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Abstract: A spatial time series geostatistical deconvolution/fusion model (STGDFM), as one of
spatiotemporal data fusion model, combines Dense time series data with a Coarse-scale (i.e., DC
data) and Sparse time series data with a Fine-scale (i.e., SF data) to generate Synthetic Dense time
series data with a Fine-scale (i.e., SDF data). Specifically, STGDFM uses a geostatistics-based spatial
time series modeling to capture the temporal trends included in time series DC data. This study
evaluated the prediction performance of STGDFM for abrupt changes in reflectance due to disasters in
spatiotemporal data fusion, and a spatial and temporal adaptive reflectance fusion model (STARFM)
and an enhanced STARFM (ESTARFM) were selected as comparative models. For the applicability
assessment, flood and wildfire were selected as case studies. In the case of flood, MODIS-like data
(240 m) with spatial resolution converted from Landsat data and Landsat data (30 m) were used as
DC and SF data, respectively. In the case of wildfire, MODIS and Landsat data were used as DC and
SF data, respectively. The case study results showed that among the three spatiotemporal fusion
models, STGDFM presented the best prediction performance with 0.894 to 0.979 at the structure
similarity and 0.760 to 0.872 at the R-squared values in the flood- and wildfire-affected areas. Unlike
STARFM and ESTARFM that adopt the assumptions for reflectance changes, STGDFM combines the
temporal trends using time series DC data. Therefore, STGDFM could capture the abrupt changes
in reflectance due to the flood and wildfire. These results indicate that STGDFM can be used for
cases where satellite images of appropriate temporal and spatial resolution are difficult to acquire for
disaster monitoring.

Keywords: disaster monitoring; satellite image; data fusion; resolution; geostatistics

1. Introduction

Considering the growing frequency of disasters recently, many studies have been
conducted on disaster monitoring using satellite images, which can periodically provide
information on a large area [1–3]. Satellite images are effectively used for detecting areas
damaged by disasters and analyzing the scope and level of damage. To validate the
reliability of the analysis in detecting disaster-stricken areas using satellite images, it is
important to (1) ensure satellite images at a suitable time [4] and (2) acquire fine-scale
(i.e., high spatial resolution) satellite images that allow the detailed damage analysis [5,6].
However, compared to coarse-scale (i.e., low spatial resolution) satellite images, fine-scale
satellite images have a lower temporal resolution. With the recent development of remote
sensing, it is possible to acquire satellite images at high temporal and spatial resolutions by
constellation of several satellites such as RapidEye and PlanetScope. Nevertheless, there is
a limitation to acquiring an optical satellite image at a suitable time for disaster monitoring.
This is because the optical satellite images may have limitations in direct use due to the
influence of clouds or climate factors.

To compensate for the missing information in these fine-scale satellite images, spa-
tiotemporal data fusion integrating coarse-scale satellite images with high temporal res-

Remote Sens. 2022, 14, 6204. https://doi.org/10.3390/rs14246204 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14246204
https://doi.org/10.3390/rs14246204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1491-5426
https://doi.org/10.3390/rs14246204
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14246204?type=check_update&version=1


Remote Sens. 2022, 14, 6204 2 of 23

olution and fine-scale satellite images with high spatial resolution, can be applied [7–9].
Here, the spatiotemporal data fusion combines the complementary characteristics of the
spatial resolution of sparse time series data with a fine-scale (i.e., SF data) and the temporal
resolution of dense time series data with a coarse-scale (i.e., DC data). For example, MODIS
satellite images, provided daily at a spatial resolution of 250 m, and Landsat satellite images,
provided at a spatial resolution of 30 m every 16 days, are considered as DC and SF data,
respectively. A synthetic dense time series data with a fine-scale (i.e., SDF data) is generated
from the spatiotemporal data fusion.

In detail, the spatiotemporal data fusion input DC data acquired at the time when SF
data is missing (i.e., prediction date) and both DC and SF data acquired at the same time
(i.e., pair date) to generate SDF data at the prediction date. Since the missing SF data can
be generated as SDF data by spatiotemporal data fusion, it can be effectively applied to
disaster monitoring that requires a satellite image with fine spatial resolution in a suitable
time. To enhance the applicability of spatiotemporal data fusion in disaster monitoring,
reflectance changes due to disasters should be indicated well in the fusion results. Since
the occurrence of disasters such as wildfires, landslides, and floods cause changes in land
cover because of the loss of forests and flooding [10–13]. Such changes are observed as
abrupt reflectance changes in time series satellite images [14–17]. To explain the reflectance
changes, the developed fusion models apply the assumptions for the reflectance changes or
the modeling for the reflectance changes using time series DC data.

In relation to the models applying the assumptions, there is a representative fu-
sion model, a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [18].
STARFM applies an assumption that temporal changes of the reflectance observed in SF
data are the same as those in DC data regardless of difference of spatial resolution. How-
ever, since the landscape included in the satellite image differs depending on the spatial
resolution, the reflectance changes may vary depending on the spatial resolution in DC
and SF data. Regarding this, to account for the difference in spatial resolution of DC and
SF data, Zhu et al. [19] proposed an Enhanced Spatial and Temporal Adaptive Reflectance
Fusion Model (ESTARFM). ESTARFM applies spectral unmixing to consider the difference
in spatial resolution. Specifically, the reflectance changes observed in DC data are reflected
in SDF data through the spectral unmixing which is constructed by using DC and SF data
acquired at the pair dates. Here, ESTARFM applies an assumption that the reflectance
changes linearly. Such an assumption may be suitable, however, when there is no signifi-
cant difference in the reflectance changes between the pair dates and the prediction date. In
particular, there is a limit to assuming the linear changes because disasters cause abrupt
changes in reflectance.

