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Abstract: Fine particulate matter (PM2.5) pollution’s passive effects on public health have attracted
a great deal of attention. Extensive studies have tried to uncover the impacts of external drivers
on PM2.5 pollution variation; however, the topography’s effects on PM2.5 pollution remain poorly
understood. Using annual high-resolution concentration estimates for PM2.5, this paper quantitatively
disentangled the geographical impacts of topography on the PM2.5 pollution in China and quantified
the mountain blocking effects on the PM2.5 pollution dispersion on a macro scale. The results
show that, in China, the plains and surrounding platforms and hills tend to suffer from long-term
severe PM2.5 pollution. The most polluted topography type is the plains. In comparison, regions
such as high-altitude mountains and plateaus are less affected by PM2.5 pollution. Mountains have
significant and evident blocking effects on the cross-regional spread of PM2.5 pollution. Generally,
Level I mountains (high elevation, density and coverage mountains) provide better blocking effects
than Level II (middle elevation, density and coverage mountains) mountains and Level III mountains
(low elevation, density and coverage mountains). The mountains’ blocking effects begin to play an
efficient role when their altitudes reach a certain value; however, the exact altitude values vary by
different mountains with a value of 163 m for all typical mountains with absolute PM2.5 concentration
differences between their two sides greater than 10 µg/m3. In heavily polluted areas, PM2.5 pollution
may overflow where the surrounding mountains are not high enough or the mountains’ stretch
breaks. This study can provide key theoretical support for air pollution modelling and regional air
pollution joint prevention and control.

Keywords: PM2.5 pollution; topography; mountains; spatial heterogeneity; blocking effects

1. Introduction

Fine particulate matter (PM2.5) refers to particulate matter with an aerodynamic
diameter equal to or less than 2.5 microns. With relatively small particle sizes, fine particles
are more likely to stay longer in the air and to be transmitted remotely, which can have
a considerable impact on the ecological environment and human health [1–5]. PM2.5 has
become the fifth leading cause of death [6]. China has accounted for more than 1.25 million
premature deaths each year due to long-term exposure to polluted air in 2010, accounting
for about 40% of the world’s total [7]. According to the Global Burden of Disease Study 2015
(GBD 2015), the long-term exposure to ambient PM2.5 caused 4.2 million deaths worldwide,
accounting for 7.6% of the global toll of mortality in 2015. PM2.5 has attracted extensive
attention due to its significant adverse effects, and it has become a key object of global air
pollution prevention and control as well as a relevant topic in international atmospheric
environment studies.
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The studies on PM2.5 pollution by science researchers around the world mainly include
the exploration of pollution causes [8–12], the simulation of temporal changes and spatial
distributions of pollutants and research on their variation characteristics [13–18], as well as
the study of the environmental impacts, weather and climate impacts and health effects
induced by PM2.5 pollution [4,19–22]. Studies have proven that PM2.5 pollution is inextri-
cably linked to natural and human activity factors. For instance, meteorological factors,
including temperature, precipitation, wind conditions and atmospheric pressure may influ-
ence the clustering and dispersion of PM2.5 pollutants [9,23–27]. Some scholars suggested
that anthropogenic emission sources, such as industrial pollutant discharge and vehicle
emission, are primary contributing factors of PM2.5 pollution in cities [28,29]. Furthermore,
human activities, including urban expansion and urban interior landscape planning, can
also have an important impact on the temporal and spatial distributions of PM2.5 [10,11,17].
Coupled with the information from spectral, meteorological, sociometric and land use, etc.,
various inversion models for PM2.5 concentration were developed, including remote sens-
ing inversion models [13,14,30], deep learning and mathematic statistics models [15,16,31],
hybrid models [32,33] and so on. Regarding the environmental health effects, studies have
also shown that a long-term or short-term exposure to atmospheric particulates can result
in a lower vital capacity and a higher morbidity due to respiratory and cardiovascular
diseases in humans, which may lead to a higher outpatient rate and mortality [1,34–40].
Furthermore, a high concentration of PM2.5 in the atmosphere will cause many potential en-
vironmental problems, including atmospheric dimming [41], damages to cultural relics [42],
growth retardation or deaths of plants and other species [43], and even affecting climate
change [44]. Of course, PM2.5 pollutants are not all harmful and without benefits. For
example, PM2.5 (not pollution) in the air can serve as cloud condensation nuclei, making
clouds and precipitation possible, which is essential for the Earth’s hydrological cycle.
Furthermore, atomization therapy and salt therapy, which are commonly used in medical
treatment, use beneficial PM2.5 substances to help cure respiratory diseases [45,46].

