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Abstract: Random noise and missing seismic traces are common in field seismic data, which seriously
affects the subsequent seismic processing flow. The complete noise-free high-dimensional seismic
dataset in the frequency-space (f-x) domain under the local linear assumption are regarded as a low-
rank tensor, and each high dimensional seismic dataset containing only one linear event is a rank-1
tensor. The tensor CANDECOM/PARAFAC decomposition (CPD) method estimates complete noise-
free seismic signals by characterizing high-dimensional seismic signals as the sum of several rank-1
tensors. In order to improve the stability and effect of the tensor CPD algorithm, this paper proposes
a linear Radon transform—constrained tensor CPD method (RCPD) by using the sparsity of factor
matrix in the Radon domain after high-dimensional seismic signal tensor CPD and uses alternating
direction multiplier method (ADMM) to solve the established optimization problem. This proposed
method is an essential realization of the high-dimensional linear Radon transform, and the results of
synthetic and field data reconstruction prove the effectiveness of the proposed method.

Keywords: seismic data reconstruction; local plane wave; tensor CP decomposition; linear Radon

transform

1. Introduction

Noise and missing seismic traces are inevitable in field seismic data, which reduces
the quality of seismic data and affects the accuracy of seismic inversion imaging. Therefore,
seismic data denoising and interpolation reconstruction have long been an important part
of seismic data preprocessing.

Seismic data reconstruction is based on the best prediction of the signal contained in
the seismic data. In recent decades, people have proposed various methods to solve the
problem. These methods can be divided into different parts by using the different features
of seismic signals, such as the predictive filtering method using the predictability between
traces, the low-rank decomposition method using the low rank of data, and the sparse
transform method using the sparsity of signals. Based on the predictability of seismic sig-
nals, the industry has developed methods such as predictive filtering and Wiener filtering,
among others [1-4]. In addition to predictability, the low rank of seismic signals is also
an important feature. The multi-channel singular spectrum analysis (MSSA) [5-7] and the
feature image filtering method in the 3D frequency-space (f-x-y) domain use the eigen-
value decomposition of the matrix [8] to preserve low-rank effective signals and suppress
random noise.

At present, 3D seismic exploration is widely used in modern industry. The original
data collected by this method can be arranged according to certain parameters to obtain 5D
data volume. The widely used 5D data types include common middle point (CMP) gathers
D(t, CMPx, CMPy, Hx, Hy) and offset vector tile (OVT) gathers D(t, H, §, CMPx, CMPy),
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where Hx, Hy, and H are the offset in x and y directions and the total offset, CMPx and
CMPy are the x, y coordinates of CMP, and ¢ is the azimuth. To further consider the sta-
tistical information in high dimensional signal space, seismic data reconstruction needs to
be extended to 5D seismic data. The low-rank tensor decomposition method is regarded
as a high dimensional extension of the low-rank matrix decomposition method. This kind
of method regards the n-dimensional data volume as an n-order tensor. Unlike the rank of
a matrix, the definition of the rank of a tensor is not unique. Therefore, there are different
decomposition methods with different tensor rank definitions. The Tucker decomposition
is regarded as a higher-order representation of principal component analysis (PCA) [9,10].
This high-dimensional decomposition method has been gradually introduced into the field
of seismic data processing in recent years. Like PCA, some tensor decomposition methods
are also implemented using the singular value decomposition (SVD) algorithm, such as
high-order singular value decomposition (HO-SVD) [11,12], nuclear norm minimization
method [13], and tensor singular value decomposition (t-SVD) [14]. Different from the
Tucker decomposition method, the tensor CANDECOM )\ PARAFAC decomposition (CPD)
does not require that the decomposed basis functions are orthogonal to each other. The
CPD treats a tensor as the sum of R rank-1 tensors, and each rank-1 tensor is composed of
the outer product of n vectors [15-17]. The minimum number R of rank-1 tensors that can
recover the tensor is the CP rank of the tensor. Gao et al. [18] used random CPD to sup-
press the random noise in 3D seismic data and also improved the computational efficiency.
Zhang et al. [19] proposed constraint CPD with Vandermonde structure (VCPD) to fit the
exponential characteristics of frequency domain data.

Sparse transform methods transform seismic signals into some sparse domains, mak-
ing the distinction between noise and signals more obvious, such as wavelet
transform [20,21], Radon transform [22-25], curvelet transform [26-28], contourlet [29],
and shearlet [30]. Radon transform is a classical and widely used sparse transform method.
Radon transform projects the events (linear, hyperbolic, and parabolic) in seismic data onto
the corresponding Radon basis functions. After these events are projected, they become
the corresponding energy groups in the Radon domain. Because of its distribution charac-
teristics, random noise does not converge in the Radon domain so as to achieve signal-to-
noise separation. However, the size of the Radon basis function to be constructed for high-
dimensional Radon transform exponentially increases with increasing dimension. There-
fore, the current Radon transform basically stays in the processing of three-dimensional
data, such as three-dimensional linear, parabolic, and conical Radon transforms [31-34].
Based on the assumption of local plane waves, the high-dimensional seismic data contain-
ing one linear event is a rank-1 tensor. The aim of tensor CPD is to decompose R linear
events in high-dimensional data volume, and the separated factor matrix can be regarded
as local plane waves in the corresponding dimension direction. However, due to the insta-
bility of the high-dimensional tensor algorithm and the complexity of field seismic data,
such ideal decomposition is difficult to achieve.