In contrast, the spatiotemporal data fusion models that model the reflectance changes
from DC data with relatively high temporal resolution have been proposed. As one of
these models, Xue et al. [20] proposed a Spatio-Temporal Bayesian Fusion Model (STBFM).
STBFM incorporates the temporal correlation extracted from multi-temporal DC data by
applying the joint distribution and generates the fusion result by applying the maximum
posterior estimator. There is a limit to the temporal correlation extraction that DC data
with high temporal resolution can provide, however, since it only uses DC data acquired
at the prediction date and the pair dates. In addition, STBFM assumes that DC data have
Gaussian distribution to extract the temporal correlation using the joint distribution, though
it is difficult to assure that the real satellite images have a Gaussian distribution. Recently,
Zhou and Zhong [21] proposed a Kalman Filter Reflectance Fusion Model (KFRFM) which
models the temporal trends using a Kalman filter algorithm and time series DC data.
KFRFM assumes that the land-cover types are identical in DC and SF data. However, the
land-cover type of a pixel may vary depending on the spatial resolution of DC and SF data.
Since the temporal trend may present differently depending on the land-cover type, the
assumption applied by KFRFM may not always be valid.

Regarding these limitations, Kim et al. [9] proposed a new geostatistics-based spa-
tiotemporal data fusion model, which is a Spatial Time series Geostatistical/Deconvolution
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Fusion Model (STGDFM). STGDFM performs spatiotemporal data fusion by using the
spatial time series modeling and deconvolution matrix. The spatial time series modeling is
a geostatistical framework for spatiotemporal modeling, which can be applied regardless
of the periodicity, tendency, and seasonality of time series data [22]. Additionally, the
deconvolution matrix is constructed for each pair date using DC and SF data acquired at
each pair date, and the deconvolution matrix at the prediction date is estimated considering
the change between the prediction date and the pair dates. The estimated deconvolution
matrix is applied to the temporal trends extracted from time series DC data to convert it’s
the spatial resolution to that of SF data. Moreover, STGDFM decomposes the prediction
property into trend and residual components. The residual component indicates the re-
flectance changes that cannot be explained by the temporal trends. STGDFM generates the
fusion result combining the trend and residual components to capture both the temporal
trends and the abrupt reflectance changes.

Using these developed spatiotemporal fusion models, the applicability assessments
have been conducted. Zhang et al. [14] conducted the fusion of MODIS and Landsat images
for urban flood mapping using STARFM and ESTARFM. They concluded that the fusion
results of STARFM and ESTARFM showed similar prediction performance for urban flood
mapping. Dao et al. [23] applied ESTARFM to analyze flood inundation, which was applied
for MODIS and Landsat data to generate synthetic Landsat data. The result of this study
presented that ESTARFM captured surface reflectances of true Landsat data with highly
correlation. For disaster monitoring, the previous studies applying spatiotemporal data
fusion have been conducted, but most of these studies have applied only STARFM and
ESTARFM, which adopt the assumptions of temporal changes in reflectance. As mentioned
above, when a disaster occurs, the reflectance does not change periodically but abruptly
changes. Therefore, the assumption of reflectance change applied by STARFM or ESATRFM
may not be valid in the disaster monitoring. For this, spatiotemporal data fusion modeling
temporal changes from time series DC data can be applied to explain the abrupt changes in
reflectance due to disasters.

Based on this, this study assessed the applicability of STGDFM in disaster monitoring.
To assess its explanatory capacity on the abrupt reflectance changes due to disasters, the
study compared STGDFM and two other popular spatiotemporal data fusion models,
STARFM and ESTARFM, and evaluated the results. The applicability assessment was
conducted two case study areas affected by flood and wildfire. The near the Gwydir River
Catchment located in Australia was selected as the study area of the Case of Flood-affected
Area. In the Case of Flood-affected Area, the applicability assessment used simulation data
using Landsat satellite images. The part of Nebraska state in the U.S. was selected as the
study area of the Case of Wildfire-affected Area. Landsat and MODIS satellite images were
used for the applicability assessment in the Case of Wildfire-affected Area.

2. Spatial Time Series Geostatistical/Deconvolution Fusion Model

This study supposes that the reflectances in the DC and SF data are ZC(vi, td) and
ZF(uj, tk

)
, respectively. Here, the superscripts C and F refer to coarse-scale and fine-scale,

and vi and uj are the ith and jth coarse-scale and fine-scale in the Nth and Mth coarse-scale
and fine-scale pixels, respectively. Additionally, td and tk refer to the acquisition date of
the DC and SF data, respectively, and are tk ⊆ td because the DC data is more frequently
acquired than the SF data. Furthermore, tk is the pair date considering the composition of
the input data in the spatiotemporal data fusion. Accordingly, STGDFM predicts ẐF(uj, tp

)
,

the DFS data, at the prediction date.
STGDFM first decomposes the predictive properties into trend and residual compo-

nents [9]. Therefore, the DC data at the prediction date can be defined as follows:

ZC(vi, tp
)
= mC(vi, tp

)
+ rC(vi, tp

)
(1)

where mC(vi, tp
)

and rC(vi, tp
)

refer to the trend component and the residual component
in tp, respectively. In the same context, ẐF(uj, tp

)
, the spatiotemporal data fusion result,
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is expressed as the sum of the trend and residual components estimated in the fine-scale
location tp.

ẐF(uj, tp
)
= m̂F(uj, tp

)
+ r̂F(uj, tp

)
(2)

where m̂F(uj, tp
)

and r̂F(uj, tp
)

refer to the trend and residual components estimated at the
fine-scale location at tp, respectively.

To estimate m̂F(uj, tp
)

from mC(vi, tp
)
, STGDFM implements the spatial time series

modelling and deconvolution matrix. Additionally, to estimate r̂F(uj, tp
)

from rC(vi, tp
)
, it

applies a geostatistics-based downscaling technique: area-to-point kriging (ATPK).
First, STGDFM applies a spatial time series modeling to quantify the temporal trend

components from the multi-temporal DC data [22]. These temporal trend components
refer to the quantification of the trend of the change of predictive properties over time.
The multi-temporal DC data can be considered spatial time series that have time series
values per pixel unit. Based on this, the temporal trend components are calculated at all
coarse-scale pixel locations vi through spatial time series modeling. Spatial time series
modeling calculates temporal trend components by estimating the relationship between
the time series value at each coarse-scale pixel and the basis time series elements [9].

