation

FAPAR
quantifies the fraction of the solar

radiation absorbed by live leaves for
photosynthesis activity [44]

3 Fraction of
Vegetation Cover FCover fraction of ground covered by green

vegetation [44]

4 Leaf Area Index LAI
half the total area of green elements

of the canopy per unit of the
horizontal ground area [44]

5 Normalized Difference
Vegetation Index NDVI indicator of the greenness of the

biomass [44]

The FCover is helpful for environmental applications; it corresponds to the fraction of
ground covered by green foliage and thus offers a temporal evolution of the land cover
changes, while LAI includes all the green vegetative elements that describe woody ar-
eas. DMP is developed to estimate vegetation growth from the beginning of the starting
season onwards and can detect anomalies in plant development. At the same time, FA-
PAR can play a role in evaluating carbon balance and monitoring the annual vegetation
photosynthetic activity.

2.4.2. Data Processing Analysis

The biophysical parameters data collected during the 2021 growing season consisted
of 95 raster datasets from which mean pixel values were collected for each site through the
rgdal package of the R software [45].

2.5. Statistical Analysis
2.5.1. Correlation Analysis

The relation between the observed time series phenological stages collected from
ground observations as percentages of the leaf cover and the estimated percentages of the
leaf cover from the aerial images by human interpretation were analyzed using a correlation
indicator. The same indicator was used to assess the correlation between the observed
time series leaf cover and the VI values estimated for each tree. The corr function of the
stats package in R [45] was used to compute the Pearson correlation method between the
different time series data.

The corrplot R package [45] was used to provide a visual correlation matrix to detect
patterns among variables and to test the null hypothesis that the true correlation coefficient
ρ is equal to 0.
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2.5.2. Regression Analysis

In order to predict the phenology stages as leaf cover, regression analysis was used.
The goal was to find an algorithm or function which takes pixel values from either image
from UAVs or the Copernicus biophysical parameters and outputs a response that is as close
to the actual value of the phenology stages observed on the ground. Three error metrics
were estimated to evaluate and report the performance of a regression model. The Mean
Squared Error (MSE) refers to minimizing the mean squared error between predictions and
expected values; the Root Squared Error (RMSE) is used as an extension of the MSE that
matches the units of the target values and R-squared (R2), which represent the proportion
of the variance in the dependent variable that explains the model.

Prediction of the Phenology Using Linear Regression Analysis

Two approaches were used to build a straightforward, reproducible model that pre-
dicted the phenology. The first model predicts the phenology as leaf coverage at the tree
level based on the VIs calculated from UAV-collected images and location and time data
predictors. The location was used as a site classifier, and the date was used to add seasonal-
ity to the prediction algorithm. In the second model, we aimed to predict a mean value per
site based on the biophysical parameters collected from the Copernicus land monitoring
service. Multiple regression models were tested to identify the most suitable predictors as
well as the interaction between the them.

Prediction of the Phenology Using Non-Linear Regression Analysis

We implemented a random forest machine learning algorithm to predict the phenolog-
ical stages at the tree level from aerial images. This algorithm uses random samples from
observations and builds a model for which it measures a gain function and repeats the
process k times to maximize the function. In this case, the non-linear regression algorithm
operates by constructing decision trees based on the training dataset, which generates
outcomes based on mean prediction.

Before starting the processing, the variable data series were rescaled to obtain values
between 0 and 1, and time seasonality was added as a predictor. The machine learning
algorithm was implemented using the caret package of the R software [45] by building the
model on the training set (80% of data measuring 48 trees) and evaluating its performance
on the test set (12 trees).

3. Results
3.1. Predicting Leaf Phenology Using Aerial Images Collected by UAV

Based on the orthorectified aerial imagery collected from the UAV for each of the
60 individual trees in Sites 2 and 3, LU and senescence were estimated as a percentage of
leaf cover by experts who were not involved in the ground observations. The values of the
Pearson correlation coefficient between the ground phenology observations described by
the scale in Table 2 and the leaf cover from the aerial observations were very high (r = 0.98).