Topography can have a great impact on the dispersion and diffusion of air pollutants by
changing the meteorological conditions (such as airflow direction, air pressure conditions,
precipitation distribution, etc.). For example, studies have shown that the influence of
the Qingling Mountains on the meteorological field of the Guanzhong Basin is one of
the main causes of the local air pollution [47]. The basin topography surrounded by
mountains makes the PM2.5 pollutant hard to disperse and is responsible for the high
PM2.5 in Chendu [17]. The atmospheric circulations formed between the land, the sea and
the valleys in the Beijing–Tianjing–Hebei region have affected the vertical migration and
distribution of the air pollutants in this region [48,49]. Such atmospheric circulations as
well as the blocking effect from city constructure can also have direct or indirect impacts on
the air pollution incidents in coastal areas [17,50–54]. Furthermore, the research by Makiko
Nakata et al. revealed that, due to the blocking effects of aerosol, the mountains have kept
the concentration of aerosol from increasing in Nagano Prefecture, which is located in the
center of Japan’s main island [55].

By summarizing the previous studies on air pollution, we can find that there is still
a lack in the quantitative analysis of topography’s geographical impacts on air pollution,
especially studies on a macro scale. This makes it difficult to effectively reveal the impacts of
topography on air pollution and uncover the driving mechanism behind it. Moreover, it is
not conducive to establishing a joint prevention and control mechanism among air-polluted
regions. Therefore, based on the topographic data and remote sensing-driven PM2.5 con-
centration data, this paper studies the impacts of different geographic and geomorphic
conditions on the spatial heterogeneity of PM2.5 pollution in China from a geographical
perspective. Specifically, this paper aims to disentangle the spatial heterogeneity of PM2.5
pollution among different types of topography; then, to quantify the mountains’ blocking
effects on the dispersion of PM2.5 pollution in particular, and the underlying mechanism
is also discussed. This study can provide a key theoretical foundation for air pollution
modelling and prevention.
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2. Materials and Methods
2.1. PM2.5 Data

The newly available high-resolution China Regional Estimates of annual PM2.5 con-
centrations (V4.CH.03) produced by the Atmospheric Environmental Analysis Group of
Dalhousie University was used in this study [13,14]. This dataset was first estimated using
the geophysical relationships between the near-surface PM2.5 concentrations and satel-
lite aerosol optical depth (AOD) retrievals from the NASA MODIS, MISR and SeaWIFS
instruments, which were simulated by the GEOSChem chemical transport model with
updated algorithms. Additionally, the regional bias between estimated and ground-based
annual PM2.5 concentrations predicted by the Geographically Weighted Regression (GWR)
were used to subsequently calibrate the annual average of the geophysical PM2.5 esti-
mates. V4.CH.03 provides a product with the highest spatial resolution available so far at
0.01◦ × 0.01◦(~1 km × 1 km) and a long time span from 2000 to 2019. Validation using data
from ground-based monitors shows that these long-term satellite-derived PM2.5 data have
a high consistency with ground observation site data and yield excellent consistency on
an annual mean basis with R2 = 0.81 and a slope of 0.90 [13,14]. Furthermore, since it has
been published, this PM2.5 dataset has been widely verified for assessments of spatial and
temporal patterns of PM2.5 in China and was well employed in large-scale health exposure
studies [56–59]. These advantages make V4.CH.03 a good candidate for detecting PM2.5
pollution on both a national and regional scale.