To consider the characteristics of land cover types, STGDFM defines the basis time
series elements as the time series value per key land cover types of the target areas. For
example, this time series value per land cover type means the calculation of the average
value of all pixels in DC data corresponding to Class 1 by the acquisition date of the
DC data. Further, STGDFM uses random forest, a non-parametric model, to define the
relationship between the calculated basis time series elements and the time series value
of each coarse-scale pixel [24]. Through the result of random forest, the temporal trend
components based on the DC data are quantified.

The previously estimated temporal trend components are quantified in the spatial
resolution of the DC data. Therefore, to estimate the trend components in the fine-scale
resolution, STGDFM uses a deconvolution matrix. The deconvolution matrix defines the
linear relation of the DC and SF data acquired from the pair date in matrix form [20]. Based
on this, if there are DC and SF data acquired from K number of pair dates, K number of
deconvolution matrices can be constructed. Because there are no true values of the SF data,
the deconvolution matrix at tp is estimated by the weighted coupling of the deconvolution
matrix constructed in the pair dates.

Here, the weighted value is calculated by the relationship between the temporal trend
components quantified at the prediction date and the pair date. That is, the relationship
between the quantified temporal trend components at the prediction date and in each pair
date is calculated, and a higher weighted value is assigned to the deconvolution matrix con-
structed in the highly correlated pair date. Although correlation can be generally calculated
in the whole research region, the global relationship assumes that the local variability is not
considered, and a linear relationship appears constantly in the whole research region [25].
However, because the linear relationship can differ by region, STGDFM uses a regional
linear relationship coefficient to calculate the weighting value, which is assigned to the
deconvolution matrix. Thus, the weighted value assigned to the deconvolution matrix at
each pair date is calculated, and the deconvolution matrix at the prediction date is estimated
by the weighted coupling of the deconvolution matrix per pair date. Further, STGDFM
estimates fine-scale trend components m̂F(uj, tp

)
by applying the estimated deconvolution

matrix to the temporal trend components at the prediction date.
According to Equation (2), the predictive properties are not included in the trend

component modeling, whereas the residual properties—that is, the residual components—
are included. Therefore, to predict the spatiotemporal fusion result ẐF(uj, tp

)
, both the

trend components and the residual components should be estimated simultaneously. To
this end, STGDFM first calculates the coarse-scale residual components rC(vi, tp

)
at the

prediction date. The coarse-scale residual components use the previously estimated fine-
scale trend components m̂F(uj, tp

)
. First, Gaussian kernel-based point spread function

(PSF) is applied to the final-scale trend components to upscale the components to the coarse-
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scale resolution. Then, through the difference between the trend components upscaled
by Equation (1) and the DC data acquired at tp, the coarse-scale residual components are
calculated. Next, to estimate the fine-scale residual components in Equation (2), STGDFM
uses ATPK, a geostatistics-based downscaling technique [26]. The ATPK estimates the
fine-scale residual components by the weighted linear coupling of the coarse-scale residual
components, as shown in Equation (3):

r̂F(uj, tp
)
=

N

∑
i=1

λi
(
uj
)
rC(vi, tp

)
(3)

where λi
(
uj
)

refers to the weighting value of ordinary kriging assigned to the ith coarse-
scale residual components (rC(vi, tp

)
) close to the predicted location (uj). This weighting

value can be calculated by the concept of block kriging [27].
Finally, STGDFM produces the spatiotemporal fusion result ẐF(uj, tp

)
by summing

the fine-scale residual components estimated by Equation (3) and the fine-scale trend com-
ponents estimated through the spatial time series modeling and deconvolution matrix [9].

3. Experimental Design
3.1. Study Areas and Datasets
3.1.1. The Case of Flood-Affected Area

In this study, two types of disasters were selected as case studies: (1) Case of Flood-
affected Area and (2) Case of Wildfire-affected Area (Figure 1). As shown in Figure 1a, the
study area of the first case was near the Gwydir River Catchment, located in New South
Wales, Australia. A large area of agricultural lands was flooded because of heavy rains
from November to December 2004 [28,29]. An expanse of 320 km2 (16 × 20 km2) including
the flood-damaged areas was defined as the study area for this case.

An experiment was conducted using data simulated and generated from multi-
temporal Landsat datasets. This only considered the difference in spatial resolution between
Landsat and MODIS images, since MODIS and Landsat images have different spectral
wavelengths and acquisition time. In the spatiotemporal data fusion, SF data are often
upscaled to generate simulated DC data for construction of experimental data, which is
used as input data. This is to easily construct a pair of DC and SF data, and these simulation
data can be used as an alternative to real data (i.e., multiple sensor-based satellite images)
when evaluating the performance of spatiotemporal data fusion. In the previous studies,
from this point of view, the simulation data generated using SF data were used to evaluate
the performance of spatio-temporal data fusion [9,20,30,31]. Likewise, this study used the
simulation data generated from Landsat data as input data.

For this experiment, 12 cloud-free Landsat-5 TM images were collected from Earth
Explorer (EE) of the U.S. Geological Survey (USGS); the acquisition dates of those are
presented in Table 1. The prediction date for the flood-affected area was defined as 26
November 2004. Then, 2 May 2004 and 14 February 2005—before and after the prediction
date—were defined as pair dates (Table 1). Considering Landsat images acquired at a
low frequency (e.g., one- or two-month) (Table 1) for using simulation data, however, the
experiment was conducted based on an assumption that the changes in reflectance were
not large between the acquisition dates of Landsat images.
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Table 1. Acquisition dates of dense time series data with a coarse-scale (i.e., DC data) generated
original Landsat datasets for the Case of Flood-affected Area. The dates are listed in chronological
order and the years are indicated only on the first and eighth dates. The underlined dates were
assumed to be the dates when Landsat data used as sparse time series data with a fine-scale (i.e., SF
data) were acquired, and these dates indicate the pair dates of DC and SF data. A bold underlined
date indicates a prediction date.

