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Abstract: Building change detection (BCD) is crucial for urban construction and planning. The
powerful discriminative ability of deep convolutions in deep learning-based BCD methods has
considerably increased the accuracy and efficiency. However, dense and continuously distributed
buildings contain a wide range of multi-scale features, which render current deep learning methods
incapable of discriminating and incorporating multiple features effectively. In this work, we propose
a Siamese cross-attention discrimination network (SCADNet) to identify complex information in
bitemporal images and improve the change detection accuracy. Specifically, we first use the Siamese
cross-attention (SCA) module to learn unchanged and changed feature information, combining
multi-head cross-attention to improve the global validity of high-level semantic information. Second,
we adapt a multi-scale feature fusion (MFF) module to integrate embedded tokens with context-
rich channel transformer outputs. Then, upsampling is performed to fuse the extracted multi-
scale information content to recover the original image information to the maximum extent. For
information content with a large difference in contextual semantics, we perform filtering using a
differential context discrimination (DCD) module, which can help the network to avoid pseudo-
change occurrences. The experimental results show that the present SCADNet is able to achieve a
significant change detection performance in terms of three public BCD datasets (LEVIR-CD, SYSU-
CD, and WHU-CD). For these three datasets, we obtain F1 scores of 90.32%, 81.79%, and 88.62%, as
well as OA values of 97.98%, 91.23%, and 98.88%, respectively.

Keywords: building change detection; deep learning; Siamese cross-attention; feature fusion;
differential context

1. Introduction

Change detection (CD) methods are used to observe the variety of differences in the
same target during different time periods [1,2], separating the image pixel points into label
0 (unchanged) and label 1 (changed) [3]. The change in buildings is a significant indicator
of urbanization, as buildings are among the most dynamic structures in a city. In order to
obtain reliable information about urban change, it is critical to process building change
detection (BCD) accurately and effectively. Nowadays, researchers have performed various
studies on the theory and application of CD in remote sensing images, which are of a
critical significance for land surveying, land resource management, urban construction and
planning, and illegal construction management [4–7]. However, due to the complex texture
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of the building, the variations in building forms and changes in vegetation and light during
different seasons, BCD still presents considerable challenges [8].

In general, CD methods can be classified as either traditional or deep learning-
based. Traditional CD methods can be categorized as pixel-based (PBCD) or object-based
(OBCD) [9]. PBCD methods analyze the spectral characteristics of each pixel point by
change vector analysis (CVA) [10] and principal component analysis (PCA) [11]. Sup-
port vector machines (SVM) [12,13] and random forests [14] are used for coarse matching,
followed by setting thresholds to determine the CD results. Additionally, the ease of acquir-
ing high-resolution remote sensing images has been enhanced by the rapid development
in aerospace and remote sensing technologies [15]. Hay et al. [16] first introduced the
concept of objects in the field from remote sensing images and applied multi-resolution
segmentation techniques to extract various objects from images. Then, there have been a
variety of approaches proposed for CD using OBCD, mainly based on the spectral, textural,
and spatial background information at the object level [17–19]. However, the traditional
CD methods still have considerable limitations. The PBCD methods ignore the spatial
correlation between adjacent pixels, focusing only on the spectral information. Semantic
information is not taken into account by the OBCD algorithms, which makes the model
unable to effectively identify pseudo-changes. Furthermore, traditional CD methods cannot
adequately characterize the changes in buildings in high-resolution remote sensing images,
making them unsuitable for complying with real-world accuracy requirements.

With the advancement in computing power and data, deep learning has produced a
large amount of research in the fields of object detection, image classification, and semantic
segmentation [20–22]. As a result, deep learning algorithms are currently being applied to
CD, a hotspot in remote sensing research [23,24]. Currently, the majority of deep learning-
based CD methods involve networks which show efficient results regarding contrastive
learning [25] and segmentation tasks [26]. The main purpose of comparative learning is to
deduce the differences between similar objects and expand the differences between various
kinds of objects. For example, Dong et al. [27] built a network based on a time prediction;
specifically, this network can distinguish the different patches in bitemporal images, encode
them into more consistent feature information, and finally obtain detection results through
a clustering [28] algorithm. However, the operation process leads to the loss of a great deal
of semantic information, which leads to missing detection occurrences. Chen et al. [29]
presented an unsupervised CD method using self-supervised learning to pretrain a neural
network; in this method, contrastive and regression losses are used to calculate varied
and similar images. Chen et al. [30] innovatively proposed the pyramid spatial–temporal
attention module (PAM), which mitigates the effect of light variations on CD performance;
however, this method merely considers the spatial attention weights between bitemporal
images. Wang et al. [31] proposed focal contrastive loss to alleviate the imbalance between
positive and negative samples in CD, and this method reduces the intra-class variance and
increases the inter-class difference so that the binarized output is more easily obtained by
setting a threshold.