2.2. Geomorphological Data

The Geomorphologic Atlas of the People’s Republic of China (1:1 million, Figure 1a)
was produced by the Institute of Geographical Sciences and Natural Resources Research,
Chinese Academy of Sciences, and downloaded from the Resource and Environmental
Science Data Center (http://www.resdc.cn, accessed on 10 March 2022) [60]. This product
is the first ever 1:1,000,000 national geomorphological atlas of China which was created with
visual interpretation from Landsat TM/ETM images and SRTM-DEM, etc. It was published
by the Science Press in 2009, and it provides numerical classification systems and coding
systems for the types of topography across the continental China. It has been widely used
in many fields, such as land and resource surveying, environmental protection, agriculture,
engineering construction, disaster monitoring, etc. [61–64]. Seven basic geomorphologic
types are provided in this product based on different relief amplitude levels (Table 1),
and 25 more detailed geomorphologic types are classified by considering the two indices:
altitude and relief amplitude levels [60]. In the present study, we did not study the impacts
from relief amplitude, so only four basic geomorphologic types were used, i.e., the plains,
the platforms, the hills and the mountains.

Table 1. Classification system of the basic geomorphologic types of Chinese territory [60].

NO. Geomorphologic Types Relief Amplitude

1 Plains <30 m
2 Platforms >30 m
3 Hills <200 m
4 Low-relief mountains 200–500 m
5 Middle-relief mountains 500–1000 m
6 High-relief mountains 1000–2500 m
7 Highest-relief mountains >2500 m

http://www.resdc.cn
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2.3. Digital Elevation Model Data

The Digital Elevation Model (DEM, Figure 1b) data at 3” resolution (~90 m) for China
was downloaded from http://viewfinderpanoramas.org/dem3.html (accessed on 10 March
2022). This dataset was developed mainly based on the data collected by the 2000 Shuttle
Radar Topography Mission (SRTM) by Jonathan de Ferranti [65]. Jonathan de Ferranti
filled the tiles with no SRTM data. For example, some mountain and desert areas were
filled using information from topographic maps, and the results were very good, i.e.,
the elevation data for the voids are well aligned with the SRTM data. As described by
Jonathan de Ferranti [65], the resultant DEMs were much more accurate than those created
by interpolation, with or without the aid of SRTM30. Further details were thoroughly
documented in the above-mentioned websites.

2.4. Data of the Mountains

Herein, the data of the mountains were originated from the Distribution of Main Moun-
tains in China (Figure 1c), which was published by the Geological Publishing House [66].
It provides Level I, II and III mountains across China. The mountain levels originated
the national standard of the name and code for Chinese mountains and peaks (GB/T
22483-2008), which was set by taking into account the balance between mountain chains,
the area of the mountains, the average mountain elevation, the density and significance of
mountain peaks and other necessary factors [60,67,68]. The elevation, density and coverage
are greater in Level I mountains than in Level II mountains and Level III mountains. This
study obtained the vector results of main mountains in China after performing geometric

http://viewfinderpanoramas.org/dem3.html
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calibration and vectorization for the data. The data were used to study the blocking effects
of mountains on the spatial diffusion of the PM2.5 pollutants.

2.5. Land Cover Data

The land cover data (Figure 1d) was used to demonstrate the distributions of anthro-
pogenic and natural emission sources of the PM2.5 pollution. The land cover dataset in
China for the year of 2019 was used in this study. It was produced by Yang and Huang [69],
and is the first Landsat-derived annual China land cover dataset (CLCD) on the Google
Earth Engine (GEE) platform, which contains 30 m annual land cover and its dynamics in
China from 1990 to 2020. The overall accuracy of CLCD is 79.31% and it outperforms the
accuracy of the widely used land cover datasets nowadays [69].