No. 1 2 3 4
Date 16 April 2004 2 May 5 July 22 August

No. 5 6 7 8
Date 25 October 26 November 28 December 13 January 2005

No. 9 10 11 12
Date 29 January 14 February 2 March 3 April

For generating the simulation data, the acquired Landsat images upscaled to 240 m was
used as DC data, which were upscaled by applying the Gaussian PSF. The upscaled Landsat
images (i.e., DC data) were considered as MODIS images provided daily at a 250 m spatial
resolution, which are MOD09GQ products [32]. This study applied the rectangular PSF,
which is mainly applied to scale conversion in remote sensing data [9,20,30]. Specifically,
in the upscaling using rectangular PSF, a coarse-scale pixel value is determined through a
weighted combination of fine-scale pixels included in the coarse-scale pixel. Here, a scale
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factor must be defined, which is defined as the square root value of the fine-scale pixels
included in the coarse-scale pixel. Regarding this, the scale factor is a positive integer value,
in this study, the scale factor is defined as 8. Therefore, the spatial resolution of original
MODIS data is 250 m, but by defining the scale factor as 8, the spatial resolution of MODIS
data was considered to be 240 m. In a real case using multi-sensor satellite images, also,
the acquisition date of SF data is more sparsely than that of DC data. Considering this
situation, Landsat images, which are SF data, were assumed to be acquired at only the pair
dates. Based on this, the composition of DC and SF data used in the Case of Flood-affected
Area is shown in Table 1.

This study applied the spatiotemporal data fusion for red and near-infrared (NIR)
channels. When mapping areas affected by flood using remote sensing data, in particular
satellite images, normalized difference vegetation index (NDVI) is commonly used as a
biophysical parameter [33,34]. Considering this, red and NIR bands, which are input chan-
nels for calculating NDVI, were selected as target reflectance channels for spatiotemporal
data fusion. Based on this, Figure 2 shows DC and SF data after preprocessing in red and
NIR channels.
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In addition to DC and SF data, STGDFM uses a land-cover map as the input data.
For this, a land-cover map provided by Emelyanova et al. [28] was used. The land-cover
map used in the Case of the Flood-affected Area is shown in Figure 1a, which includes the
damage areas of flood (i.e., flooded area). The land-cover map was provided at a spatial
resolution of 500 m, but was converted to a spatial resolution of 240 m using the nearest
neighboring interpolation method to match the spatial resolution with the DC data in the
application of STGDFM.

Finally, the input data used in the Case of Flood-affected Areas are summarized as
follows: Landsat-5 TM data were used as SF data, and the spatial resolution was defined
as 30 m which are the same as the resolution of the original Landsat data. As DC data,
the result of upscaling Landsat-5 TM data to 240 m was used (Figure 2). Additionally,
the land-cover map converted to the spatial resolution of 240 m was used as input data
for STGDFM.

3.1.2. The Case of Wildfire-Affected Area

The study area for the Case of the Wildfire-affected Area was selected as Nebraska
state in the U.S. This area was damaged by a wildfire on 3 August 2002, which affected an
area of 6463 ha according to Monitoring Trends in Burn Severity released by the USGS [35].
Thus, an expanse of 256 km2 (16 × 16 km2) including the damaged areas affected by
wildfire was defined as the case study area (Figure 1b).

In the Case of Wildfire-affected Area, MODIS and Landsat data were used for DC
and SF data, respectively. Unlike the Case of Flood-affected Area, for which simulated
data were used, different satellite images were used to assess applicability based on actual
satellite images. As for DC data, MODIS Terra-based MOD09GQ products were used. As
has been explained in the Case of Flood-affected Area, the spatial resolution of MODIS data
was resampled to 240 m by the nearest neighboring interpolation method. Landsat-7 ETM+
was used as SF data, but the images taken before the failure of the scan line correction
device were used since the target date is 2002. As in the Case of Flood-affected Area,
NDVI is commonly used as a biophysical parameter in the mapping areas affected by
wildfire [36,37]. For this reason, the reflectance data in red and NIR channels of MODIS
and Landsat data were used in this case.

Considering the growth cycle of cropland and grass, the main land coverage types
in the case region, the acquisition date of the data was set from April to October 2002, in
which 19 MODIS data and 3 Landsat data without cloud interference were acquired. In
particular, the images in August after the wildfire and the Landsat images taken in June
and September, before and after the wildfire, were acquired. This study used the Landsat
images acquired on 14 August as the true value of the data and the MODIS and Landsat
images acquired on 11 June and 15 September as the pair data (Table 2). Shown in Figure 3
are the MODIS and Landsat data pre-processed in red and NIR channels.

As the land-cover map, Cropland Data Layer (CDL), provided by the USDA NASS,
was used [38]. This study reassigned CDL data containing the 256 land-cover types into the
main types in the target area, such as corn, soybean, hay/grain, and grass (Figure 1b). Since
CDL data is provided at 30 m, for the application of STGDFM, CDL data were upscaled to
240 m, which is the spatial resolution of the DC data. For this, the fraction of land-cover
types included in a coarse-scale pixel was calculated, and a land-cover type which is the
highest fraction was assigned to the corresponding the coarse-scale pixel.

The input data used in the Case of Wildfire-affected Areas are summarized as follows:
MODIS MOD09GQ data were used as DC data, and the spatial resolution was defined as
240 m. Landsat-7 ETM+ data, then, were used as SF data, of which spatial resolution was
set to 30 m (i.e., the resolution of the original Landsat data) (Figure 3). Lastly, the CDL data
was used as the land-cover map, and the spatial resolution of CDL was converted to 240 m.
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Table 2. Acquisition dates of MODIS datasets used as DC data for the Case of Wildfire-affected
Area. The dates are listed in chronological order and the year is indicated only on the first date. The
underlined dates indicate the pair dates of MODIS and Landsat datasets used as DC and SF data,
respectively. A bold underlined date indicates a prediction date.

No. 1 2 3 4
Date 1 April 2002 17 April 24 April 17 May

No. 5 6 7 8
Date 1 June 11 June 25 June 29 June

No. 9 10 11 12
Date 9 July 18 July 25 July 7 August

No. 13 14 15 16
Date 14 August 31 August 6 September 15 September

No. 17 18 19
Date 20 September 4 October 13 October

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

Table 2. Acquisition dates of MODIS datasets used as DC data for the Case of Wildfire-affected 
Area. The dates are listed in chronological order and the year is indicated only on the first date. The 
underlined dates indicate the pair dates of MODIS and Landsat datasets used as DC and SF data, 
respectively. A bold underlined date indicates a prediction date. 

