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Abstract: Roads can be significant traffic lifelines that can be damaged by collapsed tree branches,
landslide rubble, and buildings debris. Thus, road damage detection and evaluation by utilizing
High-Resolution Remote Sensing Images (RSI) are highly important to maintain routes in optimal
conditions and execute rescue operations. Detecting damaged road areas through high-resolution
aerial images could promote faster and effectual disaster management and decision making. Several
techniques for the prediction and detection of road damage caused by earthquakes are available.
Recently, computer vision (CV) techniques have appeared as an optimal solution for road damage
automated inspection. This article presents a new Road Damage Detection modality using the
Hunger Games Search with Elman Neural Network (RDD–HGSENN) on High-Resolution RSIs. The
presented RDD–HGSENN technique mainly aims to determine road damages using RSIs. In the
presented RDD–HGSENN technique, the RetinaNet model was applied for damage detection on
a road. In addition, the RDD–HGSENN technique can perform road damage classification using
the ENN model. To tune the ENN parameters automatically, the HGS algorithm was exploited
in this work. To examine the enhanced outcomes of the presented RDD–HGSENN technique, a
comprehensive set of simulations were conducted. The experimental outcomes demonstrated the
improved performance of the RDD–HGSENN technique with respect to recent approaches in relation
to several measures.

Keywords: hunger games search algorithm; remote sensing; road damage detection; computer vision;
deep learning; object detection

1. Introduction

Natural disasters such as floods, earthquakes, and wildfires cause massive destruction
to substructures, block roads, and flatten buildings, leading to social and heavy economic
losses. Roads are considered to be lifelines [1]. Once a disaster has occurred, road assess-
ment and road damage detection are the foundation for emergency response activities
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and rescue operations. For identifying, detecting, and assessing road damage, numerous
types of remote sensing data, namely, satellite or aerial images, SAR, and Lidar, are used
broadly [2]. In particular, high-resolution aerial imageries are gained in a controlled way,
relating to both time and flight planning and at high spectral, radiometric, and geometric
resolution to allow an emergency response [3]. This method can be highly suitable for a
rapid and reliable post-disaster damage evaluation because of the rapid acquisition and
accessibility of the images which enable the detection of damaged road regions. Identifying
damaged roads through high-resolution aerial imageries can speed up and improve the
process of decision making during a disaster. Several methods for the prediction and
detection of road damage caused by earthquakes were proposed [4]. Such techniques are
classified into three types. The visual interpretation technique can be used for assessing
and detecting road damage by several GIS data and remote sensing imageries; however, it
relies upon numerous auxiliary tools (e.g., ArcGIS) [5]. Recently, a most precise technique
commonly utilized in practice for road damage detection has been presented and is known
as visual interpretation.

Though these techniques are promising, most of them utilize limited data [6]. In
several cases, this may be due to the lack of diverse and large datasets and machine learning
techniques. A sub-optimal feature extraction results in solutions that do not perform well
in highly complicated scenarios (i.e., images with changing grades of illumination, varied
camera perception, amongst others) [7–9]. However, new endeavors in the field seem able
to increase the performance of these techniques because of the adoption of DL-related
CV acquisition mechanisms. These AI-related mechanisms would cost less compared to
other technological choices and, when enforced properly, could represent a cost-effective
solution for governments or agencies having limited budgets [10–12]. Additionally, such
AI-related techniques would be improved if they were integrated with mobile and cloud
computing elements; the former is used to implement lightweight mobile acquisition
mechanisms, whereas the latter is utilized to store the data processed and captured by
edge sensors for executing big data investigations [13]. For example, by digitizing and
geo-localizing the captured data, road damages are tracked over time when introducing the
data inside an asset managing device for data analytics (i.e., planning, allotting budgetary
sources, amongst others) [14,15]. This technique with the latest digital transformation
patterns is effective and is readily positioned as a business method and a means to enhance
management decisions.