Even though these methods have achieved effective results as a result of comparative
learning, their effectiveness is greatly affected by the sample distribution of the datasets.
Using distance metrics in contrastive learning methods for CD tasks remains ineffective.
Since buildings are densely distributed, shadows, similar roads, and other factors often
affect the change areas of the buildings. Therefore, segmentation methods are able to seg-
ment the region of the changed areas, achieving better CD effects. Zhan et al. [32] obtained
the CD results by combining a weight-sharing network with a threshold segmentation of
the feature graph at the final layer; however, this network structure is relatively simple
and unable to extract deeper semantic information. Chen et al. [33] employed spatial
and channel-attention mechanisms to extract the feature information from spatial and
temporal channels, respectively, more efficiently and comprehensively capturing global de-
pendencies and long-range contextual information. However, large-scale cross-dimensional
operations undoubtedly increase the computational time. Mi et al. [34] developed a deep
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neural forest based on semantic segmentation, which effectively alleviates the impact of
noise on the CD results, but still remains unsatisfactory in terms of missing detection.

Although researchers have proposed various methods, the BCD problems are not yet
completely resolved. First, the current attention mechanisms are incapable of efficiently
focusing on the unchanged and changed regions when there are large numbers of pseudo-
changes in the bitemporal images, which can lead to serious false detection phenomena.
Second, there are large numbers of downsampling and upsampling operations in the
existing networks, leading to the loss of bitemporal information; furthermore, the direct
fusion strategy exacerbates this issue, making the network unable to effectively recover
image information during upsampling, and the final detection results will also have issues,
such as missed detections and untidy change edges. Finally, the current algorithms only
perform CD operations and do not take into account the differential information in the
bitemporal images, so they cannot distinguish the pseudo-change information satisfactorily.
As a result, detecting building changes in high-resolution remote sensing images remains
a significant challenge; improving the detection accuracy and interpreting these images
effectively remain an imperative part of BCD research.

Therefore, we propose a novel deep learning-based network (SCADNet) for BCD. In
the encoding stage, the shared-weight Siamese network with the Siamese cross-attention
(SCA) module is used to extract the features from the bitemporal images, combining them
with multi-head cross-attention to enhance feature perception and global effectiveness. To
alleviate the network’s fusion-stage information loss, we add a multi-scale feature fusion
(MFF) module in the decoding stage, which enables it to fuse multi-scale feature informa-
tion by fusing adjacent scales step-by-step. More importantly, we propose a differential
context discrimination (DCD) module, which obtains similar and different features be-
tween contexts, increasing the resistance of the model to pseudo-variation by increasing
the variation in different contextual features.

The most significant contributions of our work are summarized as follows:

(1) We added a SCA module to the Siamese network, focusing on unchanged and changed
regions. The Siamese network is now capable of deploying two-channel targeted
attention on the specified feature information, strengthening the network’s charac-
terization ability and improving its ability to recognize environmental and building
changes, and thus enhancing the network’s recognition accuracy.

(2) Our proposed MFF module is able to fuse independent multi-scale information,
recover the original feature information of remote sensing images as much as possible,
reduce the false detection rate of CD, and make the edge lines of detecting change
regions more delicate.

(3) We designed a DCD module by combining differential and concatenation methods,
enhancing the feature differences between contexts and focusing on comparing the dif-
ferences between pseudo and real changes, making the model more responsive to the
region where the changes occur, thus reducing the network’s missing detection rate.

2. Materials and Methods

The first part of this section describes the overall structure of the SCADNet, followed
by a detailed description of the three modules, SCA, MFF, and DCD, respectively. Finally,
the loss function is described.

2.1. Network Architecture

An overview of the structure of the SCADNet network is shown in Figure 1. The
model first takes the bitemporal remote sensing images from the same area as the input.
We receive the feature information from the bitemporal images through a weight-sharing
Siamese network. The decoder, composed of SCA and MFF modules, decodes the multi-
scale features. Specifically, the SCA module extracts unchanged and changed feature
information. The MFF module fuses the extracted multi-scale feature information. Then,
our DCD module performs the differential operation between the pre- and post-temporal
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images to obtain the differential map and inputs the predicted and difference images
together into a discriminator for a contextual difference discrimination. The discriminator
will calculate the probability loss, when the probability loss is less than the set threshold,
the discriminator will output the final BCD result.
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Figure 1. Overview of the proposed SCADNet. Pre- and post-temporal remote sensing images
were entered into the encoder to obtain multi-scale features. Additionally, the multi-head cross-
attention feature was combined with the SCA module to strengthen attention to the specified change
information. MFF module integrated multi-scale feature information twice by Reconstruction and
UpBlock. Finally, the DCD module received predicted and difference images. Discriminators was
used to obtain the probability loss and iterated continuously until the probability loss reached the
minimum value to obtain the CD result.

As part of the encoding process, we collect the characteristic features of the bitemporal
images using a weight-sharing Siamese network; subsequently, we perform a preprocessing
operation on the two-channel image input to the BatchNormBlock, including a convolution
kernel of 3, a 2D convolution with a step size of 1, a 2D BatchNorm, and an ReLU activation
function with an output channel number of 64. The numbers of channels for extracting the
feature information are 128, 256, and 512, respectively.

Our decoding stage consists of two parts: SCA and MFF modules. The SCA module
uses the Siamese cross-attention mechanism and fuses the transformer multi-head cross-
attention mechanism to obtain the changed and unchanged features of the bitemporal
images. The MFF module first reconstructs the acquired multi-scale feature information;
then, the image feature information is recovered through four upsampling operations for
the predictive results of the changed buildings.

Finally, our DCD module feeds the predicted and difference pictures into the discrimi-
nator to determine the current probability loss of CD and it repeats this process until the
probability loss is minimized.
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2.2. Siamese Cross-Attention Module

Two-stream Siamese networks can achieve relatively effective results in BCD tasks.
The principle is to use two Siamese channels to pre- and post-temporal images, and then
extract the features for the BCD in parallel.