No. 1 2 3 4 
Date 1 April 2002 17 April 24 April 17 May 
No. 5 6 7 8 
Date 1 June 11 June 25 June 29 June 
No. 9 10 11 12 
Date 9 July 18 July 25 July 7 August 
No. 13 14 15 16 
Date 14 August 31 August 6 September 15 September 
No. 17 18 19  
Date 20 September 4 October 13 October  

The input data used in the Case of Wildfire-affected Areas are summarized as fol-
lows: MODIS MOD09GQ data were used as DC data, and the spatial resolution was de-
fined as 240 m. Landsat-7 ETM+ data, then, were used as SF data, of which spatial resolu-
tion was set to 30 m (i.e., the resolution of the original Landsat data) (Figure 3). Lastly, the 
CDL data was used as the land-cover map, and the spatial resolution of CDL was con-
verted to 240 m. 

 

 
Figure 3. DC and SF data for the Case of Wildfire-affected Area: (a) red and (b) NIR channels. The
red dotted boundary indicates wildfire affected areas.

3.2. Method

Figure 4 presents a flowchart that depicts the way this study was carried out and
the resources used. The study applied STGDFM, STARFM, and ESTARFM to the Case of
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Flood-affected Area using simulation data and the Case of Wildfire-affected Area using
MODIS and Landsat data. STARFM and ESTARFM are representative spatiotemporal data
fusion models with proven predictive performance in various studies [14,28,39,40]. Further,
unlike STGDFM, which models the reflectance changes using time series DC data, STARFM
and ESTARFM assume for reflectance changes between the prediction date and the pair
dates [18,19]. When explaining the changes in reflectance due to the disaster, this study
confirmed whether these assumptions could be applied, unlike modeling the changes in
reflectance. Consequently, these three models with different characteristics were compared
in prediction performance the abrupt reflectance changes due to disasters.
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Figure 4. Flow chart of this study’s processes. Data indicated by dotted lines show input data for
only a spatial time series geostatistical deconvolution/fusion model (STGDFM). Blank squares mean
data at dates when damages caused by flood and wildfire were observed, that is, the prediction dates.
Two models, a spatial and temporal adaptive reflectance fusion model (STARFM) and an enhanced
STARFM (ESTARFM), are comparative models.

To implement STARFM and ESTARFM, the model’s parameters must be defined. This
study defined the model parameters for each case through the preliminary experiment.
The main parameters required for the application of these two models are the size of the
search window and the number of classification items. Here, the number of classification
items was identically defined as the number of classification items of the land coverage
type used in STGDFM. Additionally, the size of the search window was set to 12 and 15 for
each case in consideration of the spatial resolution of Landsat data and the spatial size of
the target region.

This study conducted qualitative and quantitative assessments, to compare the results
of STARFM, ESTARFM, and STGDFM. True SF data acquired at the prediction date were
used as the validation data, which were Landsat data acquired at 26 November 2004
and 14 August 2002 in the Cases of Flood- and Wildfire-affected Areas, respectively. The
qualitative assessment visually compared the true values of the SF data and the results of
the three fusion models. The quantitative assessment compared the results by calculating
the amounts of four validation indices. First, to assess prediction accuracy, the study
calculated the mean absolute error (MAE). Targeting the fusion results of the three models,
the MAE based on the true values of the SF data acquired at each prediction date was
calculated by Equation (4):

MAE =
1
M

M

∑
j=1
|ẐF(uj, tp

)
− ZF(uj, tp

)
| (4)
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The root mean square error (RMSE) was selected as second validation indices. As
with MAE, the RMSE of the fusion result was calculated using the SF data acquired at each
prediction date, as shown in Equation (5):

RMSE =

√√√√ 1
M

M

∑
j=1

(ẐF
(
uj, tp

)
− ZF

(
uj, tp

)
)

2 (5)

Next, the study used the structural similarity index measure (SSIM) that can quanti-
tatively compare spatial similarity. To evaluate the similarity between two images, Wang
et al. [37] developed SSIM to calculate spatial similarity quantitatively by using the mean
value, standard deviation, and covariance of the two images. While SSIM can be calculated
with the global statistics of the image, Wang et al. [41] calculated it locally by defining the
search window. In other words, SSIM is calculated within each search window, and the
SSIM value calculated at the central pixel of the search window is assigned to calculate the
SSIM value of all pixels, as shown in Equations (6)–(9):

SSIM(
1

W
,

1
W

, tp) =
(2µZµẐ + C1)(2σZẐ + C2)

(µZ2 + µẐ
2 + C1)(σZ2 + σẐ

2 + C2)
(6)

µZ =
1
L

L

∑
l=1

ZF(ul , tp
)

(7)

σZ =

√√√√ 1
L

L

∑
l=1

(ZF
(
ul , tp

)
− µZ) (8)

σZẐ =
1
L

L

∑
l=1

{
(ZF(ul , tp

)
− µZ)(ẐF(ul , tp

)
− µẐ)

}
(9)

where W means the window size and L means the number of pixels including within
the window. Additionally, C1 and C2 are the constants calculated by (0.01×L)2 and
(0.03×L)2, respectively. Here, L means a dynamic range value. Since reflectance has a
value from 0 to 1, L is defined as 1 in this study.

This study used a mean SSIM index, as the quantitative assessment statistic. The mean
SSIM index has a value between 0 and 1, and the closer it is to 1, the higher is the spatial
similarity between the two images.

As the fourth evaluation index, this study calculated and compared the R-squared (R2)
value. The R2 has a value between 0 and 1, which can be calculated by Equation (10). The
closer R2 value is to 1, the higher correlation between the fusion result and true SF data.