For each tree, we retrieved the pixel values of the red, green, and blue band lengths
contained inside a crown boundary along the growing season (Figure 3), calculated the
VIs (Table 2), and recorded values as mean, median and standard error, which resulted in
864 observations × 50 predictors. All the Pearson correlation values estimated between
the ground observations and the VIs used are presented in Appendix A Figure A3. Correl-
ogram of the Pearson correlation between vegetation indices and ground leaf phenology
observations. The numbers and the color gradient scale reveal the Pearson correlation value,
and the size of the circle indicates the significance of the probability of the null hypothesis.
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Figure 3. Relation between ground data observations, horizontal axis and (a) red, (b) green, and
(c) blue spectral bands digital values, vertical axis, and (d) GLI among spring (blue color) and autumn
(red color) seasons.

Four VIs show strong relation with leaf cover percentage during the entire growing
season, resulting in correlation values above 0.8: GLI (0.86), NGRGB (0.85), RGVBI (0.83),
and ExG (0.81), and five values more than 0.7: MGVRI (0.73), VARI (0.73), NGRDI (0.72),
GRRI (0.71), and GBDI (0.70), which indicated a strong relationship.

Based on the relationship of the VIs with the ground observations, several linear re-
gression models were fitted to predict the leaf phenology. In order to choose the best model,
the performance was tested in both training and test data against the model complexity
shown in Figure 4.
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Table 5. The summary of each of the model results. RMSE in both training and test datasets. The
model complexity reveals the number of parameters, and the linear model formula is represented as
a notation convention.

No. Train
RMSE

Test
RMSE

R2

Train Data
R2

Test Data
Model

Complexity Independent Variable Component of the Linear Model Equation

1 6.63 8.61 0.94 0.90 127 1 F(x) = NGRGB × GLI × ExG × RGVBI × GBDI × NGBDI × season

2 9.21 9.65 0.88 0.87 58
1 F(x) = R + G + B + GRRI + BGRI + GBDI + RBDI + ExG + GRAY +
NRRGB + NGRGB + NBRGB + NGRDI + KAW + NGBDI + GLI +
MGVRI + RGVBI + VARI

3 11.24 11.27 0.84 0.84 37

2 F(x) = (NGRGB_m + NGRGB_me + NGRGB_sd + GLI_m + GLI_me
+ GLI_sd + ExG_m + ExG_me + ExG_sd + RGVBI_m + RGVBI_me +
RGVBI_sd + GBDI_m + GBDI_me + GBDI_sd + NGBDI_m +
NGBDI_me + NGBDI_sd) × season

4 11.84 11.27 0.83 0.84 27
1 F(x) = (NGRGB + GLI + ExG + RGVBI + GBDI + NGBDI) ×
season × location

5 13.19 12.95 0.80 0.80 13 1 F(x) = (NGRGB + GLI + ExG + RGVBI + GBDI + NGBDI) × season

6 13.38 13.02 0.79 0.80 7 1 F(x) = (NGRGB + GLI + RGVBI) × season

7 14.99 15.00 0.76 0.76 6 1 F(x) = NGRGB + GLI + ExG + RGVBI + GBDI + NGBDI

8 14.76 14.67 0.77 0.77 4 1 F(x) = NGRGB + GLI + RGVBI + season

9 16.11 15.35 0.74 0.75 3 1 F(x) = GLI × season

10 16.47 15.91 0.73 0.74 1 1 F(x) = GLI

1 the independent variables were estimated as the mean pixel value for each crown boundary; 2 the independent
variables were estimated as the mean (m), median (me), and standard error (sd) for each crown boundary.

The model results are summarized in Table 5, showing the values of RMSE against
the complexity and the linear model formula. Although the first model displayed a minor
error, it had the highest complexity and overfitting tendency toward the leaf percentage
prediction. Model ten, which was based on the best-performing VIs parameter alone, thus
making it the least flexible, had a more significant error of 16% between the difference
in leaf cover prediction and the actual data. Model three had appropriate RMSE values
for both the training and test dataset; thus, we believe this model will display the best
prediction on future datasets.