However, the traditional fully convolutional Siamese neural network does not improve
the extraction of the image’s features and rich contextual semantic information, and it
focuses excessively on low-level feature information, which is irrelevant for CD. Therefore,
the traditional fully convolutional Siamese neural network suffers from a number of
difficulties, such as inaccurate region boundaries, and missed or false detections.

In light of the need to extract fine-grained and abundant image features as well as
the combination of contextual semantic information for BCD, our SCA module enhances
the traditional Siamese network by adding a Siamese cross-attention mechanism to and
adds a multi-head cross-attention mechanism in order to obtain more comprehensive
spatiotemporal semantic information.

As illustrated in Figure 1, we also use the Siamese channel with shared weights for
the SCA module. Four outputs from the encoder stage are received as the inputs, and we
perform the embedded operation on these four inputs, starting with a 2D convolution, fol-
lowed by flattening the features into two-dimensional sequences with patch sizes of 32, 16,
8, and 4. Therefore, we obtain the four scales of feature information tokens Ti(i = 1, 2, 3, 4),
then concatenate them as T∑, including the key and value.

Figure 2 shows the multi-head cross-attention mechanism of the channel transformer.
We input all four of the above tokens and T∑ into the multi-head cross-attention mechanism
and enable each token to learn more abundant multi-scale features:

Qi = TiWQi , K = T∑WK, V = T∑WV (1)

where WQi , WK, and WV are the weights of different inputs and Ci is the channel dimension
of the four input tokens [35]. In our network, C1 = 64, C2 = 128, C3 = 256, C4 = 512.
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Equation (2) shows that we generate similarity matrix Mi by Qi, K, and V by weighting
Mi and value VT to obtain the cross-attention:

CAi = MiVT = σ[ϕ(
QT

i K√
C∑

)]VT = σ[ϕ(
WT

Qi
TT

i T∑WK√
C∑

)]WT
V QT

∑ (2)
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where σ(·) and ϕ(·) denote the instance normalization [36] and softmax function, respec-
tively. Using instance normalization, each similarity matrix can be normalized so that
the gradients are propagated more smoothly. In our implementation, after multi-head
cross-attention, we calculate the N-head output as follows:

MCAi = (CA1
i + CA2

i +, . . . ,+CAN
i )/N (3)

where N is the number of heads. We then execute the MLP and residual operator to obtain
the final output:

Oi = MCAi + MLP(Qi + MCAi) (4)

We perform the operation of Equation (4) four times to obtain four outputs: O1, O2, O3,
and O4. In addition to high-level semantic information, these outputs include information
about the region of interest for change.

2.3. Multi-Scale Feature Fusion Module

Since the main purpose of CD is to detect changes in each pixel point, if only the
individual pixel points themselves are considered, the extracted feature information is
completely independent and cannot represent the entire image information properly. Thus,
insufficient feature information will lead to false and missing detections. Moreover, bitem-
poral feature fusion is a critical part of Siamese network CD. Using the feature information
directly will result in information loss and redundancy, which will negatively impact
the accuracy of the detection. Therefore, we propose an MFF module to fuse multi-scale
feature information.

Figure 1 shows that our MFF module is divided into two parts for the execution:
Reconstruction and UpBlock. The Reconstruction operation receives two inputs, the Token
output after the embedded operation, Ti(i = 1, 2, 3, 4), and the output from the Channel
Transformer, Oi(i = 1, 2, 3, 4). These two inputs are spatially squeezed by the global pooling
layer to obtain vector V(x) and its kth channel. We start with generating an attention mask:

Mi = W1·V(Ti) + W2·V(Oi) (5)

where W1 and W2 are the weights of the two linear layers; then, the individual channels are
connected. We repeat the above operation four times to obtain the four outputs. We also
perform upsampling operations to integrate the above four outputs in order to better fuse
the multi-scale feature information. Additionally, the output channels of the four UpBlocks
are 256, 128, 64, and 64. Finally, we convolve the output results of the fourth UpBlock once
with a convolution kernel of 1 and a step size of 1 to obtain the fusion results of the BCD,
which are then input to the DCD module for discrimination.

2.4. Differential Context Discrimination Module

Remote sensing images contain complex image contents, as well as a variety of build-
ing shapes. The same building can have large variations in different scenes and time
sequences. The effective discrimination of differential context information can help the
network to extract valuable information more efficiently, thereby improving the recognition
accuracy and robustness to pseudo-variation features.

The current mainstream context discrimination methods are differential and concate-
nation methods [37]. The differential method can obtain bitemporal change information;
however, it is affected by changes in the shooting angle and light. Although the concatena-
tion method can extract continuous features from images, it does not adequately capture
bitemporal changes. Therefore, our proposed DCD module combines the advantages of the
above two methods. It focuses not only on regions with small semantic changes but also on
regions of change where there are large differences between the contexts. Specifically, we
use the difference operation to bitemporal images as a difference image, and it is worth
noting that the input of the discriminator is multichannel images created by concatenating
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the difference image and the generator’s predicted change map in the channel dimension,
aiming to provide prior information for better-discriminating features.