This article presents a new Road Damage Detection method using Hunger Games
Search with Elman Neural Network (RDD–HGSENN) on High-Resolution Remote Sensing
Images. The presented RDD–HGSENN technique mainly aims to determine road damages
using remote sensing images. In the presented RDD–HGSENN technique, the RetinaNet
model was applied for damage detection on a road. Besides, the RDD–HGSENN technique
performed road damage classification using the ENN model. To tune the ENN parameters
automatically, the HGS algorithm was exploited in this work. For examining the enhanced
outcomes of the presented RDD–HGSENN technique, a comprehensive set of simulations
were conducted.

The rest of the paper is organized as follows. Section 2 offers a brief overview of the
existing models. Section 3 discusses the proposed RDD–HGSENN technique, and Section 4
provides an experimental validation. Finally, Section 5 concludes the paper, discussing its
key findings.

2. Related Works

In [16], the authors formulated a novel sensor technology that identifies road damages
by utilizing a DL-related image processing method. This modelled technology involves
a semi-supervised and super-resolution learning technique depending on generative ad-
versarial networks (GAVs). The former enhances the road image quality to obtain a clear
view of the damaged region. In [17], an innovative technique related to the Tracking,
Learning, and Detector (TLD) structure to detect damaged roads through post-disaster
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high-resolution RSI was offered. Firstly, a spoke wheel operator was leveraged for describ-
ing the primary template of a road. After that, the TLD structure was utilized for detecting
the supposed damaged road areas. At last, the damaged road regions were derived by
pruning the roads incorrectly detected as damaged. Yuan et al. [18] presented FedRD, a
new privacy-preserving edge cloud and federated learning-related structure for intelligent
dangerous Road Damage warning and detection. In FedRD, an innovative perilous road
damage detecting method was formulated by utilizing the benefits of ordered feature
fusion. (size) A novel individualized differential privacy technique adding pixelization
was modelled for protecting the privacy of users before sharing the data.

Fan and Liu [19] introduced a new road damage detection technique related to un-
supervised disparity map segmentations. The authors identified its numerical solution,
resolving the energy reduction issue, by utilizing non-linear optimized approaches. The
disparity map which was transformed could be divided by utilizing the Otus’s thresholding
technique, and the damaged road areas were identified. This technique requires no vari-
ables while identifying a road damage. Fan et al. [20] presented a real-time road damage
inspection mechanism, which was entrenched in drones, for reconstructing a 3D road
geometry utilizing stereo vision along with visual simultaneous localization and mapping
and disparity map segmentation to localize and detect road damage. Furthermore, the
3D road map can be updated, allowing road damage superintendents to easily assess the
conditions of roads.

Kortmann et al. [21] examined the automatic detection of various kinds of road dam-
ages through imageries from front-facing cameras in a vehicle. This DL method uses the
pre-trained Faster Region-related CNN (R-CNN). In the initial step, the authors categorize
the images followed by the application of skilled networks in different area. In [22], the
authors modelled an innovative technique for the semi-automatic detection and evaluation
of destructed roads in urban regions by utilizing pre-event vector maps and post- and
pre-earthquake QuickBird imageries. Many texture and spectral features were considered,
and GA was utilized for finding the optimal features. Then, an SVM classification was
implemented to the optimal features for detecting damages.

3. The Proposed Model

In this article, a new RDD–HGSENN method is proposed for road damage detection
using high-resolution RSIs. The presented RDD–HGSENN technique majorly focuses on
the detection and classification of road damages using remote sensing images. In the
RDD–HGSENN technique, the RetinaNet model is applied for damage detection on a road.
Moreover, the RDD–HGSENN technique performs road damage classification using the
HGS with the ENN model. Figure 1 illustrates the working process of the RDD–HGSENN
system.