The predicted percentage of leaf cover versus the percentage observed on the ground
is shown in the columns of both the trained and tested datasets’ RMSEs. The balance
between the two dataset errors describes the model’s capacity to predict unseen data.

The comparison between model three, which shows an equal error in both datasets,
and model ten, which is the simplest applicable model, is indicated in the scatterplot of the
predicted leaf phenology versus the actual ground observations between both training and
test datasets Figure 5.

A random forest regression algorithm was trained to perform a regression model to
overcome the linear model’s limitations. It was based on all the statistical measurements
(mean, median, and standard error) of the VIs and the time in the vegetation season.
The model showed very good results; it explained 91.1% of the variance. The estimated
performance metrics indicated a tendency to overfit on the train data, but a small overall
error of 8% was reported in terms of the prediction of the percentage of leaf cover (Table 6).

The variable’s importance in defining the model performance and its influence on the
MSE is shown in Figure 6.

A visualization of the actual data (observed through ground observations) and the
values of leaf phenology predicted using the random forest algorithm are shown in Figure 7.
The red line denotes the actual data for both the training and test datasets, and the predicted
data are shown for the training dataset in dark blue and the test dataset in light blue. The
predicted training dataset was based on 80% of the monitored individuals (48 from 60); the
phenology of the other individuals left (12) was estimated through a predicted test.
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Table 6. Performance of the random forest algorithm in training and test datasets.

Error Type Train Data Test Data

MSE 23.11 159.39
RMSE 3.28 8.12
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3.2. Predicting Leaf Phenology Using Copernicus Biophysical Parameters

For each of the five study sites (Table 1), the mean phenological phase for both LU
and senescence was estimated during the entire growing season based on the ground
observations.

Time series data collected from Copernicus biophysical parameters, such as mean
values per site during the vegetation season, indicated a strong correlation between the
four parameters and the phenological ground observations. The fraction of vegetation
cover (FCover) index, which is based on the cover of green color of the vegetation from
the ground (Table 4), was the most relevant and showed the strongest correlation with
the phenological ground observations (r = 0.91). High correlation values between the
time series data of the ground observations were also found compared to the LAI, DMP,
and FAPAR parameters, with r = 0.88, r = 0.84, and r = 0.83, respectively (Appendix A
Figure A4).

Due to the linear relation between the ground data and the Copernicus parameters,
several linear models were fitted. The best-fitting model, i.e., the model with the smallest
error, was model one, with a less than 8% error between the predicted leaf phenology
as green cover and actual data on the ground. For this model, the location was used as
an independent variable as a site classifier. In the other models, the location was not
used as a parameter; thus, although they resulted in a higher error, they would more
effectively predict leaf phenology on Fagus species outside the studied sites. The best
trade-off between the RMSE and the model complexity was exhibited in model three, in
which four of the Copernicus biophysical parameters and season interaction were used
(Table 7).

Table 7. Summary of each of the model results.

No. RMSE R2 Model Complexity Linear Model

1 11.65 0.87 11 F(x) = (FCover + LAI + FAPAR + DMP + NDVI) × season
2 7.84 0.94 9 F(x) = FCover + LAI + FAPAR + DMP + NDVI + location
3 11.89 0.85 9 F(x) = (FCover + LAI + FAPAR + DMP) × season
4 12.32 0.85 7 F(x) = (FCover + LAI + FAPAR) × season
5 12.57 0.85 5 F(x) = FCover + LAI + FAPAR + DMP + NDVI
6 12.99 0.84 5 F(x) = (FCover + LAI) × season
7 13.00 0.84 3 F(x) = FCover × season
8 13.11 0.83 1 F(x) = FCover
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4. Discussion

In this study, we aimed to identify means of measuring the phenology of the Eu-
ropean beech species at a fine scale (individual trees) and the average values of the site
locations. We used affordable—in terms of price—RGB sensors to extend the tree phenol-
ogy observations, especially in rough terrain, mounted on UAV devices for phenology
observations of individual trees, and we used geospatial products derived from satellite
imagery (biophysical parameters from Copernicus Land Monitoring Service) to observe
the mean site phenology. Both approaches showed promising results, which may be useful
in phenological observations.