The VCPD method proposed by Zhang et al. [19] used the Vandermonde structure
constraint of the factor matrix to improve the computational efficiency and signal-to-noise
ratio of the traditional CPD method for reconstructing seismic data. However, this method
is a data-driven method, which depends on the quality of seismic data before reconstruc-
tion. Therefore, this paper proposes a linear Radon transform—constrained tensor CPD
method for the reconstruction of high-dimensional seismic data. This method projects
the factor matrix obtained by CPD onto the linear Radon basis function in the frequency
domain so that each column of the factor matrix corresponds to a local plane wave of a
certain dimension. This method belongs to the semi-data driven method, which not only
makes the CPD method more stable but also realizes high-dimensional plane wave decom-
position, which is regarded as a variant of high-dimensional linear Radon transform for
seismic data.

Firstly, this paper briefly reviews the basic concepts and algorithms of tensor CPD
and the basic concepts of linear Radon transform and puts forward the basic logic of this
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work: based on the local plane wave assumption, the factor matrix obtained by CPD is
projected onto the linear Radon basis function in the frequency domain so that each col-
umn of the factor matrix corresponds to a local plane wave of a certain dimension. This
method not only makes CPD more stable but also achieves high-dimensional plane wave
decomposition. Based on this, the inverse problem of CPD under the constraint of linear
Radon transform is proposed, which is solved by the ADMM algorithm. Next, the method
is applied to the interpolation reconstruction process of 5D synthesis and field data, and
the effectiveness of the method is verified. Finally, we discuss the parameter selection
problem of the proposed RCPD method with the numerical experiment on synthesis data.

2. Methods
2.1. Notations

The notations used in this paper are maintained with Kolda and Bader [9] in the liter-
ature. Firstly, thex € R, x € Rl X € Rhixk x ¢ RhxkxxIy represent the zero-order
tensor (scalar), the first-order tensor (vector) of size I, the second-order tensor (matrix) of
size I1 X I, and the N-order tensor (N > 2) of size Iy X I X - - - X Iy in the real Euclidean
space, respectively. Similarly, replacing R with C represents the tensor in the complex Eu-
clidean space. The N-order tensor can be expanded in matrix form in N directions, where

NH]
m#£n
m=1

I, x Ly

the mode-n unfolding is represented by X(,,) € R . In addition, several ma-
trix multiplication operations need to be mentioned: the Hadamard product operator x*,
the Kronecker product operator ®, and the Khatri-Rao product operator ©. The specific
meaning of these symbols will be given in Appendix A.

2.2. Tensor CPD Method and Linear Radon Transform
2.2.1. Tensor CPD Method
An N-dimensional data volume X € RIi*2%%IN can be viewed as an N-order tensor.

If this tensor is a low-rank tensor, then it can be decomposed into a smaller number of R
(which is called CP-rank) rank-1 tensors, which can be expressed as

R
X = u;tmk—l’ (1)

r=1
where 1/ ~1 represents a rank-1 tensor, which can be represented by N vector products:
ui‘mk*l = ugl) o u§2) 0---0 ugN),l <r<R, ()

where the outer product of the vector is represented by the symbol o. Current algorithms
generally use the factor matrix U™ to represent the CPD model:

x = lgw g ... g, 3)

The symbol L1 represents the CPD model, and the matrix U™ is called factor matrix,
which consists of R vectors of a certain dimension arranged in sequence as a column:

u™ — [ gn),uén),' B Iu%n)] e Ch<R @)

After converting the tensor to mode-n unfoldings, it can be approximated by the factor
matrices
Xy = UuT, 5)
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where U = UM ... 0D o U=V o ... UV, Finally, N factor matrices are
obtained by approximating N unfoldings, and the solution of CPD problem is obtained.
Figure 1 shows a cartoon of CPD model.
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Figure 1. The CPD cartoon of the third-order tensor.

2.2.2. Linear Radon Transform

The linear Radon transform was proposed by Radon [35] in 1917. Its essence is to
perform an integral transform along straight lines in different directions so that the points
originally located on the same straight line are focused into a point in the Radon domain.

The basic principle of linear Radon transform in seismic data processing is to approxi-
mate the event in two-dimensional seismic data as a linear event. The process of transform-
ing t — x domain data d(t, x) into T — p domain s(7, p) is to perform integral transformation
along straight lines with different slopes, where the linear events of t — x domain will con-
verge to energy cluster through integral operation in T — p domain. The T denotes the
intercept of the line on the time axis, and p denotes the slope of the integral path.