Figure 1 shows that there are two inputs to the DCD module. One is the predicted
image obtained after the Siamese network processing and the other is the different image
obtained by the difference operation between the pre- and post-temporal images. We
input these two images into the discriminator for differential context discrimination. We
define the real one as GT, whereas the fake one is the generator’s predicted change map.
Probability loss is the result of the discriminator calculating the difference between the
fake and the real. Our discriminator consists of a fully connected convolutional neural
network; specifically, there are five convolutional layers in the discriminator, each with a
convolution kernel size of 4, and the numbers of channels in each layer are 64, 128, 256, 512,
and 1. Each convolutional layer has a convolutional padding of 2, while the first 4 layers
have a stride size of 2. The last layer has a stride size of 1. Additionally, a Leaky-ReLU
operation is performed after each convolutional layer. The discriminator will finally output
the probability loss of this CD result, and the loop executes the DCD several times to guide
the probability loss to the minimum. Therefore, the DCD module makes the outputs of the
network more closely resemble GT, which ultimately produces a higher accuracy map of
the BCD results.

2.5. Loss Function

By optimizing the correct loss during training, the Jaccard index [38] can substantially
improve the accuracy of CD. The loss of our network can be simplified by Equation (6),
which is based on the Jaccard index:

LSCAD = ρ
1
C ∑

c∈C
JC(v(c)) (6)

where v(c) is a vector of the pixel errors for class c ∈ C aiming to construct the loss surrogate
to JC. It is defined by:

v(c) =
{

1− si(c), i f c = yi
si(c), i f c 6= yi

(7)

where yi represents the ground truth and si(c) is the network’s prediction result. A set
function JC encodes a submodular Jaccard loss for class c and indicates a set of generated
error results.

As a result of choosing a suitable loss function, we improved the accuracy of BCD,
bringing the edge and detail information closer to the target image. If we had used a
regular GAN [39], there would be problems, such as difficulty in convergence and model
explosion. Based on previous experimental experience [38], we used the least-squares
generative adversarial network (LSGAN) [40] as the loss function in our work. The LSGAN
is more stable and can detect changes more accurately. It is defined by Equation (8):

LLSGAN(D) = Ei,y∼Pdata(i,y)[(D(i, y)− 1)2] + Ei∼Pdata(i)[(D(i, G(i)))2] (8)

LSGAN is also used to optimize adversarial learning, and is formulated as follows:

LLSGAN(G) = Ei∼Pdata(i)[(D(i, G(i))− 1)2] (9)

In addition, we employ a supervised training, which enhances the accuracy of CD.
SCADNet’s objective function, therefore, can be defined as follows:

minL(D) = LLSGAN(D)
minL(G) = LLSGAN(G) + αLSCAD

(10)

the relative weights of the two objective functions are controlled by α. Our task is best
suited by setting α to 5.
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3. Experiments and Results

The following is a description of this section. The datasets we used are LEVIR-CD,
SYSU-CD, and WHU-CD. Our evaluation metrics and the parameters for the experiments
are then described. Finally, we describe an ablation experiment on the LEVIR-CD dataset
and compare the various methods comprehensively. As a result of our experimental results,
our method outperformed the alternatives.

3.1. Datasets

We used three public BCD datasets: LEVIR-CD, SYSU-CD, and WHU-CD to evaluate
the superiority of SCADNet. Those datasets contain pre-temporal and post-temporal
images as well as the labels of the changed building areas. The experimental datasets are
briefly described in Table 1.

Table 1. An overview of experimental datasets.

Name Bands Image Pairs Resolution (m) Image Size Training Set Validation Set Testing Set

LEVIR-CD 3 637 0.5 1024 × 1024 3096 432 921
SYSU-CD 3 20,000 0.5 256 × 256 12,000 4000 4000
WHU-CD 3 1 0.5 32,207 × 15,354 5201 744 1487

1. LEVIR-CD [30], created by Bei-hang University, contains a variety of architectural
images, including original Google Earth images collected between 2002 and 2018.
There are 1024 × 1024 pixels in each image with a resolution of 0.5 m. Due to GPU
memory limitations, we divided each image into 16 patches of 256 × 256 pixels
without an overlap. As a result, we obtained 3096, 432, and 921 pairs of patches for
training, validation, and testing, respectively. As shown in Figure 3, a few scenes are
taken from the LEVIR-CD dataset.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. Display of sample images from the LEVIR-CD dataset (first row indicates pre-temporal 
images, second row indicates post-temporal images, and third row indicates labelled images). 

 
Figure 4. Display of sample images from the SYSU-CD dataset (first row indicates pre-temporal 
images, second row indicates post-temporal images, and third row indicates the labelled images). 

 
Figure 5. Display of sample images from the WHU-CD dataset (first row indicates pre-temporal 
images, second row indicates post-temporal images, and third row indicates labelled images). 

Figure 3. Display of sample images from the LEVIR-CD dataset (first row indicates pre-temporal
images, second row indicates post-temporal images, and third row indicates labelled images).