Visual observations of leaf phenology based on UAV images through human interpre-
tation showed promising results compared with ground observations. The high correlation
values between the time series datasets (r = 0.98) indicate that aerial images can offer
a crown-level overview similar to below-canopy observations [4,10]. However, individ-
ual tree canopy observations based on aerial images depend on the forest structure and
terrain topography, and these types of observations have limitations, especially in dense
canopy structures, where the uncertainty of individual tree delineation is high at the margin
boundary. As in this study, observations at the top of the canopy will ensure a satisfactory
assessment of leaf phenology. Other aspects regarding the grade of human interpretation
are the geometric accuracy and ground sample distance of the ortho-photo, which may
affect the interpretation, especially in the first bud-burst stages when a smaller sample
size pixel will ensure better assessment accuracy. Both human interpretation and VIs
are affected by the quality of the ortho-photo mosaic, such as shaded areas and higher
reflectance spots due to differences in light reflection angles [22]. Some of these issues were
controlled through the acquisition workflow, e.g., by ensuring similar light conditions,
using the same camera orientations with the sunlight angle, or identifying and removing
the shaded areas during the workflow processing of the images.

Computations of the images’ red, green, and blue band length values captured during
the vegetation season by the UAV sensor resulted in the 19 VIs (Table 3) commonly used to
monitor vegetation biological processes [21,22]. Strong relationships were revealed between
four VIs and ground observations, resulting in Pearson correlation values higher than 0.8.
The Green Leaf Index (GLI index) obtained the highest r-value, 0.86, followed by the
normalized green of RGB index (NGRGB), Reed Green Blue Vegetation index (RGVBI), and
the excess of the green index (ExG). The NGRGB index, also known as the Green Chromatic
Coordinate index, is most frequently used to study tree phenology [1,4,10,13,16,20], and
this study showed a high correlation r-value of 0.85 with ground observations. Notably,
the VI’s, with high correlation results, was based on the calculations of all three bands.
This, of course, is related to the biophysical properties of each band; green and red bands
are correlated with spring and autumn [3], respectively, and the blue band, which is a
chlorophyll absorption band [10], provides variability in leaf phenology changes in both
seasons (Figure 3). Other VIs have been identified in phenology vegetation studies, e.g.,
good results were obtained regarding barley leaves [21] with GBDI and ExG VIs, while
the study of grass vegetation using RGB sensors [22] revealed the good performance
of the NGDRI and MGVRI indices, estimated from aerial images. The NGRGB indices
also showed accurate phenology observation comparisons between ground, UAV images,
and satellite VIs [16,46]. Most studies that monitor vegetation based on UAV images
use the Normalized Difference Vegetation Index (NDVI), the standard remote sensing
indices [47]. As the NDVI application range is well known, its usage is constrained by
the camera sensor’s capabilities to capture near-infrared light (NIR). In contrast, we used
a standard affordable RGB sensor in this study. The use of the GLI and ExG indices in a
study that aimed to perform object segmentation, trying to delimit the target objects from
a residual background (agriculture field), showed that both are very accurate, with the
latter displaying a slight advantage [48]. In addition to the quality of the segmentation
performance of the target objects (masking off the ground and shadows and removing
these values from the calculations), the different resolutions of the images collected at the
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time of the overflights also influence the quality of the images so in that case, a vegetation
index may or may not have higher accuracy. For example, for UAV images acquired at an
altitude of 6 m, the highest accuracy was shown by red and green indices, but when UAV
images were acquired at an altitude of 50 m, the Green Blue Difference Index (GBDI) and
the excess the green index (ExG) showed the highest accuracy [21]. In our case, when UAV
images were acquired at an altitude of 150 m to overcome the site’s irregular topography,
the highest accuracy was shown by the GLI indices.