In order to ensure the stability of the algorithm and the transformation effect, the cur-
rent linear Radon transform is generally performed in the frequency-space f — x domain,
which can be written as

S(w,p) = /D(w,x)ei‘*’f’xdx, (6)

D(w,x) = /S(w,p)e*"“’pxdp, (7)

where D(w, x), S(w, p) are the results of the one-dimensional Fourier transform of the
original datad(t, x), s(t, p) along the time dimension, and w is the circular frequency. Since
the traditional linear Radon transform has the problems of energy leakage, spatial aliasing,
and low resolution, the current Radon transform generally constructs a numerical inverse
problem to obtain the Radon transform coefficients. The formula is as follows:

D(w) = ¢(w)S(w), ®)

where D(w) = (dy,dy,--- ,dy,)" is the single-frequency spatial seismic data, 1, is the

space length of the data, ( ) (s1,82,+, snP)T is the corresponding Radon spectrum,
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and 1, is the number of ray parameters p. The Radon transform operator @ (w) is de-
fined as

eiwpi(x1=x0)  piwpa(x1—xo) elwpnp(x1—x0)

elwpi(xa—x0)  piwpa(x2—xo) plwpnp(X2—x0)

ow)=|" — : ec . )

giwl’l(xnx*xo) giwpz(xnx*xo) ginnp(xnx*XO)

In the formula, w is the circular frequency, p is the ray parameter, x is the spatial posi-
tion of each trace, x is the reference trace, and the position of the central trace is generally
taken. To solve the Radon coefficient, the objective function is defined as

J(S) = l@S —DI3+ AlIS||, »=21,0, (10)
By solving the above inverse problem, the linear Radon spectrum S can be obtained.

2.3. Linear Radon Transform—Constrained CPD for Tensor Completion

Based on the local plane wave assumption, the element (I, I, - - -, Iy) of the noiseless
complete local N-dimensional seismic signal slice at the frequency w with R linear events
can be expressed in the f — x domain as

R N
D((U, 11112/ Tty IN) - Z H Gln_l (11)
r=1 n=1

where w is the circular frequency, d, is the frequency spectrum of the wavelet, and the
9,9}[ V= ¢lwpnr(ln=1)A% The p,, , is the ray parameter of the r th events in the 7 th dimension,
and the Ax;, is the spatial sample interval in the nth dimension. If the ideal CPD achieves
a unique rank-1 decomposition, each rank-1 tensor should correspond to a linear event.
Figure 2 shows an ideal CPD model for a three-dimensional single-frequency seismic slice
with R linear events.

. (N I:I + .4 [
X ~ 49y, B e~:i “';0;3
|393_| d;.el,l dfeeur

8, =(6,.6, .6, )eC"

Figure 2. The CPD model for a three-dimensional seismic data.

Therefore, using the factor matrix to express the CPD model, the tensor X can be
represented by

R
X =Y dey,0d20,,0-0dVey, = [vw v ... yw] (12)

r=1
where the factor matrix in the nth dimension can be defined as

dl nl dgg%Z e d;lgi?,r
daie "o --- d"e
U(n) _ n, Z‘n,Z ‘ r'n,r ,n:l,Z---,N, (13)

mﬁlwblmdwﬁ
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However, due to the complexity of seismic signals and the instability of the CPD al-
gorithm itself, unconstrained tensor CPD is difficult to achieve such ideal decomposition.
It is not difficult to see from Equation (13) that each column of the ideal factor matrix can
be considered as a plane wave signal in that direction, such as the ith column of the factor
matrix U™

Ui = (df dioy, - i), (14)

where U (:, 1) is the ith column of the factor matrix U™ Since a rank-1 tensor corresponds
to a linear event in seismic data under the local linear assumption (due to changes in slope,
parabolic or hyperbolic events cannot correspond to a rank-1 tensor), the linear Radon ba-
sis function corresponding to each dimension can be constructed, and each column of the
factor matrix corresponding to a linear event is projected onto the basis function. This ap-
proach is equivalent to the linear Radon transform of the factor matrix after decomposition:

U =¢,S,, n=1,2,--,N. (15)

The linear Radon transform basis function is defined as

ei“}pn,l (XT*XS') eiwp71,2(x;’7xg) e eiwpnlnpn (xilixg)
eiwpn,l (xg_xg) eiwpn,Z(xg_xg) P eiwp"/”pn (xg_"g) I

on = . . , | e Clmm,  (16)
eiwpn,l (x?n 7}(61) eiwpﬂ/z(x';n 7}66’) N eiwp"r"’ﬂn (x;t” 7x[r)l)

where p,;, i = 1,2, - ,npy is the ray parameter in the nth dimension, n,, is the number
of p, i, Sy represent the Radon spectrum after the projection of the factor matrix in the nth
dimension, which can be written as

n n n

511 512 SiR
n n n

S S o« e s
2,1 2,2 2,R

Sn=1| . . ] e Ctn xR, (17)
n n n
Sipgl Snpy2 77 Smp, R

Since the local seismic events should be concentrated in a few slopes, the Radon spec-
trum should be sparse. So, the L1 norm is used to express the sparsity of the Radon spec-
trum in this problem. Simultaneously because the reconstruction of high-dimensional seis-
mic data is aimed at high-dimensional irregular missing data, the N-dimensional linear
Radon transform—constrained CPD (RCPD) can be written as

2 N
; _ ™ y@ ... giN)
mmHX p«lum,u®,... v ]]HP+A,1§1HS’1||1 ) (18)

st. UM—-,8,=0 n=1,2,---,N

where & is the original data tensor with dimension I} x I x --- x Iy in the f — x do-
main, P is the spatial sampling operator of the data which has the form as p;, ;, ... iy, =
{1 lf (il,iz,- - ,iN) e