R2(tp
)
=

∑M
j=1 (ẐF(uj, tp

)
− ZF

(
tp
)
)

∑M
j=1 (Z

F(uj, tp
)
− ZF

(
tp
)
)

(10)

where ZF
(
tp
)

means the mean value of true SF data acquired at the prediction date (tp).
Further, to compare the damage detection results by each spatial-temporal fusion

model in the comparative analysis of the results, the study conducted both global and
local comparisons. Here, global comparison refers to the qualitative and quantitative
comparisons of the true values and prediction results targeting the whole research region.
The local comparison refers to the comparison of the true values and prediction results
targeting the region where damage by disaster has been detected. For the local comparison,
the study used the vector data obtained in the flood and wildfire damaged regions for
each case.
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4. Results
4.1. Case of Flood-Affected Area

First, the study visually compared the true SF data acquired on 26 November 2004, the
prediction date, and the results of the three fusion models. As for the fusion results in the
red channel, shown in Figure 5, all three fusion models were verified to have low reflectance
values in the flood-damaged region. However, if the local variance in the flood-damaged
region is compared, a higher reflectance value was predicted in the application of STARFM
and ESTARFM. STGDFM produced its fusion result with a spatial trend like that of the true
SF data.
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Figure 5. True SF data and three spatiotemporal data fusion results for red channel in Case of
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Such a result can also be noted in Figure 6, which is an enlarged comparison of the
flood-damaged region. The true SF data showed low reflectance values due to flood
damage. It was shown that STGDFM predicted the low reflectance values of damage by
flood at a closer level to the true SF data than to STARFM and ESTARFM. STARFM reflected
the low reflectance values in the DC data on the prediction date, but it did not reflect
the detailed patterns of the true SF data. Such a trend was also shown in ESTARFM; in
particular, the fusion result in ESTARFM and the noise patterns identical to Subarea A in
Figure 6 were verified.
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While the true SF data observed the shape of rivers, as shown in Figure 6, the results
of three fusion models were not reflected this shape. Three fusion models combine the
local variations of SF data acquired at the pair dates to predict the local variations at the
prediction date. In this case, however, the local variations including the shape of rivers
were not observed in the SF data acquired at two pair dates. Therefore, this is considered
that three fusion models failed to capture the shape of rivers in the results. In order to
predict the local variations well, SF data with local variations similar to true values should
be used as the pair data. However, it is difficult to obtain SF data at the desired date in
terms of availability of optical satellite images. Although multiple sensor-based satellite
images can be used as SF data, the relationship between DC and SF data should be defined
differently for each sensor. If the multiple sensor-based satellite images are used as SF data,
it is necessary to consider how to combine the sensor-based relationships between DC and
SF data in spatiotemporal fusion.

Figure 7 presents the three spatial-temporal fusion results produced in the NIR channel
and the true SF data. By visually comparing the three fusion results in the NIR channel,
ESTARFM showed a fusion result higher than the true SF data in the flood-damaged region
(over-estimated). STGDFM and STARFM showed a fusion result similar to the true SF data.
However, when the fusion results of STGDFM and STARFM were expanded and compared,
it was found that STARFM could not reflect the detailed patterns in Subarea A of Figure 8.
Additionally, when STGDFM and STARFM were compared with ESTARFM, the latter
showed the fusion result with a different spatial trend than the true SF data. In contrast,
STGDFM reflected the low reflectance values well—in particular, the local variations in the
true SF data.

Next, the study performed an accuracy assessment based on the spatiotemporal
fusion results produced in red and NIR channels (Table 3). The accuracy assessment
showed a result similar to that of visual verification, and the prediction performance of
STGDFM was generally higher than that of STARFM or ESTARFM. However, when the
MAE and RMSE values were compared in the red channel, STARFM showed lower MAE
and RMSE values than STGDFM. It may be that STARFM reflected well the fusion result
with a low reflectance value by using the DC data at the prediction date, which resulted
in low MAE and RMSE values (Table 3). Although STARFM showed lower MAE and
RMSE values than STGDFM, SSIM and R2 values of STARFM (SSIM: 0.892, R2: 0.869)
were lower than those of STGDFM (SSIM: 0.911, R2: 0.872). STARFM converts the spatial
resolution of DC data into spatial resolution of SF data by applying bilinear interpolation,
thus DC data with smoothed patterns were input for STARFM [18]. Particularly, STARFM
showed limitations in explaining local variations by assigning high weights to DC data with
smoothed patterns acquired at the prediction date. As a result, when compared to STGDFM,
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STARFM’s similarity to the true SF data was lower. The fusion results of STGDFM and
STARFM showed similar patterns in the flood-affected areas, whereas ESTARFM fusion
result showed significantly different patterns with true SF data (Figures 7 and 8). Likewise,
ESTARFM showed the lowest prediction performance among the three models with highest
error measurement indices and lowest similarity indices in both red and NIR channels
(Table 3).
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Table 3. Quantitative evaluation indices of three spatiotemporal data fusion results in the Case of
Flood-affected Area. Local statistics refer to the validation statistics calculated only in flooded areas.
The best performance is highlighted with underlining and bold font type.

Channel Statistics STGDFM STARFM ESTARFM

Red
Channel

Global
Statistics

MAE 0.0089 0.0081 0.0097
RMSE 0.0118 0.0114 0.0136
SSIM 0.916 0.902 0.908

R2 0.874 0.852 0.823

Local
Statistics

MAE 0.0088 0.0086 0.0097
RMSE 0.0122 0.0118 0.0134
SSIM 0.911 0.892 0.885

R2 0.872 0.869 0.832

NIR
Channel

Global
Statistics

MAE 0.0132 0.0137 0.0154
RMSE 0.0192 0.0196 0.0200
SSIM 0.890 0.889 0.886

R2 0.836 0.822 0.807

Local
Statistics

MAE 0.0129 0.0133 0.0173
RMSE 0.0189 0.0208 0.0239
SSIM 0.894 0.891 0.878

R2 0.838 0.834 0.832

On the other hand, the difference between the evaluation indices of STGDFM and
STARFM does not seem significant, in terms of the absolute values. However, this difference
may lead to different results in remote sensing applications. For this reason, even the
small difference of this extent was regarded as a significant improvement in previous
studies [19,20,39,42].