2.6. Methods

In the present study, we first compare the differences in PM2.5 pollution among differ-
ent topography types by overlaying the topography types data and PM2.5 concentration
data. The mountains’ blocking effects on PM2.5 dispersion was then studied by comparing
the absolute PM2.5 concentration differences between both sides of the mountains. This
was followed by detecting the elevation for the position at which the mountains’ effective
blocking effects begin by conducting the Mann–Kendall trend test (M-K test) with digital
elevation model data and the 20-year averaged PM2.5 concentration map. Finally, the
driving mechanisms behind the geographically impacts of topography on PM2.5 pollution
in China were analyzed by considering multiple external factors (Figure 2).
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2.6.1. Preprocessing the PM2.5 Concentrations

The PM2.5 concentrations data used in this study are at annual scale. Based on these
annual data, we first obtained the 20-year mean PM2.5 concentrations to proxy the averaged
PM2.5 pollution condition across China over the past two decades. This was achieved by
averaging the annual PM2.5 concentrations of all years from 2000 to 2019 pixel by pixel.
We then obtained the 35 µg/m3 dividing line in the resulting average PM2.5 concentration
map during 2000–2019. We further obtained the spatial distribution of the year frequency
of annual average PM2.5 concentrations that exceeded 35 µg/m3 during 2000–2019 over
China (here and after, “exceeding frequency”).

2.6.2. Identifying the Mountains’ Blocking Effects on PM2.5 Pollution

Mountains form the framework of China’s topography hinder the cross-regional
spread of air pollutants, separate the spatial continuity of reginal air pollution, which leads
to inconsistencies in air pollution over the left and right regions of the mountains, and
form the blocking effect mentioned in this paper. This effect is a long-term, comprehensive
impact that is induced by external factors, such as meteorology and emissions, on the air
pollution, and specifically in this study, PM2.5 pollution. In order to identify the mountains’
blocking effects on PM2.5 pollution (Figure 2), we first contrasted the averaged PM2.5
concentration on each side of the mountains, and the absolute difference of the averaged
PM2.5 concentrations was then obtained to represent the mountains’ blocking effects on
PM2.5 pollution. This is performed based on different buffer zones on the two sides of the
mountains. It is supposed that a higher absolute difference represents a greater blocking
effect of the mountains on PM2.5 pollution. The buffers should be set from a small to a
large one that can cover the coverage of the considered mountains and their foothills and
nearby lands, and from the values and changes in the absolute differences of buffers with
different radii, we may identify whether the averaged PM2.5 concentrations are significantly
different and at what radius the mountains’ blocking effects are significant. To include
large mountain ranges, this study took the Kunlun Mountains, the largest mountains in
China, as a test by setting different buffers zones at 5, 10, 15, . . . , 120, 135, 150 km distances
(Figures A1–A3). The results show that a buffer zone at 105 km is large enough to cover the
coverage of the considered mountains and their foothills and nearby lands. Thereby, this
study set the maximum radii of the buffer zones at 105 km. For convenience, only seven
buffer zones were finally chosen with a spacing of 15 km, i.e., 15 km, 30 km, . . . , 105 km
buffer zones (Figures A1–A3).

2.6.3. Mann–Kendall Trend Test

Herein, the M-K test was used to identify the changing trends of PM2.5 concentration
in relation to the increases in mountains’ elevation. The M-K test is a non-parametric test
that can be used to identify time-series data with consistently increasing or decreasing
trends (Figure 2). The trends are represented using the positive or negative values of the
statistical parameter, UFk, which is calculated by the following formula [70,71]:

UFk =
Sk − E(Sk)√

Var(Sk)
(k = 1, 2, . . . , n)

In this formula, Sk is the sequence made up of x (the time series) of n sample numbers,
as illustrated below:

Sk =
k

∑
i=1

ri, where ri =

{
+1, i f ri > rj

0, else
(j = 1, 2, . . . , i)

where UF1 = 0, E(Sk), Var(Sk) is the mean and variance of the cumulative number Sk, as
calculated by the following formula:

E(Sk) = n(n− 1)/4
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Var(Sk)= n(n− 1)(2n + 5)/72

The time-series data exhibit a downward trend when the UFk value is below 0, whereas
the time-series data exhibit an upward trend when UFk value is above 0. There is no
significant trend in time-series data (the trend is stable) if UFk value equals 0. When UFk
value turns from positive to negative or from negative to positive, the time-series data
tested will have a discontinuity point in the trend. The elevation where discontinuity point
occurs is taken as the position at which blocking effects begin, if the PM2.5 concentration
in the mountains’ left or right region with elevation higher than this discontinuity point
shows continuous declination trends (Figure A3).