0if (i1,ip---,in) € QY
factor matrix after decomposition, and [[U(l),U(z),~ . ,U(N )] represents the CPD model,
as shown in Formula (3), where U™ e CIn*R_ The definition of R and tensor CP rank is
basically the same, which means that the original seismic data is approximated by R rank-1
tensors. The difference is that R also means that there are R column vectors in each factor
matrix to be projected onto the linear Radon basis function in the RCPD algorithm. ¢ is
the Radon transform basis function in the n-direction of the dimension, which is defined
as Formula (16), S, is the corresponding Radon spectrum of each column of u projected

where () is a subset containing the observed data. U™ is the
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onto the @, and A is the regularization parameter. ||| and |-||; are the Frobenius and L1
norm of a matrix respectively.

The problem can be solved by the ADMM algorithm [36], and the specific solution is
as follows.

By introducing an auxiliary variable M, let M, = S;;,1 < n < N, then the inverse
problem can be rewritten as

minHX —P*IIU(l),U(Z),- X ,U(N)]]“i+/\ g M|y
n=1 .

19
st. UM —,8,=0 n=1,2,---,N (19)
Mn — Sn == O
Write the problem in the form of an augmented Lagrangian function. Let
N
Loyos (U, My, Sy, w,v,) = || X = P+ lu®,u@,... uM]|| 2 42 zl My, |1
"= p (20)

N (n) N o N 2. ;N 2
+ X (u, UV —@,S5:)+ ¥ <Vn/Mn_Sn>+7 ZIHU _(PnSan"‘j ZlHMn_anp
n= n=

n=1

n=1
where u,, v, are the Lagrangian multiplier, p;, p» are the Penalty coefficient, and an (-) rep-
resents the inner product operation of two matrices. In order to obtain the optimal solution
of the problem, update U(”), M,, Su, u, and v, sequentially until the maximum number
of iterations is reached or the convergence criterion is satisfied. The update formula is as
follows:

1. Update U™,
When update U™, the Formula (20) can be rewritten as

2
argmin %Hx(n) — P, * U(”)U(_”)THF + <un,U(”) — (Pnsn>
u® R (21)
+‘D71 U(n)_(PnSn F 1<n<N

where P, is the mode-n unfolding of the sampling operator P. Because of the existence
of P, the inverse problem on the left cannot be solved by directly solving the partial

derivative of U™, according to the solution in Zeng and So [37], we can obtain the updated
formula for U™):

Ul = (Xey (VL)) o (®nSu) ;) ) (Pl” (ui)) ' (ve) ) ) (22)
where 1<n<N,1<i<],

(n)

where (-)" represents the conjugation of a matrix. U, ) represents the ith row of the factor

matrix U™, and I € RR*R s a unit matrix. The specific process of solving is given in
Appendix B.

2. Update M,,.

Since the L1 norm is non-differentiable at zero, the update formula of M, can be ob-
tained by using the proximal gradient descent method:
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MK+ = argmian;;,p;E (U ME K uk vy
k
i k 2
_ ar%min{A | (v 58+ 4 vk s F} x4
PN 05 || vk k)Pl 2 @)
ar%mln E“MH 1+7 E+(SH_MH) ‘F_ E F g
k
=5, (s5-4)
o 02
where S represents the soft threshold operator [38], which is defined as
Sa(b) = sign(b)max{|b| —a,0}, (24)

where sign(x) represents the sign function of x, max(a, b) represents the maximum value
ina,b.

3. Update S,.

When update S;;, the Formula (20) can be rewritten as
argmin <un/ U(n) - (Pnsn> + <Vn/ M, — Sn>

S ) (25)
+2UM — 9,8, ||+ 2|M, —S,|3, 1<n<N
5 ©non F 2 n n||gr >N

Formula (25) is the least squares problem of S, then let it take the partial derivative
of S;; equal to 0, and the update formula of S;, can be obtained by

JL
Tz = —olfu, — v, — p1ol (U — 9,8,) — p (M, = 8,) =0

- (26)
Sy = (pl(PnH(Pn + PQI) ! ((an (un +plU(71)> + Vﬁ + PZMn>

where ()H is the matrix conjugate transpose operator.
4.  Update uy, vy,.

The Lagrangian multiplier update formula in the augmented Lagrangian function is
k+1 _ Lk k U(}’l)k+1 _ Sk+1 27
un u}"l + pl (Pn n 7 ( )

Vit = b+ pf (M - s, 28)

The algorithm can also accelerate the calculation by changing penalty coefficients p;,
p2. According to Ying et al. [39], let pf = ‘ulpll‘*l, ok = yngfl, where 11,112 € (1,1.8],
which helps the penalty term be gradually increased with the iteration rounds. Update
the above variables until the maximum number of iterations is reached or the convergence
criterion is satisfied. The convergence criteria are as follows:

i ~uity | < (29)

where ¢ is the minimum convergence residual. The workflow of the RCPD algorithm is
demonstrated in Figure 3.
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rec

Figure 3. The workflow of the proposed RCPD algorithm.