4.2. The Case of Wildfire-Affected Area

Next, the results of spatial-temporal fusion applied to the Case of Wildfire-affected
Area were compared. First, the spatial-temporal fusion results produced in the red chan-
nel and the true SF data (i.e., Landsat data acquired at a prediction date) were visually
compared (Figure 9). Further, all three models were generally shown to produce fusion
results with a spatial trend similar to the true Landsat data. As shown in Figure 9, it is
determined that this is because in the red channel, the reflectance value due to wildfire is
not significant.
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In all three fusion results, the global spatial pattern was similar to that of the true
SF data, but the local variation showed different trends (Figures 9 and 10). In Subarea
A, a region with relatively lower wildfire damage, shows a higher reflectance value than
the surrounding region in the true SF data. Such a trend was seen in STGDFM but not in
STARFM and ESTARFM. Additionally, Subarea B showed a low reflectance value in the
true SF data. When compared with STARFM and ESTARFM, STGDFM predicted in the
fusion result a low reflectance value similar to the true SF data.
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Figure 11 shows the comparison of the spatiotemporal data fusion results produced
in the red and NIR channels. The result shows that the ESTARFM fusion result predicted
a higher reflectance value than the Landsat data, which was observed to have a lower
reflectance value due to wildfire damage. However, when compared to the true Landsat
data, the fusion results from STGDFM and STARFM predicted a global spatial pattern
similar to that of the true value data.

As opposed to the global spatial pattern, the fusion results of STGDFM and STARFM
show the difference in the local variation. As shown in Figure 12, in Subareas A and B,
which are the expanded areas of the wildfire-affected regions, STGDFM explains the local
variation more like the trend in the true Landsat data than STARFM. The fusion result
of STARFM showed locally smoothed patterns when compared to the true Landsat data.
Further, the fusion result of ESTARFM showed significantly different local variations from
the true Landsat data.
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In addition to the visual verification, the study quantitatively compared the prediction
performance of the fusion results (Table 4). Similar to the Case of Flood-affected Areas,
STGDFM generally showed the highest prediction performance among the three fusion
models. Specifically, in the local statistics of both red and NIR channels, the lowest RMSE
(red channel: 0.0120, NIR channel: 0.0190) and the highest SSIM (red channel: 0.979, NIR
channel: 0.949) were presented in the results of STGDFM. Although the lowest MAE and
RMSE values in the global statistics of NIR channel were presented in the result of STARFM,
the similarity indices (i.e., SSIM and R2) of STARFM were lower than those of STGDFM.
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This is considered that the effect of smoothed patterns presented in the fusion results of
STARFM (Figure 12). As mentioned in the Case of flood-affected Areas, since STARFM
assigned a high weight to DC data with smoothed patterns acquired at the prediction
date, the fusion result of STARFM included the smoothed patterns compared with the
results of STGDFM and ESTARFM. On the other hand, ESTARFM showed the highest error
measurement indices (i.e., MAE and RMSE) and the lowest similarity indices. Particularly,
in the NIR channel, it was found that ESTARFM showed a significant difference in the
prediction performance compared to STGDFM and STARFM. These results are discussed
in Discussion.

Table 4. Quantitative evaluation indices of three spatiotemporal data fusion results in the Case of
Wildfire-affected Area. Local statistics refer to the validation statistics calculated only in wildfire
affected areas. The best performance is highlighted with underlining and bold font type.

Channel Statistics STGDFM STARFM ESTARFM

Red
Channel

Global
Statistics

MAE 0.0103 0.0108 0.0116
RMSE 0.0148 0.0149 0.0165
SSIM 0.945 0.925 0.927

R2 0.900 0.895 0.872

Local
Statistics

MAE 0.0091 0.0094 0.0105
RMSE 0.0120 0.0121 0.0143
SSIM 0.979 0.967 0.938

R2 0.775 0.769 0.700

NIR
Channel

Global
Statistics

MAE 0.0214 0.0207 0.0261
RMSE 0.0333 0.0318 0.0412
SSIM 0.950 0.911 0.900

R2 0.916 0.910 0.860

Local
Statistics

MAE 0.0144 0.0144 0.0199
RMSE 0.0190 0.0192 0.0261
SSIM 0.949 0.921 0.917

R2 0.760 0.742 0.717

5. Discussion

The summary of the key results of this study are as follows: (1) The ESTARFM fusion
result showed poor prediction performance in the reflectance changes in the damaged
region and the period, as opposed to the Landsat data from the prediction date. (2) The
STARFM fusion result showed a locally smoothed pattern in contrast to the application
results of the other two models. (3) When compared to the fusion results of STARFM and
ESTARFM, the fusion result of STGDFM showed a higher prediction performance. This
section presents the analysis of the results.

This study constructed the DC and SF data acquired before and after disaster as pair
data and used them as input data to detect the region damaged by disaster (Figures 2 and 3).
The NIR channel data that showed a significant amount of the reflectance changes due to
disaster (Figures 2b and 3b) showed that there were huge reflectance changes between the
pair dates and the prediction date. In particular, such reflectance changes were considerable
in the first pair date, the time before the disaster, and the prediction date. However, ES-
TARFM assumes that reflectance changes linearly between the pair dates and the prediction
date [19]. Therefore, if there is a considerable change of reflectance between the prediction
date and the pair dates due to disaster, it is difficult to assume that reflectance changes
linearly. As such, the prediction performance of ESTARFM was the poorest among the
three models. The previous studies also reported this interpretation in Xue et al. [20].

As opposed to ESTARFM, STARFM assumes that the changes observed in the DC data
are maintained in the fine-scale data [18]. Therefore, if damage by disaster was observed
in the DC data acquired in the prediction date, as shown in Figure 3, such data can be
reflected onto the fusion result to explain the reflectance changes due to a disaster. As such,
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it is determined that STARFM showed a relatively more improved prediction performance,
compared to ESTARFM. However, the fusion result of STARFM showed a smoothed pattern;
in particular, the region with marked damage by wildfire, as shown in Figure 12, did not
reflect the local variations observed in the true SF data.

