Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Weather Station Data
3.2. Mapping Glacier Boundaries
3.3. Surface Elevation
3.4. DEM Co-Registration and Corrections of Radar Penetration and Terrain Curvature
3.5. Glacier Elevation Change and Mass Balance, and Their Uncertainty
4. Results
4.1. Climatic Changes
4.2. Glacier Area Changes
4.3. Surface Elevation and Geodetic Mass Balance
5. Discussion
5.1. Glacier Changes and Glacier Dynamics
5.2. Climate Forcing
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lan, Y.; Zhao, G.; Zhang, Y.; Wen, J.; Liu, J.Q.; Hu, X. Response of runoff in the source region of the Yellow River to climate warming. Quat. Int. 2010, 226, 60–65. [Google Scholar] [CrossRef]
- Liu, S.; Lu, A.; Ding, Y. Glacier Fluctuations and the Inferred Climate Changes in the A’nyêmaqên Mountains in the Source Area of the Yellow River. J. Glaciol. Geocryol. 2002, 24, 701–707. (In Chinese) [Google Scholar]
- Ma, S.; Sheng, Y.; Cao, W.; Wu, J.; Hu, X.; Wang, S. Numerical simulation of spatial distribution of permafrost in the source region of the Yellow River. Acta Geo-Graph. Sin. 2017, 72, 1621–1633. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, S.; Guo, W.; Li, J.; Long, S.; Wang, X.; Wei, J.; Zhang, Z.; Wu, K. Recent changes of surface elevation of typical glaciers in the source region of the Yellow River. J. Glaciol. Geocryol. 2018, 40, 231–237. [Google Scholar] [CrossRef]
- Wang, D.; Tian, S.; Jiang, S.; Dong, X.; Li, Z.; Zhang, L. Research progress of the evolution of runoff in the source area of the Yellow River. Yellow River 2020, 42, 90–95. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Zhu, X.; Chang, G.; Li, F. Response of plateau lakes in the source region of the Yellow River to climate change since the 21st Century. J. Nat. Resour. 2008, 23, 245–253. (In Chinese) [Google Scholar]
- Jin, S.; Fu, J. Multi-temporal Landsat TM/ETM based glacier change monitoring in the A’nyêmaqên Mountains. Beijing Surv. Mapp. 2013, 01, 20–23. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Liu, S.; Lu, A.; Chen, R. Glacier change and its influence on River runoff in the source region of the Yangtze and Yellow Rivers. J. Nat. Resour. 2003, 18, 595–602+645. (In Chinese) [Google Scholar]
- Wang, K.; Yang, T.; He, Y.; Jin, Q. Study on the relationship between glacier and climate change in A’nyêmaqên Mountain in recent 30 years. Study Soil Water Conserv. 2015, 22, 300–303+308. [Google Scholar] [CrossRef]
- Li, K.; Cao, B.; Guan, W.; Pan, B.; Shangguan, D.H. Reconstructed annual glacier surface mass balance in the A’nyêmaqên Mountains, Yellow River source, based on snow line altitude. J. Mt. Sci. 2022, 19, 1070–1081. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef] [PubMed]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; Mcnabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zang, D. The conversion method and accuracy analysis between WGS-84 coordinate system and Xi’an 80 coordinate system—Based on the results of GPS network of order C.D. in Xinjiang Construction Group. Eng. Surv. Mapp. 2009, 18, 55–57. [Google Scholar] [CrossRef]
- Wang, Y.T.; Hou, S.G.; Huai, B.J.; An, W.; Pang, H.; Liu, Y. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef] [Green Version]
- GB/T12353.1-2008; Compilation Specifications for National Fundamental Scale Maps-Part 1: Compilation Specifications for 1:25000/1:50000/1:100000 Topographic Maps. General Administration of Quality Supervision Inspection and Quarantine: Beijing, China, 2008.