3. Results

The following numerical experiments are designed to verify the role of RCPD in seis-
mic data reconstruction. The signal-to-noise ratio (SNR) of the reconstructed time—space
domain seismic data is used to measure the effectiveness of the algorithm, which is defined
as follows:
| Dirue [

SNR =10lg————,
g ||Dtrue - DrecH]Z:

(30)
where Dy, is the synthesized data with no noise and missing, and D, is the reconstructed
low-rank data. The iterative reconstruction formula of the CPD algorithm for missing

data is
DF = Lep(D + (Z — P) « DFY), (31)

where Lcp represents the CP low-rank operator, k is the current iteration round, Dobs g
the original observation missing data, P is an N-dimensional sampling operator, and o
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is a tensor that is 1 for all elements of the same size. To maintain the reliability of the
experiments, all experiments were performed on the same computer with 16GB RAM,
an RTX3060 graphics card, and an Intel i5-10500H processor, and no parallel algorithms
were applied.

3.1. Synthesis Data Experiment

To verify the rationality of introducing linear Radon transform into the CPD method,
we compare the reconstruction effect and calculation efficiency of the RCPD algorithm and
CPD algorithm on synthetic data. The scale of the synthesized five-dimensional seismic
data D(t, CMPx,CMPy, Hx, Hy) is 301 x 15 x 15 x 15 x 15, where t is the time dimension,
CMPy, CMPy are the CMP coordinate along x, y direction, and Hx, Hy are the offset along
x, y direction. The time sampling interval is 2 ms. The synthesized data consists of three
hyperplane waves; that is, there are all linear events in the four spatial dimension directions
(CMPx,CMPy, Hx, Hy) in the synthesized data.

There are three different experiments for the method test. The first experiment aims to
compare the denoising ability and efficiency of the RCPD algorithm and the CPD algorithm
on Gaussian white noise synthetic data with a SNR of —8 dB to 2 dB. The frequency band
range processed by the two methods in this experiment is 1~100 Hz and the CP ranks of
both algorithms are set to R =5, where the regularization operator A of the RCPD algorithm
isset to 1, the penalty coefficients p1, p2 are set to 0.5, yi1, yi2 are set to 1.3, minimum iteration
error is 1 x 107%, the maximum number of iterations 150. the range of each ray parameter
pn,1 < n < 4is[-3,3] x 1074, and n,, is set to 100. Figure 4 depicts the denoising SNR
and calculation time of two algorithms with different SNR (-8 dB~2 dB). Figure 5 displays
the denoising results by two methods on noisy synthesis data with the SNR of —8 dB.
Figure 5a shows a 3D slice of the original 5D data when Hx = 10, Hy = 10, and Figure 5b
shows the corresponding noisy data with SNR = —8 dB. The RCPD denoising result and
data residual are illustrated in Figure 5c,d, and the CPD denoising result and data residual
are illustrated in Figure 5ef. Figure 5g shows the single-trace denoising effect comparison
of the 5D data noisy trace D(:,11,10,10,10), in which the black solid line is the original
noise-free data, the red dotted line is the RCPD reconstruction data, the blue dotted line is
the CPD reconstruction data, and Figure 5h is the amplification display at the wavelet peak
of the trace. As a result, both the RCPD method and CPD method can effectively suppress
Gaussian noise in seismic data and prevent the loss of effective signals. In addition, the
RCPD method with linear Radon constraint can effectively improve the computational
efficiency while improving the denoising SNR of the traditional CPD method as the result
in Figure 4.

The second experiment aims to compare the data reconstruction ability and compu-
tational efficiency of the RCPD algorithm and the CPD algorithm for noisy synthesis data
with the SNR of —1 dB missing from 80% to 30%. The frequency band range processed by
the two methods in this experiment is 1~100 Hz and the CP ranks of both algorithms are
set to R = 5, and the iteration number of the CPD reconstruction method is set to 10 (set
to 15 when processing data with 80% missing percentage). In addition, the regularization
operator A of the RCPD algorithm is set to 1, the penalty coefficients p;, py are set to 0.5,
11, Hy are set to 1.3, the minimum iteration error is 1 x 107#, the maximum number of
iterations 150, the range of each ray parameter p,, 1 < n < 4 is [-3,3] x 1074, and ny, is
set to 100. Figure 6 shows the reconstruction SNR and calculation time of two algorithms
with different missing percentages (80~30%). Figure 7 displays the reconstruction results
by two methods on noisy synthesis data with 80% missing. Figure 7a shows a 3D slice of
the original 5D data when Hx = 10, Hy = 10, and Figure 7b shows the corresponding
noisy missing data with 80% missing. The RCPD reconstruction result and data residual
are illustrated in Figure 7c,d, and the CPD reconstruction result and data residual are il-
lustrated in Figure 7e f. Figure 7g shows the single-trace reconstruction effect comparison
of the 5D data missing trace D(:, 11,10, 10, 10), in which the black solid line is the original
noise-free data, the red dotted line is the RCPD reconstruction data, the blue dotted line
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is the CPD reconstruction data, and Figure 7h is the amplification display at the wavelet
peak of the trace. As a result, both the RCPD method and CPD method can effectively re-
construct seismic signals, and interpolate missing traces for the low missing percentages.
However, when the percentage of missing traces reaches 80%, the CPD method requires
more iteration rounds, resulting in more computation time. The result for the seismic sig-
nal with 80% of the percentage of missing traces in Figure 7f has an obvious residual of
effective signal, even though we increased the number of iterations to 15. In contrast, as
shown from Figure 7c to Figure 7h, the RCPD algorithm can still have a higher reconstruc-
tion SNR and effectively prevent signal loss even when the percentage of missing traces
reaches 80%. In addition, the computational efficiency of the RCPD method can still be
maintained in the case of a high missing percentage.