The calculated average values of the crown VIs pixels may not be enough to describe
the leaf phenology at the individual level [10], as they do not achieve similar results in
different illumination conditions. Due to the different light conditions during the flights,
the light angle, and land topography, the precision of leaf phenology estimation may
decrease [22,49]. The standard deviation of pixel values described the variation in the color
and shadows in the high pixel resolution used in this study.

The correlation analysis between the ground observations and time series VIs was
further used to build and test a predicting algorithm for leaf phenology as a percentage of
leaf cover. Deterministic models, such as linear regression, and non-deterministic models,
random forest algorithms, were tested to predict the percentage of the leaf cover against
data collected from the ground. The linear regression model is more practical and can more
easily replicate the prediction of leaf phenology in other European beach sites. However, its
complexity increases to enable a minor error percentage. This trade-off between the model
complexity and RMSE (Figure 4) was observed in both the training and test datasets. This
computation indicates that a more complex model will also be more capable of predicting
the percentage of the leaf phenology but with a tendency to overfit, meaning it has a
lower prediction capability than other sites. By comparing the RMSE in both the training
and test datasets, we observed that model number three (Table 5) displayed the most
appropriate level of error and was thus identified as the most versatile model. Model three
used all the VIs with correlations above r = 0.8 as the mean, median, and standard error
of the sampled crown pixels, along with season interaction. The inclusion of the season-
independent variable indicated a strong relationship between the prediction capabilities
in the vegetation season. The mean RMSE of 11% leaf coverage between the predicted
and actual values indicated a good predicting capability of the model identified to be the
best fitted.

An increased prediction capability with a minor RMSE was obtained using a random
forest algorithm based on the VIs extracted from aerial images and vegetation season. The
algorithm predicted the percentage of leaf cover in the training dataset with a minimal
error (RMSE = 3%, Table 6) but slightly higher in the test dataset (RMSE = 8%). These
results indicate an overfitting tendency for predicting, which was shown by comparing
the RMSE of the training and test datasets (Table 6), also influenced by the small sample
size dataset used to train the algorithm. While the fitted line between predicted and
actual values in the training data were similar to the percentage of leaf cover in the trial
dataset, the algorithm overestimated the percentage of leaf cover at 0–75% intervals. It
underestimated the remaining to 100% intervals. The satisfactory results of the machine
learning algorithms increased the possibility of applying them to other trees’ biological and
ecological processes collected from remote sensing [10] by linking them to the information
collected from the ground. Good predictive accuracy of the random forest algorithm
was also revealed by studying the flowering of Eucalyptus species from metrics collected
from RGB sensors [50], as well as linking carotenoid-sensitive spectral indices to track the
phenology in conifers [51].

In our study, the human interpretation of the leaf phenology on the ground and based
on UAV images showed a high correlation and could be used for cross-validation. The
high correlation between the VIs and data collected from the ground, along with the good
prediction capabilities, shows that UAV image analysis can extend phenology studies and
cover large areas which can be used to validate ecosystem processes [1]. The results, which
are also similar to other studies [5], show the capability of UAV sensors to characterize
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crown-level phenology at fine spatial and temporal scales and describe the variability in
forest landscapes [3]. In future studies of leaf phenology prediction, modeling limitations
will need to be addressed. The number of sampled trees should be increased to improve
the training of the algorithm and use a digital image analyzer for the canopy on the ground
to calibrate the model.

Nevertheless, visual assessment can be complex in a highly dense crown covered
with an additional understory. Further site analysis of individual trees will be needed
to train linear and random forest regression algorithms. Despite the promising results
regarding phenology observation using an RGB sensor mounted on a UAV, the method is
restrictive in terms of the area and time of the observation. The coverage area per flight is
between 20 and 30 ha for a GSD between 4 and 8 cm (using this study flight parameter),
and the atmospheric restrictions include sufficient light conditions (brightness and angle of
reflectance), lack of rain, and low wind speed.