2. Sun Yat-Sen University created the challenging SYSU-CD dataset [41] for CD. This
dataset contains changes in vegetation and buildings in a forest, buildings along a
coastline, and the appearance and disappearance of ships in an ocean. The image size
is 256 × 256 pixels with a resolution of 0.5 m. In our work, the training, validation,
and test sample proportion was 6:2:2. Therefore, we obtained 12,000, 4000, 4000 pairs
of patches for training, validation, and testing, respectively. Figure 4 illustrates some
of the variety of the scenarios included in the SYSU-CD dataset.
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3. The WHU-CD dataset [42] was released by the University of Wuhan as a public CD
dataset. Only one image is included in the original dataset, which is 15,354× 32,507 pixels.
In order to be consistent with the two datasets mentioned above, 7432 patches were
generated by cropping the image into 256 × 256 pixels. During the splitting, no overlap
was used. In the end, we obtained 5201, 744, and 1487 pairs of patches for the training,
validation, and testing, respectively. A few scenes from the WHU-CD building dataset
are shown in Figure 5.
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3.2. Experimental Details
3.2.1. Evaluation Metrics

Remote sensing CD presents a problem regarding the binary classification of the
pixels. CD algorithms are therefore evaluated using the following quantitative evaluation
metrics that are commonly used in binary classification problems: precision (P), recall
(R), F1 score, mean intersection over union (mIOU), overall accuracy (OA), and kappa
coefficient. Precision indicates fewer false detections, while recall indicates fewer missed
detections. The higher the mIOU and F1 scores, the better the performance. We also added
two additional values, where IOU_0 and IOU_1 indicate that an unchanged or changed
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region is detected, respectively. The OA provides an overall assessment of the model’s
performance, with higher values representing a better performance. The consistency
is checked using the kappa coefficient. Specifically, we defined the evaluation metrics
as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2× TP

2× TP + FP + FN
(13)

IOU_0 =
TN

TN + FP + FN
(14)

IOU_1 =
TP

TP + FP + FN
(15)

mIOU = (IOU_0 + IOU_1)/2 (16)

OA =
TP + TN

TP + TN + FP + FN
(17)

Pe =
(TP + FP)(TP + FN) + (FP + TN)(FN + TN)

(TP + TN + FP + FN)2 (18)

Kappa =
OA− Pe

1− Pe
(19)

In the above formulas, true positive is abbreviated as TP. False positive is referred to
as FP. True negative is abbreviated as TN. False negative is referred to as FN.

3.2.2. Parameter Settings

Throughout the experiments, we employed the PyTorch framework to build all the
models. We used NVIDIA GeForce RTX 3090 GPU in our experiments. Based on the
limitations of the GPU memory, we set the batch training size to eight when configuring
the parameters of the network model training. The maximum number of epochs we used
for training the model was 200. Training was stopped early during the process in order
to prevent overfitting. Our initial learning rate was 0.0002. In the overall training process,
the model with the highest performance on the validation set will be applied to the test set
for testing.

3.3. Ablation Experiment

In order to confirm the effectiveness of our proposed SCA and DCD modules, we
conducted ablation experiments using the LEVIR-CD dataset, and the results are shown in
Table 2.

Table 2. Results of ablation experiments using LEVIR-CD dataset.

Method Precision Recall F1 Score mIOU IOU_0 IOU_1 OA Kappa

Baseline 87.73 91.31 89.48 89.16 97.36 80.96 97.63 88.15
Baseline + SCA 88.37 91.29 89.81 89.48 97.45 81.50 97.71 88.52

Baseline + SCA + DCD 90.14 91.74 90.32 90.56 97.75 83.37 97.98 89.79

Note that the best results are in bold.

The F1 score increased from 89.48% in the baseline to 89.81% when the SCA module
was added separately. As a result of the simultaneous addition of the SCA and DCD
modules, the model’s F1 score increased by 0.84% over the baseline, reaching 90.32%. With
just the SCA module, the precision improved by only 0.64%, but with the additional use of
the DCD module, the precision improved by 2.41%, demonstrating that the DCD module is
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effective at reducing missed detections. Finally, when all the modules were applied to the
baseline, the precision and IOU_1 for the CD reached their highest values of 90.14% and
83.37%, respectively. These values are significantly higher than the baseline.

3.4. Comparative Experiments

We selected several classical CD models as well as the existing SOTA models for
comparison experiments to demonstrate the accuracy and effectiveness of SCADNet. The
selected algorithms are described in detail as follows:

1. FC-EF [43]: A method of image-level fusion in which bitemporal images are concate-
nated to shift the single input to a fully convolutional network, and feature mapping
is performed through skip connections.

2. FC-Siam-conc [43]: This method fuses the multiscale information in the decoder. A
Siamese FCN is employed, which uses the same structure and shared weights to
extract multilevel features.

3. FC-Siam-diff [43]: Only the skip connection is different between this method and FC-
Siam-conc. Instead of concatenating the absolute values, FC-Siam-diff uses absolute
value differences.

4. CDNet [44]: CDNet is initially used to detect street changes. The core part of the
network is four compression blocks and four extension blocks. The compression
blocks acquire feature information about the images and the extension blocks refine
the change regions. Softmax is used to classify each pixel point for the prediction,
balancing performance, and model size.

5. IFNet [45]: An image fusion network for CD that is deeply supervised. The bitemporal
images are first extracted using a two-stream network. The feature information is
then transferred to the deep supervised difference discrimination network (DDN) for
analysis. Finally, channel attention and spatial attention are applied to fuse the two-
stream feature information to ensure the integrity of the change region boundaries.

6. SNUNet [46]: SNUNet reduces the loss of deep information in neural networks by
combining the Siamese network and NestedUNet. In addition, an ensemble channel
attention module (ECAM) is used to achieve an accurate feature extraction.