3.1. Road Damage Detection: The RetinaNet Model

In the initial stage, the RetinaNet model was applied for damage detection on a road.
Facebook AI Research 2018 initially developed the RetinaNet model using a single-shot
object detector with advanced performance [23]. This network structure comprises three
individual components: a Feature Pyramid Network, ResNet-50, and “heads” or sub-
networks for regression and classification. Every component is here individually described.
ResNet, initially developed by He et al., comprises a class of neural networks that differ
from the conventional CNN, having skip connections amongst the layers. The additional
skip connections permit deep neural networks to be trained with high performance when
compared to their predecessor. ResNet-50 is a Residual Network with 50 layers that are
pretrained on ImageNet. The Feature Pyramid Network (FPN), developed by Facebook
AI Research, is an NN structure that seeks to manage scale variances in objects within
an image. It was inspired by the conventional Image Pyramid in the classical Computer
Vision technique that manages scale variance by sampling an image at different resolutions
and running the desirable model on every re-sampling image. The FPN achieves the same
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effects by leveraging the tendency of the deep layer of ResNet to have low resolution and at
the same time rich semantic data. Thus, to accomplish a precise object detection at different
scales, numerous feature layers in the ResNet framework are selected by means of rich
multiscale feature layers that are generated with the integration of shallower feature layers
component-wise to the next deep feature layers with nearest neighbor up-sampling.
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The output of the feature map generated by the FPN is transferred to fully convolu-
tional subnetworks that evaluate the location and class of dissimilar objects in the image.
The RetinaNet detectors utilize an anchor as an initial point for the estimation of bounding
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boxes; hence, the subnetwork produces the output for all the bounding boxes. The class
prediction subnetworks have the resultant dimension of W ∗H ∗ K ∗ A, where K represents
the class count (K = 2, background and vehicle), and A indicates the anchor count. The
position estimation subnetworks have an output dimension of 4 ∗W ∗ H ∗ A, whereby
the four variables for all the anchors are an offset to the repositioning anchor over the
recognized object. In the presented method, further subnetworks to evaluate metadata
about the orientation of objects, the satellite’s orientation, and the ground sample distance
were added as further multitask learning processes. The major contribution toward object
recognition is the Focal Loss function; class imbalance issues found for object recognition
are also addressed, whereby the commonest class is an insignificant background class.
To overcome the imbalance among foreground and background classes, the Focal Loss
function decreases the loss, increasing the model confidence.

3.2. Road Damage Classification: Optimal ENN Model

Once a road damage was identified, the next stage involved its classification using the
ENN model. The ENN technique comprises hidden, input, context, and output layers [24].
The major configuration of the ENN module is analogous to that of the FFNN as regards
the connections, whereas the context layers are the same as in the MLP. The context
layer obtains the input from the hidden state and stores earlier values of the hidden
layer. Wi

h, Wc
h , W0

h represent output weight, external input, and context weight matrixes.
Figure 2 depicts the infrastructure of the ENN. The dimension of the output and input
layers are characterized by n, that is, the dimension of the context layer represents m, and
x1(t) = [x1

1(t), x1
2(t), . . . ., x1

n(t)]
T , y(t) = [y1(t), y2(t), . . . , yn(t)]

T .
The input unit of the ENN can be as follows:

ui(l) = ei(l), i = 1, 2, . . . , n (1)

Now, l defines the input and output units at the l round in the following:

vk(l) =
N
∑

j=1
ω1

kj(l)xc
j (l) +

n
∑

i=1
ω2

ki(l)ui(l)

k = 1, 2, . . . , N
(2)

Here, xc
j (l) defines the signals that are disseminated from the k-th context node,

ω1
kj(l) describes the i-th and j-th weights of the hidden state directed from the o-th nodes.