The biophysical parameters available in the Copernicus land monitoring platform
at ten-day intervals monitor the vegetation phenology and the productivity of ecosystem
habitats. Measuring the phenology of individual trees at high resolution on both spatial and
temporal levels, although offering valuable information in understanding the ecological
component affecting a tree’s biological processes, may be limited to the study of small-scale
ecological processes. The overall phenological process cycle at each site is recorded using
satellite imagery [16]. To overcome and expand the study, we investigated the relationship
between the site mean percentage of leaf cover from ground observation data and the
biophysical parameters estimated from satellite imagery of the Copernicus program. Corre-
lation analysis of the time series between the data collected from the ground describing the
mean percentage of leaf cover and the five satellite-based biophysical parameter values
(Table 6) showed correlation values r < 0.5 (Figure 5). The fraction of vegetation cover
(FCover) obtained the highest value (0.91), proving it had the strongest correlation with
the phenological observations from the ground. The FCover indices quantify the spatial
extent of the green vegetation [19], being independent of the illumination direction, which
can be a candidate to replace classical VIs for monitoring ecosystems. The strong corre-
lation between the chlorophyll content and spectral indices of European beech trees [25]
may indicate the good relation between the FCover and leaf phenology. In terms of the
correlation results, this was followed by the Leaf Area Index (0.88), dry matter produc-
tivity (0.84), and a fraction of absorbed photosynthetically active radiation (0.81); the last
one, the Normalized Difference Vegetation Index (NDVI), only obtained a correlation of
0.51. It may be possible to upscale the phenology observations through ground or UAV
observations; in addition, studies have shown high correlations by comparing VIs based
on satellite and near-surface sensors [13]. The NDVI indices acted poorly when monitoring
the phenology of the European beech along an altitudinal gradient in Slovakia [52], as
significant differences in the leaf onset and the end of leaf onset was not identified with
phenological metrics derived from the NDVI, extracted from the Moderate Resolution
Imaging Spectroradiometer satellite (MODIS).

5. Conclusions

Using images collected from UAVs, biological functions such as seasonal changes in
phenology can be observed at the individual tree level in relatively large areas of study. The
maps produced using aerial images offer a good overview of the tree crown, comparable
with the observation from the ground. They can be used, with excellent accuracy, for
visual observations of leaf phenology. The VIs calculated from these images significantly
relate to the leaf phenology observations from the ground throughout the growing season.
Overall, UAV observations can drastically reduce the effort needed to undertake phenology
observations. The VIs with high correlations, such as values above 0.8 (GLI, NGRGB,
RGVBI, and ExG), use all three bands (red, green, and blue) of the RGB sensor in their
calculations, as all of the bands can track different phenological stages during the growing
season. Prediction models show good accuracy using random forest machine learning
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algorithms, whereas, on small testing datasets (sites), they tend to overfit the data and
thus not produce the same results in a new site study. Although the RMSE in the test
dataset was 8%, further analysis should be performed to obtain a robust algorithm. A
satisfactory result was also obtained using a linear model based on the VIs. The algorithms
showed higher accuracy in both cases when both color and texture metrics were used as
independent variables.

The biophysical parameters based on Sentinel satellites, available on the Copernicus
land monitoring platform, generally showed satisfactory accuracy in the prediction of an
average site value of the percentage of leaf cover. Significantly, the fraction of vegetation
cover (FCover) index showed the strongest correlation with the ground observations of
leaf phenology.
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Figure A2. Example of images along the growing season timescale before (a) and after (b) removing
shadows and changing the digital values of pixels to non-value. Dashed magenta regions represented
crown delineation and were used to retrieve the RGB band length values.
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Figure A3. Correlogram of the Pearson correlation between vegetation indices and ground leaf
phenology observations. The numbers and the color gradient scale reveal the Pearson correlation
value, and the size of the circle indicates the significance of the probability of the null hypothesis.
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