7. BITNet [47]: A transformer module is added to the Siamese network to transform
each image into a set of semantic tokens. This is followed by building a contextual
model of this set of semantic tokens using an encoder. Finally, a decoder restores
the original information of the image through a decoder, thus enhancing the feature
representation in the pixel space.

8. LUNet [48]: LUNet is implemented by incorporating an LSTM neural network based
on UNet. It adds an integrated LSTM before each encoding process, which makes the
network operation more lightweight by adjusting the weight of each LSTM, the bias,
and the switch of the forgetting gate, thus achieving an end-to-end network structure.

We employed a total of twelve methods to conduct comparative experiments; we do
not have an open source well reproducible code for the four methods (DeepLabV3, UNet++,
STANet, and HDANet) [49]. Therefore, to respect the existing work, we directly referenced
the available accuracy evaluation metrics on the BCD datasets.

Table 3 shows the comparison results of the various methods on the LEVIR-CD dataset.
SCADNet outperformed other networks in all the metrics except precision. The F1 score
and recall metrics also showed an excellent performance (90.32% and 91.74%, respectively).
HDANet achieved the highest precision of 92.26%, which was 2.12% better than our method.
Since SCADNet is focused not only on correctly detecting the areas that are really changing,
but also on all areas where a change occurs. The recall metric of our method was higher
than HDANet’s of 4.13%. In light of the F1 score metric, we can conclude that our method
had the most robust overall performance.
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Table 3. Comparative results for different methods used on the LEVIR-CD dataset.

Method Precision Recall F1 Score mIOU IOU_0 IOU_1 OA Kappa

FC-EF 79.91 82.84 81.35 81.97 95.38 68.56 95.80 78.99
FC-Siam-conc 81.84 83.55 82.68 83.11 95.74 70.48 96.13 80.51
FC-Siam-diff 78.60 89.30 83.61 83.77 95.71 71.84 96.13 81.43

CDNet 84.21 87.10 85.63 85.65 96.43 74.87 96.77 83.81
IFNet 85.37 90.24 87.74 87.53 96.91 78.16 97.21 86.17

SNUNet 91.05 88.87 89.94 89.65 97.57 81.73 97.81 88.71
BITNet 87.32 91.41 89.32 89.00 97.31 80.70 97.59 87.96
LUNet 85.69 90.99 88.73 88.44 97.13 79.75 97.42 87.28

DeepLabV3 90.03 82.51 86.11 - - - - 85.39
UNet++ 91.44 85.24 88.23 - - - - 87.62
STANet 92.01 83.33 87.46 - - - - 86.82

HDANet 92.26 87.61 89.87 - - - - 89.34
SCADNet(ours) 90.14 91.74 90.32 90.56 97.75 83.37 97.98 89.79

Note that the best results are in bold.

We selected two scenarios from each of the three BCD datasets for visualization. As
can be seen in Figure 6, there is only one variation in the building. Due to the changes in
lighting, all the methods except SNUNet and SCADNet detected the house in the lower-
right corner as a building change. In addition, we achieved fewer false detections compared
with SNUNet in the upper-left corner of the building.
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Figure 6. LEVIR-CD dataset comparison results visualization for the first image. TP is visualized in
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As shown in Figure 7, our method was able to detect a dense multi-objective building
change scene with a total of three rows of buildings changing. In contrast, all the other
methods failed to detect the relatively small changes in the second row of the buildings.
While FC-EF, FC-Siam-conc, and FC-Siam-diff almost completely missed these small targets,
our method was successful in identifying them. In addition, SCADNet was also able to
achieve a low false detection rate for slightly larger buildings.

Table 4 shows the comparison results for the SYSU-CD dataset. Our method achieved
optimal results in terms of the F1 score, mIOU, IOU_0, IOU_1, OA, and kappa metrics. One
of the most notable results was our F1 score of 81.79%. Among the other methods, the F1
score of the IFNet also reached 80.98%, which is only 0.81% lower than that of our method,
while the SCADNet was second only to UNet++, DeepLabV3, BITNet, and STANet in
terms of the precision. With the multi-scale feature fusion strategy, IFNet exhibited the
highest recall rate of all the methods, reaching 87.60%. DeepLabV3 and the three FC-based
methods had a relatively insufficient detection accuracy. For example, the F1 score and
precision for FC-EF were 75.13% and 64.58%, respectively, which were 6.66% and 15.54%
lower than those for our method.
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Table 4. Comparative results for different methods used on the SYSU-CD dataset.

Method Precision Recall F1 Score mIOU IOU_0 IOU_1 OA Kappa

FC-EF 64.58 89.79 75.13 71.19 82.21 60.17 85.98 65.73
FC-Siam-conc 65.98 89.39 75.99 72.18 83.08 61.28 86.65 67.04
FC-Siam-diff 70.84 84.87 77.22 74.07 85.24 62.90 88.19 69.34

CDNet 74.61 84.10 79.08 76.15 86.90 65.39 89.50 72.10
IFNet 75.29 87.60 80.98 77.91 87.77 68.04 90.30 74.52

SNUNet 76.90 79.59 78.22 75.68 87.13 64.23 89.55 71.35
BITNet 80.61 79.29 79.95 77.53 88.46 66.59 90.62 73.83
LUNet 76.14 81.74 78.84 76.13 87.18 65.08 89.65 72.01

DeepLabV3 80.99 70.65 75.47 - - - - 68.56
UNet++ 81.44 74.66 77.90 - - - - 71.76
STANet 80.38 74.75 77.46 - - - - 70.84

HDANet 78.53 79.88 79.20 - - - - 72.71
SCADNet(ours) 80.12 83.53 81.79 79.13 89.08 69.19 91.23 76.02

Note that the best results are in bold.