Eventually, the outcome of the hidden states is obtained into the context layer, as shown
below:

Wk(l) = f0(vk(l)) (3)

Now,

vk(l) =
vk(l)

max{vk(l)}
(4)

The above-mentioned formula denotes the normalized value of the hidden state as

Ck(l) = βC, (l − 1) + Wk(l − 1), k = 1, 2, . . . , N (5)

In Equation (5), Wk specifies the gain of self-connected feedback among [0, 1]. Eventu-
ally, the output unit in the network is:

y0(l) =
N

∑
k=1

ω3
ok(l)Wk, (l), 0 = 1, 2, . . . , n (6)

In the above expression, ω3
ok describes the connection weight from the k-th into the

o-th layer.
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In the final stage, the HGS algorithm was enforced to tuning the parameters relevant
to the ENN model. Hunger produces internal animal requirements that induce animals to
forage [25]. There is no doubt that different stimuli affect the life of animals and that animals
lacking calories will seek food. To satisfy its needs, the animals forage continuously in
their environments, alternating between competitive, exploratory, and defensive activities.
The animals can alter dynamically their search patterns based on their hunger level. Once
hunger is high, separate animal may seek food together in a restricted region moving in the
same direction and concentrating in areas with high resources. This efficiently stimulates
animals to organize socially. This approach becomes well-established once animals with
dissimilar hunger levels are dispersed in similar regions. The mathematical mechanism
and model regarding the described state of hunger can be defined as follows. The key
stages of the HGS are shown below.

1. Population initialized: to determine the first location for optimal search, the pop-
ulation will be initialized. The HGS approach makes use of the N real-valued
vector of dimension D, and all the members of the population are denoted by
Xi = [Xi1Xi2 . . . XiD]

T
r i = 1, 2, . . . N. In the original HGS model, each population

member is considered to conform to a mean and probabihty distribution with the
subsequent formula

XN×D = rand(N, D)× (ub− lb) + lb (7)

In Equation (7), N × D signifies a Euclidean space, N signifies the population count,
and D represents the dimension of space; ub and lb represent the upper and the lower
bounds of the search region.
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2. Approach food: This phase can be described as follows

→
X(t + 1) =



→
X(t) · (1 + randn(1)), r l
→

W1 ·
→
Xb +

→
R ·

→
W2

∣∣∣∣→Xb −
→

X(t)|, r1〉l, r2〉E
→

W1 ·
→
Xb −

→
R ·

→
W2

∣∣∣∣→Xb −
→

X(t)
∣∣∣∣, r l, r E

(8)

In Equation (8),
→

X(t) represents the existing individual.
→
Xb signifies the position of

the individuals with better fitness values; randn (l) follows a standard distribution having
the mean of 0 and the variance of 1; r1 and r2 indicate arbitrary numbers in the range

[−1, 1].
→
R indicates the values in the range [−a, a].

→
W1 and

→
W2 characterize the hunger

weight. The variable l is intended for facilitating the application to a varied population,
upgrading the existing search agent, and thereby enhancing the algorithm performance.
The E parameter can efficiently control the direction in the searching region and thereby
increase the diversity of the population; it is determined as follows

E = sech(|Fi − BF|) (9)

In Equation (9), i represents a positive integer within [1, N], and Fi signifies the fitness
of the i-th population member. BF signifies the best fitness attained so far. Sech is a function

(sech (x) = 2/(eχ + e−x)). The variable
→
R is presented to dynamically control the search

phase of the search agents
→
R × a× rand− a (10)

a×
(

1− t
T

)
(11)

Now, rand represents a random parameter, whose values range is [−1]; t characterizes
the iteration count of the existing model, and T denotes the maximal iteration count.

3. Hunger role: here, the hunger features of the search agent were simulated mathemati-

cally. In Equation (8),
→

W1 and
→

W2 characterize the extent of the population starvation,
which vigorously controls the upgrade of the search agents’ position.
→

W1 is determined with Equation (12):

→
W1

{
hungry(i)× N

SHungry × r4, r3 < l
r3 > l

(12)

The equation for
→

W2 in Equation (7) is shown below:

→
W2(ι) = (1− exp(−|hungry(i)− SHungry|))× r5 × 2 (13)

In Equation (13), hungry specifies the level of hunger of all the individuals in the
population. N denotes the number of the individuals in the population. SHungry indicates
the sum of the hunger levels of all the population associates; r3, r4, and r5 indicate random
values within [−1, 1] as follows:

hungry(i) =
{

0, AllFitness(i) == BF
hungry(i) + H, AllFitness ()! = BF

(14)