35 T T T T 70

——8— RCPD SNR
— 0O~ CPDSNR

—=8— RCPD time 260
= 0= CPDtime

50

Output SNR(dB)
Time(s)

-8 6 P 2 0 2
Input SNR(dB)
Figure 4. The output SNR and calculation time line chart of the RCPD algorithm and CPD algorithm
for different input SNR (—8 dB~2 dB) data. The solid circle solid line represents RCPD, and the
hollow circle imaginary line represents CPD. The output SNR is represented by blue, the running
time is represented by red.
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Figure 5. Denoising results for synthesis data with Gaussian white noise and SNR of —8 dB. (a) 3D
slice of original data when Hx = 10, Hy = 10; (b) Noisy data of SNR = —8 dB; (c) the data recon-
structed by RCPD method with SNR = 21.31 dB; (d) data residual by RCPD method; (e) the data
reconstructed by CPD method with SNR = 18.22 dB; (f) data residual by CPD method; (g) effect
comparison of single trace denoising; (h) enlarged display of Figure (g).
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Figure 6. The output SNR and calculation time line chart of the RCPD algorithm and CPD algorithm
for different percentages of miss data (80~30%) data. The solid circle solid line represents RCPD, and
the hollow circle imaginary line represents CPD. The output SNR is represented by blue, the running
time is represented by red.
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Figure 7. Reconstruction results for noisy synthesis data with missing 80%. (a) 3D slice of original
data when Hx = 10, Hy = 10; (b) noisy data with missing 80%; (c) reconstruction result by RCPD
method with SNR = 21.37 dB; (d) data residual by RCPD method; (e) reconstruction result by CPD
method with SNR =20.20 dB; (f) data residual by CPD method; (g) effect comparison of single trace
reconstruction; (h) enlarged display of Figure (g).

The third experiment aims to compare the performance of RCPD and CPD algorithms
for amplitude fidelity in seismic data reconstruction. We synthesized a 5D data containing
three linear events with amplitude ratios of 15:10:1 and AVO (amplitude variation with
offset) characteristics in the CMPx direction. Gaussian white noise is added to the data to
make the SNR —6 dB, and then randomly missing to 60%. Then, the RCPD algorithm and
CPD algorithm are used to reconstruct the noisy missing data. The frequency band range
processed by the two methods in this experiment is 1~100 Hz and the CP ranks of both
algorithms are set to R =5, and the iteration number of the CPD reconstruction method is
set to 10. In addition, the regularization operator A of the RCPD algorithm is set to 1, the
penalty coefficients p1, p2 are set to 0.5, y1, yp are set to 1.3, the minimum iteration error
is 1 x 104, the maximum number of iterations is 150, the range of each ray parameter
pn, 1 <n <4is[-3,3] x 1074, and np, is set to 100. Figure 8 displays the reconstruction
results by two methods on noisy synthesis data with 60% missing containing AVO char-
acteristics. Figure 8a shows a 3D slice of the original 5D data when Hx = 10, Hy = 10,
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and Figure 8b shows the corresponding noisy missing data with 60% missing. The RCPD
reconstruction result and data residual are illustrated in Figure 8c,d, and the CPD recon-
struction result and data residual are illustrated in Figure 8e,f (we use a smaller grayscale
range to represent the data residuals to better show the difference between the two meth-
ods). Figure 8g shows the single-trace reconstruction effect comparison of the 5D data
missing trace D(:, 11,10, 10, 10), in which the black solid line is the original noise-free data,
the red dotted line is the RCPD reconstruction data, the blue dotted line is the CPD re-
construction data, and Figure 8h is the amplification display at the wavelet peak of the
trace. As a result, both methods can suppress noise and interpolate missing traces while
preserving amplitude of high-dimensional seismic signals. As can be seen from Figure 8c
to Figure 8h, the RCPD method performs better than the CPD method in protecting the
amplitude of the reflected signal.
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Figure 8. Reconstruction results for noisy synthesis data with missing 60% containing AVO. (a) 3D
slice of original data when Hx = 10, Hy = 10; (b) noisy data with missing 60%; (c) reconstruction
result by RCPD method with SNR = 18.82 dB; (d) data residual by RCPD method; (e) reconstruction
result by CPD method with SNR = 17.50 dB; (f) data residual by CPD method; (g) effect comparison
of single trace reconstruction; (h) enlarged display of Figure (g).