Figure 8 shows a scene from the SYSU-CD dataset, where only a small portion of
the upper part of the image has building changes and the site environment is complex.
Aside from the SCADNet, FC-EF, CDNet, and IFNet, all the other methods misidentified
vegetation changes as building changes. Further, the CDNet performed second only to the
SCADNet and caused only a few false detections around the change area. Even though
the SCADNet did not completely detect the actual change area, it was able to avoid the
occurrence of false detections.
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There are large-scale building changes in Figure 9. In spite of the fact that all the
methods were able to detect the main part of the changed building, they did not perform
the BCD effectively. Among them, the BITNet missed a significant part of the changed area,
while other methods except the LUNet and SCADNet had a large area of false detection.
Furthermore, the SCADNet detected edges more accurately when it came to identifying
the changed regions.
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The metrics for each method are compared in Table 5 on the WHU-CD dataset. Our
method was still able to outperform the other methods in terms of the F1 score, mIOU,
IOU_0, IOU_1, OA, and kappa metrics. Although FC-Siam-diff achieved 94.30% in recall,
outperforming our method by 1.8%, its precision only reached 65.98%, which is 19.08%
lower than ours. Similarly, the HDANet achieved an optimum precision of 89.87%, which
was 4.81% higher than our method, but its recall was 9.55% lower than that of the SCADNet.
Moreover, our method achieved an F1 score value of 88.62%, indicating that it has a better
comprehensive BCD performance.

Table 5. Comparative results for different methods used on the WHU-CD dataset.

Method Precision Recall F1 Score mIOU IOU_0 IOU_1 OA Kappa

FC-EF 70.43 92.31 79.90 82.12 97.72 66.53 97.82 78.77
FC-Siam-conc 63.80 91.81 75.28 78.70 97.04 60.36 97.16 73.83
FC-Siam-diff 65.98 94.30 77.63 80.38 97.33 63.44 97.44 76.32

CDNet 81.75 88.69 85.08 86.25 98.47 74.03 98.54 84.31
IFNet 86.51 87.69 87.09 87.93 98.72 77.14 98.78 86.45

SNUNet 81.92 85.33 83.59 85.08 98.36 71.80 98.42 82.76
BITNet 82.35 92.59 87.17 87.96 98.66 77.26 98.72 86.50
LUNet 66.32 93.06 77.45 80.26 97.33 63.19 97.45 76.13

DeepLabV3 82.56 81.97 82.26 - - - - 81.58
UNet++ 89.06 78.98 83.72 - - - - 83.13
STANet 86.01 83.40 84.68 - - - - 84.10

HDANet 89.87 82.55 86.05 - - - - 85.54
SCADNet(ours) 85.06 92.50 88.62 89.20 98.83 79.57 98.88 88.04

Note that the best results are in bold.

Figure 10 shows that there is no change in the building, and the change in the roof
color of the building caused all the other methods to produce false detections. The FC-EF,
CDNet, and SNUNet all identified the area where the building already exists as the change
area, while the BITNet and LUNet classified the road change as a building change. Our
method did not cause any false detections or omissions, and the detection results were
consistent with GT, achieving optimal results.
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Figure 10. WHU-CD dataset comparison results visualization for the first image. TP is visualized in
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The T1 and T2 images in Figure 11 have changed drastically, but there are only two
building changes, one of which is a large building change. All the methods were able to
detect these two building change areas; however, the FC-EF, FC-Siam-conc, FC-Siam-diff,
BITNet, and LUNet all incorrectly identified the parking space as a changed building.
Moreover, the IFNet missed part of the change area, while our SCADNet completed the
BCD to near perfection.
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3.5. Quantitative Results

We selected 100 images from the LEVIR-CD dataset for a quantitative evaluation and
comparison. Figure 12 shows the comparison of various methods across eight metrics.

The SCADNet presented a remarkable superiority in terms of the F1 score, mIOU,
IOU_0, IOU_1, OA, and kappa metrics. As far as the F1 score is concerned, our method
was significantly better than the others. The SCADNet also achieved relatively positive
results for the precision metric (on par with SNUNet). Finally, the LUNet outperformed the
SCADNet by only a slim margin in the recall metric.
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Figure 12. Quantitative comparisons of eight metrics, including Precision, Recall, F1 score, mIOU,
IOU_0, IOU_1, OA, and kappa, on 100 images from the LEVIR-CD dataset. A point (x, y) on the curve
indicates there are 100 * x percent of images with metric values not exceeding y.

3.6. Computational Efficiency Experiment

We employed two metrics, the number of parameters (Params) and floating points
of the operations (FLOPs) to further compare the efficiency of the model of the eight
comparative methods; note that the smaller the number of model’s Params and FLOPs,
the lower the model’s complexity and computational cost. For each method, we gave two
images of size 1 × 3 × 256 × 256 as the inputs, and the computational efficiency results
are shown in Table 6. Because of the simple network architecture, the Params and FLOPS
values for the FC-based method and CDNet were relatively low. Due to the deep layer
of the networks and the multi-scale feature fusion strategy, both the IFNet and SCADNet
generated a large number of Params, but our FLOPs were still lower than IFNet.
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Table 6. Analysis of the computational efficiency of various methods.