For better modelling the hunger levels of every population member, the hunger level
of every population member was interconnected to the fitness values, where AllFitness(i)
indicates the fitness value of i-th population member of existing iteration; BF denotes
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better fitness values of the population till the existing iteration. When the fitness values of
the existing search affiliates are equivalent to BF, it indicates that each associate is sated
and does not feel hunger. In contrast, if the affiliate is in a starvation state, the starvation
activation variable H is determined:

TH
Fi − BF

WF− BF
× r6 × 2× (ub− lb) (15)

H =

{
LH × (1 + r), TH < LH
TH, TH ≥ LH

(16)

Now, Fi indicates the fitness values of every individual in the population. BF and WF
show the best and worst fitness values of the individuals attained till the existing iteration.
The upper and the lower bounds of the potential area are denoted as ub and lb; r6 indicates
a random value within the range [1, 1]. The sensation of hunger H was fixed to its lowest
limit, LH, that generally takes the value of 100.

4. Experimental Validation

The proposed model was simulated using the Python 3.6.5 tool. The proposed model
was experimented on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB
HDD. The parameter settings were: learning rate, 0.01, dropout, 0.5, batch size, 5, epoch
count, 50, and activation, ReLU. In this study, the road damage classification results of the
RDD–HGSENN method were assessed using the dataset of 4000 images as reported in
Table 1. Figure 3 shows some sample images.

Table 1. Dataset details.

Class No. of Samples

Linear Cracks 1000

Peeling 1000

Alligator Cracks 1000

Potholes 1000

Total Number of Samples 4000

The road damage classification results of the RDD–HGSENN model were examined
using a confusion matrix shown in Figure 4. The confusion matrix portrayed that the
RDD–HGSENN model had properly recognized all types of road damages.

Table 2 provides the road damage detection output of the RDD–HGSENN method for
80% of the TR database and 20% of the TS database. Figure 5 showcases the road damage
classification results of the RDD–HGSENN method for 80% of the TR database. The results
showed that the RDD–HGSENN model identified all distinct kinds of road damage. For
instance, the RDD–HGSENN model detected linear cracks with an accuy of 96.59% and
peeling with an accuy of 97.97%. Finally, the RDD–HGSENN approach detected potholes
with an accuy of 98.47%.

Figure 6 displays the road damage classification results of the RDD–HGSENN method
with 20% of the TS database. The results displayed that the RDD–HGSENN algorithm
identified all distinct kinds of road damages. For example, the RDD–HGSENN technique
detected linear cracks with an accuy of 96.63% and peeling with an accuy of 98.38%. Finally,
the RDD-HGSENN approach identified potholes with an accuy of 98.62%.
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Table 3 presents the road damage detection output of the RDD–HGSENN system with
70% of the TR database and 30% of the TS database. Figure 7 portrays the road damage
classification outcomes of the RDD–HGSENN approach with 70% of the TR database. The
results displayed the RDD–HGSENN method identified all distinct kinds of road damage.
For example, the RDD–HGSENN technique detected linear cracks with an accuy of 96.54%
and peeling with an accuy of 97.04%. Finally, the RDD–HGSENN technique detected
potholes with an accuy of 97.36%.

Figure 8 exhibits the road damage classification results of the RDD–HGSENN tech-
nique with 30% of the TS database. The results displayed the RDD–HGSENN technique
has identified all distinct kinds of road damage. For example, the RDD–HGSENN approach
detected linear cracks with an accuy of 97.17% and peeling with an accuy of 97.92%. Finally,
the RDD–HGSENN approach detected potholes with an accuy of 98.58%.

The training accuracy (TRA) and validation accuracy (VLA) reached by the RDD–
HGSENN approach using the test database are shown in Figure 9. The simulation result
indicates that the RDD–HGSENN methodology reached high values of TRA and VLA. In
addition, the VLA was higher than the TRA.