3.2. Field Data Experiment

To further confirm the effectiveness of the RCPD method in seismic data reconstruc-
tion, we compare the reconstruction results of RCPD and CPD methods on a land prestack
CMP data. Figure 9 shows the source, receiver point, and CMP distribution of this data.
The number of CMP is 21 x 10, the number of sampling points per time is 2901 (the exper-
iment on the paper only uses the sampling point data in the range of 801~1200 to test), the
sampling interval is 2 ms, and the size of the CMP bin is 12.5 m x 12.5 m. Moreover, the
offset range in the x and y directions are (—2000 m, 2000 m) and (—3000 m, 3000 m). In
order to make the original data closer to the local linear hypothesis, the field data has been
normal-moveout (NMO) corrected before processing. Next, the original three-dimensional
gathers are arranged in a five-dimensional grid of 1 ms x 12.5m x 12.5m x 250 m x 250 m,
which makes the field data reshape to a 5D tensor D(t, CMPx, CMPy, Hx, Hy) of the size
400 x 21 x 10 x 16 x 24 with 50.55% missing. After repeated testing, the experiment
finally set the CP ranks R of both algorithms to 5, and the iteration number of the CPD re-
construction algorithm is set to 10. In addition, the regularization operator A of the RCPD
algorithm is set to 1, the penalty coefficients p;, p2 are set to 0.1, y1, y2 are set to 1.3, the
minimum iteration error is 1 x 10™%, the maximum number of iterations 150, the range of
each ray parameter p,,1 < n < 4is [-2,4] x 1074, and np, is set to 100. The frequency
band ranges processed by the two methods in this experiment are both 1~100 Hz.



Remote Sens. 2022, 14, 6275

17 of 23

Time(s)

»

RN L) T PO Fa

UONYMIP A
&

4 % we owe e 4 4 4 8 8w

._*"‘. /.
Al

l.qu./ :l: lss

2000m

'
H
X direction

"
LY
s em o

wHoog

L)

* m s s merwm

R R

e ey

w e e

Figure 9. The distribution of the source, receiver point, and CMP. The red represents the source
point, the blue represents the receiver point, and the green represents CMP.

Figures 10 and 11 show the reconstruction effect of the RCPD method and CPD method
on the 5D field data. In order to display the results more clearly, we expand the 3D CMP
gathers with fixed CMP coordinates and the 3D common-offset gathers with fixed offset
coordinates into 2D images for display. Figure 10a displays the gather (CMPx = 10,
CMPy = 8) with the Hy number from 7 to 11, and Figure 10b displays the gather (Hx = 13,
Hy = 14) with the CMPy number from 6 to 10. Figure 10c,d depict the reconstruction effect
of the RCPD method and Figure 10e,f depict the reconstruction effect of the CPD method.
In order to show the difference between the two methods in data reconstruction more
clearly, Figure 10g,h show the comparison of reconstruction effects of noisy single trace
and missing single trace, respectively. Figure 11 shows the grayscale display of common-
offset gathers, which corresponds to the data in Figure 10b, Figure 10d, and Figure 10f,
respectively.
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Figure 10. Cont.
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Figure 11. Grayscale display of the common-offset gather with CMPy number 6~10 (Hx = 13,
Hy = 14) of 5D field data. (a) Before reconstruction; (b) reconstruction result by RCPD method;
(c) reconstruction result by CPD method.

The reconstruction results of field data illustrate that due to the introduction of linear
Radon transform constraints, under the constraints of linear Radon basis functions in each
dimension, the RCPD method can effectively reconstruct data even for the field data with
a certain proportion of missing traces under complex geological structures. From the 2D
profile of Figure 10, it can be found that compared with the CPD method, the seismic data
reconstructed by the RCPD method has stronger event continuity, and even the missing
continuous gathers can maintain a certain SNR. The result in Figure 10h shows more clearly
that the RCPD method has stronger interpolation energy for seismic missing traces than
the CPD method. Figure 11 further demonstrates the higher SNR reconstructed by the
RCPD method than by the CPD method.

4. Discussion

This section mainly discusses the influence of the two parameters CP-rank and regu-
larization parameter A of the RCPD method on the experimental results. This experiment
uses the noisy data with 60% missing used in Experiment 2 of Section 3.1. In the first ex-
periment, the data is reconstructed while the CP-rank is set to 3 to 13. The line chart of
the reconstructed SNR and the calculation time changing with the CP-rank are given in
Figure 12. In the second experiment, the data is reconstructed while the A is set to 1072
to 10*. The reconstructed SNR and the line chart of the calculation time changing with
A are given in Figure 13. The experimental results show that the calculation time of the
algorithm increases with the increase of CP-rank, and the reconstructed SNR is the largest
when CP-rank R = 5. From repeated experiments, it can be seen that the CP-rank of the
RCPD algorithm should be slightly larger than the number of events in the data volume,
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such as R = 4 or 5 in the data of three events, to ensure both the calculation efficiency
and reconstruction effect. As for the regularization parameter A, the result in Figure 13
illustrates that the A cannot be too large and should be controlled between 10~2 and 10? as
much as possible, which can not only ensure the reconstruction effect of effective signals
but also avoid the increase in algorithm calculation time due to slow convergence.
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Figure 12. The output SNR and consumed time of the RCPD algorithm for different CP-rank R(3~13).
The blue represents the output SNR, and the red represents the consumed time.
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Figure 13. The output SNR and consumed time of the RCPD algorithm for different regulariza-
tion parameter A (10-2~10%). The blue represents the output SNR, and the red represents the con-
sumed time.