- Berthier, E.; Arnaud, Y.; Vincent, C.; Rémy, F. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophys. Res. Lett. 2006, 33, L08502. [Google Scholar] [CrossRef]
- Beaulieu, A.; Clavet, D. Accuracy Assessment of Canadian Digital Elevation Data using ICESat. Photogramm. Eng. Remote Sens. 2009, 75, 81–86. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Wei, J.F.; Liu, S.Y. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery (EI). Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data v4; International Centre for Tropical Agriculture (CIAT): Cali, Columbia, 2008. [Google Scholar]
- NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Level 1A Data Set—Reconstructed, Unprocessed Instrument Data; NASA EOSDIS Land Processes DAAC, 2001; The NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at the USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2001. [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between 1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 2014. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. Cryosphere 2013, 7, 1885–1886. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Jiang, L.; Liu, L.; Wang, H. Regional and altitude-dependent estimate of the SRTM C/X-Band radar penetration difference on High Mountain Asia glaciers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4244–4253. [Google Scholar] [CrossRef]
- Maurer, J.; Rupper, S.; Schaefer, J. Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery. Cryosphere 2016, 10, 2203–2215. [Google Scholar] [CrossRef] [Green Version]
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef] [Green Version]
- Mcnabb, R.; Nuth, C.; Kääb, A.; Girod, L. Sensitivity of glacier volume change estimation to DEM void interpolation. Cryosphere 2019, 13, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Benn, D. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.; Malz, P.; Sommer, C.; Farías-Barahona, D.; Sauter, T.; Casassa, G.; Soruco, A.; Skvarca, P.; Seehaus, T.C. Constraining glacier elevation and mass changes in South America. Nat. Clim. Chang. 2019, 9, 130–136. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.; Konovalov, V.; Le Bris, R. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Tobias, B.; Tino, P.; Kriti, M.; Joseph, S. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 2017, 11, 531–539. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Benn, D.I.; Fowler, A.C.; Hewitt, I.; Sevestre, H. A general theory of glacier surges. J. Glaciol. 2019, 65, 701–716. [Google Scholar] [CrossRef] [Green Version]
- Sevestre, H.D.; Benn, D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. J. Glaciol. 2015, 61, 646–662. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.W.; Hou, S.G.; Wang, Y.T. A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sens. 2021, 13, 1220. [Google Scholar] [CrossRef]
- Meier, M.; Post, A. What are glacier surges? Can. J. Earth Sci. 2011, 6, 807–817. [Google Scholar] [CrossRef]
- Chen, W.F.; Yao, T.D.; Zhang, G.Q.; Li, S.H.; Zheng, G.X. Accelerated glacier mass loss in the largest river and lake source regions of the Tibetan Plateau and its links with local water balance over 1976–2017. J. Glaciol. 2021, 67, 577–591. [Google Scholar] [CrossRef]
- Alean, J. Ice Avalanche Activity and Mass Balance of a High-Altitude Hanging Glacier in the Swiss Alps. Ann. Glaciol. 1985, 6, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Climatic geomorphology of the A’nyêmaqên Mountains. J. Glaciol. Geocryol. 1988, 10, 161–171. (In Chinese) [Google Scholar]
- Zhang, J.C.; Zhou, B.; Cao, X.Y.; Weisai, L.J. Analysis on the basic characteristics of ice avalanche chain disaster in A’nyêmaqên Mountain. Yellow River 2019, 41, 17–21. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.Q.; Xu, C.H.; Wang, P. Region-wide glacier area and mass budgets for the Shaksgam River Basin, Karakoram Mountains, during 2000–2016. Arid Zone Sci. 2021, 13, 175–188. [Google Scholar] [CrossRef]
- Benn, D.; Lehmkuhl, F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat. Int. 2000, 65–66, 15–29. [Google Scholar] [CrossRef]
- Sakai, A.; Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 2017, 7, 13717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.H.; Wang, P.L.; Wen, T.T.; Yu, D.; Bai, W.R. Spatio-temporal characteristics of climate change in the Yellow River source area from 1960 to 2019. Arid Zone Res. 2021, 38, 293–302. [Google Scholar] [CrossRef]
Data | Date | Pixel Size/Scale | Purpose | Resource |
---|---|---|---|---|
Topographic maps | 1966 | 1:50,000 | DEM/base image | CMGS |
SRTMGL1 | February 2000 | 30 m | Reference DEM | USGS |
SRTM | February 2000 | 90 m | DEM | CGIAR-CSI |
ASTER L1A | October 2018 | 30 m | DEM | EARTH DATA |
HMA DEM | July 2015 | 8 m | Reference DEM | NSIDC |
Landsat TM | September 2000 | 30 m | Base image | GLCF |
Landsat ETM+ | August 2000 | 30 m | Base image | GLCF |
Landsat 8/OLI | July 2015 | 30 m | Base image | USGS |
Landsat 8/OLI | June 2016 | 30 m | Base image | USGS |
Landsat 8/OLI | June 2018 | 30 m | Base image | USGS |
Offsets in X, Y, and Z Directions | Before Co-Registration | After Co-Registration | |||||
---|---|---|---|---|---|---|---|
X (m) | Y (m) | Z (m) | SD (m) | SD (m) | |||
TOPO-DEM | −0.5 | 5.6 | 0.6 | 0.3 | 11.1 | 0.3 | 11.1 |
SRTM DEM 2000 | −4.5 | −23 | 0 | −0.2 | 20.3 | 0.0 | 12.8 |
ASTER DEM 2018 | −1.5 | −2.8 | 0.9 | 0.4 | 10.8 | 0.6 | 10.6 |
Period | 1966–2000 | 2000–2018 | 1966–2018 |
---|---|---|---|
Δarea (km2 a−1) | −0.53 | −0.48 | −0.52 |
Δarea (% a−1) | −0.42 | −0.45 | −0.42 |
Debris-Covered Glaciers (m w.e. a−1) | Clean Glaciers (m w.e. a−1) | |
---|---|---|
1966–2000 | –0.05 ± 0.09 | –0.26 ± 0.09 |
2000–2018 | –0.32 ± 0.06 | –0.39 ± 0.06 |
1966–2018 | –0.15 ± 0.05 | –0.33 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Xu, S.; Wang, Y.; Wang, Y.; Hou, S. Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing. Remote Sens. 2022, 14, 6286. https://doi.org/10.3390/rs14246286
Zhou M, Xu S, Wang Y, Wang Y, Hou S. Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing. Remote Sensing. 2022; 14(24):6286. https://doi.org/10.3390/rs14246286
Chicago/Turabian StyleZhou, Min, Song Xu, Yetang Wang, Yuzhe Wang, and Shugui Hou. 2022. "Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing" Remote Sensing 14, no. 24: 6286. https://doi.org/10.3390/rs14246286
APA StyleZhou, M., Xu, S., Wang, Y., Wang, Y., & Hou, S. (2022). Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing. Remote Sensing, 14(24), 6286. https://doi.org/10.3390/rs14246286