The training loss (TRL) and validation loss (VLL) attained by the RDD–HGSENN
system using the test database are shown in Figure 10. The simulation results indicated
the RDD–HGSENN approach exhibited low values of TRL and VLL. In particular, the VLL
was lower than the TRL.

Table 3. Road damage detection outcome of the RDD–HGSENN system for 70:30 of the TR/TS
databases.

Class Accuracy Precision Recall F-Score AUC Score

Training Phase (70%)

Linear
Cracks 96.54 89.61 97.60 93.43 96.89

Peeling 97.04 95.91 92.26 94.05 95.46

Alligator
Cracks 96.64 96.81 89.73 93.14 94.36

Potholes 97.36 93.45 95.68 94.55 96.78

Average 96.89 93.94 93.82 93.79 95.87

Testing Phase (30%)

Linear
Cracks 97.17 91.64 97.27 94.37 97.20

Peeling 97.92 96.48 94.81 95.64 96.86

Alligator
Cracks 97.50 98.14 91.35 94.62 95.40

Potholes 98.58 96.43 98.48 97.44 98.55

Average 97.79 95.67 95.48 95.52 97.00

A clear precision–recall examination of the RDD–HGSENN method using the test
database is depicted in Figure 11. The figure shows that the RDD–HGSENN system resulted
in improved precision–recall values in every class label.
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Figure 11. Precision–recall analysis of the RDD–HGSENN system.

A brief ROC examination of the RDD–HGSENN system using the test database is por-
trayed in Figure 12. The results indicated that the RDD–HGSENN was able to distinguish
different classes in the test database.
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At last, an extensive comparative study of the RDD–HGSENN model with recent
DL models, reported in Table 4, was conducted [26]. Figure 13 reports a detailed accuy
assessment of the RDD–HGSENN method and the existing methods. The figure shows that
the RDD–HGSENN method gained a higher accuy of 98.13% compared to the MobileNet,
AlexNet, GoogleNet, and RetinaNet models, whose accuy was 90.03%, 92.84%, 91.47%, and
90.70%, respectively.

Table 4. Comparative analysis of the RDD–HGSENN system with the currently used DL approaches.

Methods Accuracy Precision Recall F-Score

RDD-HGSENN 98.13 96.25 96.34 96.29

MobileNet 90.03 90.88 88.97 89.15

AlexNet 92.84 93.52 93.83 92.95

GoogleNet 91.47 92.23 91.33 91.39

RetinaNet 90.70 89.45 89.80 90.17
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Finally, comparative results of the RDD–HGSENN model are provided in terms of
precn, recal , and Fscore, as shown in Figure 14. The results demonstrated that the MobileNet
and RetinaNet models showed lower classification outcomes.
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The AlexNet and GoogleNet methods reached a realistic performance. However, the
RDD–HGSENN model showed enhanced results, with maximum precn, recal , and Fscore
of 96.25%, 96.34%, and 96.29%, respectively. Therefore, the RDD–HGSENN model can be
employed for an accurate road damage classification.

5. Conclusions

In this article, a new RDD–HGSENN method was developed for road damage detec-
tion using high-resolution RSIs. The presented RDD–HGSENN technique majorly focuses
on the detection and classification of road damages using remote sensing images. In the
presented RDD–HGSENN technique, the RetinaNet model is applied for damage detection
on a road. Moreover, the RDD–HGSENN technique performs road damage classification
using the ENN model. Finally, the HGS algorithm was applied to tune the ENN parameters.
To examine the enhanced outcomes of the presented RDD–HGSENN technique, a compre-
hensive set of simulations were conducted. The experimental outcomes demonstrated the
improved performance of the RDD–HGSENN technique with respect to recent approaches,
with a maximum accuracy of 98.13%. In the future, we plan to extend the RDD–HGSENN
technique by the use of advanced DL classifiers. In addition, the computational complexity
of the proposed model can be examined in future.
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