This is because such a result does not reflect the difference in the spatial resolution
between the DC and SF data in the process of coupling the reflectance changes observed in
the DC data according to STARFM’s assumption. Further, STARFM uses DC data converted
into the spatial resolution of SF data as input data by applying bilinear interpolation. The
DC data with the converted spatial resolution presents a smoothed pattern. Here, to explain
the reflectance changes due to disaster, STARFM assigns a high weighting value to the DC
data with the converted spatial resolution acquired on the prediction date. As a result,
the effect of the DC data with smoothed patterns is largely reflected in the fusion result
of STARFM, which showed limitations in explaining local variations. These results are
conspicuous in Figure 12, which enlarges the wildfire-affected areas. This means that to
couple the reflectance changes observed in the DC data to the fusion result, the difference
in the spatial resolution between the DC and SF data should be considered.

Next, the study analyzed the result of STGDFM, which showed a relatively higher
predictive performance with its fusion result. As STGDFM is based on the decomposition of
the components into the trend and residual components [9], the study examined the trend
and residual components, the intermediate result of STGDFM by each case (Figures 13
and 14). To analyze the effect of the residual components on the fusion result of STGDFM,
this study compared the absolute value of the residual components, where the larger the
absolute value of the residual components, the greater the effect of the residual.
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As show in Figures 13 and 14, the effect of the residual components was higher in the
red channel than in the NIR channel. Here, the large influence of the residual component
means that the effect of the DC data acquired on the prediction date was highly reflected
in the STGDFM fusion result explaining the reflectance changes due to the disaster. The
reason for a large effect of the residual components in the NIR channel is that the main
land coverage in two cases was vegetation (Figure 1). Further, with flooding and wildfire,
there was a change in the proportion of vegetation coverage, a key land coverage type in
the two regions. Vegetation shows sensitive responses to reflectance changes in the NIR
channel; as a result, the effect of the residual components increased in STGDFM to explain
the reflectance changes due to disaster in vegetation coverage. In particular, the effect of the
residual components was higher in the Case of Flood-affected Area, whereas no reflectance
change resulting from disaster is observed in a date different from the prediction date
(Figures 2b and 13b).

The case of Wildfire-affected Area explains the reflectance changes due to wildfire
not only with the residual components but also with the trend components (Figure 14).
Specifically, the effect of the trend components was shown to be considerably applied in the
lower right corner of the wildfire-damaged region. As in Figure 3, this is because damage
by wildfire was also observed in the DC and SF data acquired after the wildfire. In other
words, damage by wildfire was observed in dates other than the prediction date, and the
changes in reflectance observed here could be explained in the fusion result with the trend
components.

Meanwhile, the large effect of the residual components in STGDFM mean that the
influence of DC data acquired on the prediction date was greatly reflected in the fusion
result. While this is similar to STARFM where a high-weighing value is assigned to the DC
data acquired on the prediction date, the smoothing pattern observed in the fusion result of
STARFM did not occur in that of STGDFM. Thus, STGDFM explained the local variations
of the SF data in the trend components by using the deconvolution matrix, which was then
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coupled with residual components to produce the fusion result in the spatial pattern similar
to the true SF data.

In summary, STGDFM explained the reflectance changes due to disaster through the
trend components and the residual components. In particular, its explanatory power for
the abrupt reflectance changes due to disaster could be improved by reflecting the large
effect of the residual components for the prediction date. Furthermore, STGDFM combines
with the trend components the local variations of the SF data acquired in the pair dates
based on the deconvolution matrix. In this way, STGDFM could produce fusion results
with the true SF data and fine-scale spatial similarity (i.e., higher SSIM values) compared to
STARFM and ESTARFM.

6. Conclusions

This study assessed the applicability of the spatiotemporal data fusion for the detection
of regions damaged by disaster. To this end, the performance of detecting regions damaged
by disaster was analyzed using spatiotemporal fusion results. In particular, the study
applied three spatiotemporal data fusion models to detect the region damaged by disaster
and compared and analyzed their performance. The summary of the analysis is as follows:
(1) ESTARFM assumes that the reflectance changes linearly between the pair date and the
prediction date; thus, its explanatory power for the reflectance changes due to disaster was
relatively poor. (2) STARFM assumes that the reflectance changes observed in the DC data
are maintained in the SF data; thus, it was limited in explaining the detailed variations of
the reflectance changes. (3) STGDFM was able to show the highest prediction performance
among the three models as it explained the reflectance change due to disaster with the
residual components and the detailed variations of the reflectance changes with the trend
components. Based on these results, STGDFM is expected to be useful only if DC data is
acquired in the detection of regions damaged due to disaster.

The experimental results showed that the spatiotemporal data fusion can effectively
produce synthetic satellite images with high spatial and temporal resolutions. For monitor-
ing of disasters such as flood, wildfire, and forest landslide, fine-scale time series satellite
images should be constructed quickly. The government or local governments can use these
data to yield the scale and damage of disasters and to establish prevention measures in
advance. In this respect, spatiotemporal data fusion methods need to be continuously
enhanced. Even if this study compared and analyzed the performance of the three spa-
tiotemporal data fusion models in disaster monitoring, there are still issues to be discussed
or improved. For example, unlike the reflectance changes due to disasters, in order to
predict the changes in reflectance due to climate change, the long time series satellite images
should be used. Consequently, the geostatistical spatial time series modeling applied in
STGDFM can capture the temporal trends from the long time series satellite images. How-
ever, since reflectance changes due to climate change generally appear in large areas, the
difference in spatial resolution of DC and SF data may increase depending on the coverage
area. As the difference in spatial resolution between DC and SF data increases, the noise
patterns such as block artifacts can become more pronounced in the result of STGDFM. To
reduce these noise patterns, stepwise STGDFM can be applied. That is, instead of directly
converting DC data into spatial resolution of SF data, the spatial resolution is converted
stepwise to finally generate SDF data. Therefore, in the future study, the prediction perfor-
mance of STGDFM for reflectance changes due to climate change will be evaluated, and
STGDFM will be improved to be applicable on a large scale.
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