Method Params(M) FLOPs(G)

FC-EF 1.35 3.56
FC-Siam-conc 1.54 5.31
FC-Siam-diff 1.35 4.71

CDNet 1.43 23.45
IFNet 35.99 82.26

SNUNet 27.06 123.11
BITNet 3.01 8.48
LUNet 8.45 17.33

SCADNet(ours) 66.94 70.72

4. Discussion

Based on three public BCD datasets, the SCADNet was comprehensively evaluated.
The SCADNet was further evaluated quantitatively and qualitatively against several popu-
lar methods to demonstrate its superiority. This is mainly due to the following three aspects:
first, the conventional methods focus primarily on the changed regions of the bitemporal
images. As a result, if the background of the bitemporal images changes significantly, it will
cause a large area of false detection. Our SCA module is able to differentiate the changed
and the unchanged regions in the bitemporal images and extracts the actual changed feature
information accurately for an improved BCD performance. Second, due to the different
number of channels and the degree of representation, the multi-scale feature information
extracted by direct fusion will result in the redundancy of unimportant information and
the loss of key information. To reduce the error detection rates, the MFF module gradually
integrates the multi-scale feature information with rich semantic information and recovers
the original feature information of the image to the maximum extent possible. Third, in
contrast to the traditional method of directly generating BCD results, our DCD module can
jointly consider the predicted image and the difference image to calculate the probability
loss. This allows us to provide a more detailed analysis of the building changes, thus
reducing the missed detection rates.

Furthermore, we will analyze our SCA module by visualizing the attention maps.
For the BCD, it is imperative to identify not only the changed buildings but also the
unchanged environments. As a Siamese neural network consists of multiple layers, the
downsampling results in the loss of local details. The abundant detail information in the
image can be perceived by adding an attention mechanism, thus alleviating the above
problem. In addition, the cross-attention mechanism can also effectively focus on the
similarities and differences between the pixel points in the bitemporal images, enhancing
the neural network’s attention to tiny buildings in the images, reducing the noise by
correlating the bitemporal images, clarifying the edges of the changes, and completing the
CD by connecting the two streams of cross-attention information. As shown in Figure 13,
we provide several examples of how our method visualizes attention maps at different
stages of the SCADNet. Blue indicates lower attention values, while red indicates higher
attention values.

We performed the attention map visualization operations on all three of our datasets
and took two images from each dataset as a display. There are two parts to our cross-
attention mechanism, invariant attention, and changing attention channels.

There are a number of changes in dense, tiny buildings in the first image of the LEVIR-
CD dataset, and our attention channels focus on the environmental information that has
not changed in the before and after time series, as well as the regions where there are
buildings changes. In Stage 1, the change attention channel only detects a small portion of
the changed buildings, and the color is not particularly red; however, as the network layers
deepen, our change attention channel gradually becomes more focused on the changed
areas. Until Stage 4, our changing attention channel peaks for the changed region and
shows a dark blue color for the content of the unchanged region. At the same time, the
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invariant attention channel also reaches its maximum attention in the unchanged regions.
In the second scene of LEVIR-CD, the attention module does not only focus on changes
in large buildings in the middle region, but also on changes in buildings on the left all
the time.
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For the SYSU-CD dataset, with an increasing number of network layers, the invariant
attention channel focuses more on non-building change information, such as the ocean and
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vegetation, etc. The changing attention channel focuses on ship information in the first
picture and the emerging buildings on both sides of the mountain in the second picture.

As part of the WHU-CD dataset, we also collected two scenarios, which show regular
building changes. Our two-channel attention is still able to better distinguish between
unchanged and changed regions, especially in the second scenario, where the invariant
attention channel concentrates most of its attention on the unchanged regions, whereas the
changing attention channel focuses only on regions where building changes occur.

According to the visualization results, our network’s attention mechanism mod-
ule efficiently captures the high-level semantic information needed for BCD, and this
high-level semantic information serves as strong data support. Using two-channel at-
tention, the SCADNet is capable of focusing on its own region of interest, resulting in a
superior accuracy.

5. Conclusions

A novel BCD method called the SCADNet was proposed in our study. An SCA module
was used to identify the changed and unchanged regions in the bitemporal images. An
MFF module was proposed in order to fuse the multi-scale feature information and reduce
the key information loss during the feature map fusion process. To distinguish whether
the change information in the extracted feature maps is a pseudo-change, we applied
the DCD module to filter out the regions where real changes occur. The experimental
results demonstrate that the SCADNet is superior to other methods using the LEVIR-CD,
SYSU-CD, and WHU-CD datasets. The F1 score on the three datasets above can reach
90.32%, 81.79%, and 88.62%, respectively.

In this study, we conducted experiments on only three datasets, which do not effec-
tively represent the generalization of the SCADNet, and subsequent experiments can be
conducted on more remote sensing image CD datasets.

The combination of CD and semantic segmentation will be further investigated in the
future. Additionally, the proposed method is based on an extensive collection of annotated
samples, which is essential for supervised learning, in order to reduce the dependence of
the CD methods on high-quality datasets. Therefore, we intend to conduct future research
using a combination of the unsupervised methods and CD.
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