5. Conclusions

The proposed linear Radon transform—constrained CPD method is based on the local
plane wave hypothesis of seismic signals. By using the low-rank of seismic data and intro-
ducing the linear Radon transform of the factor matrix, the rank-1 component of the factor
matrix is ensured to be composed of high-dimensional hyperplane waves, which enhances
the expressiveness and physical interpretability of the algorithm for seismic data recon-
struction. By comparing with the traditional CPD method in the application of synthetic
and field data, the RCPD method has higher computational efficiency and reconstruction
accuracy. Due to the constraint of linear Radon transform, the RCPD method is more suit-
able for seismic reconstruction with low-rank approximation. Therefore, it can effectively
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guarantee the continuity of the reconstructed linear events. Moreover, the RCPD algorithm
is insensitive to the CP-rank and regularization parameter A and robust to the selection of
parameter size.

As the RCPD method assumes the local linearity of seismic data, it is suitable for
NMO-corrected seismic data or windowed seismic data to ensure the approximate linear-
ity of seismic events. In field data applications, aliasing, amplitude anomaly, non-Gaussian
noise, etc. reduce the quality of the seismic data regularization results. It deserves further
study in the near future.

Author Contributions: Conceptualization, Z.O. and L.Z.; methodology, Z.O., L.Z. and HW.;
writing —original draft and formal analysis, Z.0.; writing—review and editing, L.Z., HW. and K.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R & D Program of China on Key Scientific
Issues of Transformative Technologies (Grant No. 2018YFA(0702503), the National Natural Science
Foundation of China ‘Research on Tomographic Inversion and Modeling Method of Characteristic
Reflection Wave Theory’ (Grant No. 42174135), “Wave Equation Linearization and Velocity Inver-
sion in Strong Scattering Media’ (Grant No. 42074143), ‘Gaussian packet tomography based on tri-
angular mesh model’ (Grant No. 41874118) and CNPC’s Forward-looking Basic Project ‘Research on
Geophysical Rock Physics and Frontier Reserve Technology” (Grant No. 2021DJ3501).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the China Petroleum Exploration and Devel-
opment Research Institute and the Northwest Branch, Sinopec Geophysical Exploration Technology
Research Institute, and the Shengli Oilfield Branch, CNOOC Research Institute, and the Zhanjiang
Branch for their funding and support for the research work of Wave Phenomenon and Intelligent
Inversion Imaging Research Group (WPI).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The Hadamard product requires two matrices A € o/1*%2 and B € 011 *%2 of the same
size, the result is the product of their corresponding elements, which can be defined as

anbin  apbipy - aigbyy,
AxB= : : : (A1)

apibp1r apebr2 -+ apnbnn

Unlike the Hadamard product, the Kronecker product does not need the same size of
matrices, which, of two matrices A € o/1*2 and B € 5>/ is defined as
anB  apB - 4B
A®B=| : S | e chbxkl (A2)
alllB allzB cee allIZB
The Khatri-Rao product is regarded as the Kronecker product of the corresponding

column vectors of two matrices. Therefore, two matrices A € o1*53 and B € o2%5 for
Khatri-Rao product need to have the same number of columns, which is defined as

AOB=[a®b; a®by - aj®by] e Clhl)xb (A3)
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Appendix B

The specific solve process of U™ in RCPD algorithm is given in this appendix. When
updating U™, the Formula (20) is rewritten as

argmin %Hx(n) — Py * [_](H)U(—n)TH2 I <uan(”) — (ann>
U . F (A4)
+HU(”) —@uSul 1<n<N

Since the sampling operator P, exists in the left inverse problem, the left term can
be transformed into the following I, sub-problem according to the solution in Zeng and

So [34]:
1 ) (y1(=m)\ T 2 (n)
arg(rnl;mj X(i,:) - P(i,;) * U(,.’:) (U ) ; + <un(i/;)/U(i,:) - ((Pnsn)(i,:)>
o) 2 (A5)
“rpjl UEZ)) - ((Pnsﬂ)(i,:)‘ F’l Si<Ipl1<n<N

where the mode-n unfolding X,,), P ;) are rewritten as X and P to avoid symbol confusion.
Equation (A5) can be abbreviated as:

2
1 () (1 (-m\ T (n)
argmingy || X .,) — Uy (U(Ci,:) ) ; + <u"(i,:)'U(i,:) - ((p”S”)(i,:)>

uii) (A6)
UET)) - (‘Pnsn)(i,:) ‘

2
4o A<i<l,1<n<N

where c; represents the set of column subscripts of nonzero values for row i of matrix P.
The solution of the problem is

T2 = Xy (UL)) + Ul <(U§c}? ) (v > i) + 01 (UL (@aSu)5) =0

)
-1 A7)
) _ (~m))* 0\ T (gmY (
U(i,:) = (X(i,ci) (U(ci,:) ) — Wy, +P1(‘Pnsn)(i,:) p1I+ U(ci,:) U(ci,:) ’
where 1<i<I,1<n<N
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