3. Results
3.1. PM2.5 Pollution in Different Topography Types

We compared the average annual PM2.5 concentrations during 2000–2019 (Figure 3) by
different types of topography across China (Figure 4). The results show that plains were the
most polluted geomorphology type with an average PM2.5 concentration of 36.03 µg/m3.
The average PM2.5 concentrations of platforms (29.63 µg/m3) and hills (29.95 µg/m3)
across China were very close to each other, which means that the nationwide PM2.5 pol-
lution levels for these two types of topography tend to be the same. With an average
PM2.5 concentration of 18.55 µg/m3, mountains are the least polluted geomorphology type
in China.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

3. Results 

3.1. PM2.5 Pollution in Different Topography Types 

We compared the average annual PM2.5 concentrations during 2000–2019 (Figure 3) 

by different types of topography across China (Figure 4). The results show that plains 

were the most polluted geomorphology type with an average PM2.5 concentration of 36.03 

μg/m3. The average PM2.5 concentrations of platforms (29.63 μg/m3) and hills (29.95 μg/m3) 

across China were very close to each other, which means that the nationwide PM2.5 pollu-

tion levels for these two types of topography tend to be the same. With an average PM2.5 

concentration of 18.55 μg/m3, mountains are the least polluted geomorphology type in 

China. 

 

Figure 3. The spatial distribution of the average PM2.5 concentration during 2000–2019. This result 

is calculated by averaging all annual PM2.5 concentration data during 2000–2019 over China. 

 

Figure 4. Comparisons among the average PM2.5 concentrations during 2000–2019 for different to-

pography types. 

36.03 

29.63 29.95 

18.55 

0

10

20

30

40

50

60

70

Plain Platform Hills Mountain

M
ea

n
 (

μ
g

/m
3
)

Types of Topography 

Figure 3. The spatial distribution of the average PM2.5 concentration during 2000–2019. This result is
calculated by averaging all annual PM2.5 concentration data during 2000–2019 over China.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

3. Results 

3.1. PM2.5 Pollution in Different Topography Types 

We compared the average annual PM2.5 concentrations during 2000–2019 (Figure 3) 

by different types of topography across China (Figure 4). The results show that plains 

were the most polluted geomorphology type with an average PM2.5 concentration of 36.03 

μg/m3. The average PM2.5 concentrations of platforms (29.63 μg/m3) and hills (29.95 μg/m3) 

across China were very close to each other, which means that the nationwide PM2.5 pollu-

tion levels for these two types of topography tend to be the same. With an average PM2.5 

concentration of 18.55 μg/m3, mountains are the least polluted geomorphology type in 

China. 

 

Figure 3. The spatial distribution of the average PM2.5 concentration during 2000–2019. This result 

is calculated by averaging all annual PM2.5 concentration data during 2000–2019 over China. 

 

Figure 4. Comparisons among the average PM2.5 concentrations during 2000–2019 for different to-

pography types. 

36.03 

29.63 29.95 

18.55 

0

10

20

30

40

50

60

70

Plain Platform Hills Mountain

M
ea

n
 (

μ
g

/m
3
)

Types of Topography 

Figure 4. Comparisons among the average PM2.5 concentrations during 2000–2019 for different
topography types.



Remote Sens. 2022, 14, 6309 8 of 23

We can find from the exceeding frequency map (Figure 5a) that the regions of best air
quality (the light blue regions in Figure 5a) covered half of the land of China (Figure 5b), i.e.,
Southwest China and Northeast China, of which 54% are regions covered by mountains
(Figure 5c). The regions with exceeding frequencies ranging from 1 to 15 accounted for
26.89% of the area of China (Figure 5b), where over 60% of the land surface was covered by
mountains and hills (Figure 5d–f). Additionally, the heavily polluted regions with exceeding
frequencies ranging from 16 to 19 covered 12.89% of the area of China (Figure 5b), in which
the hills constitute the largest proportion of the land surface (as high as 38.79%, Figure 5g),
while the plains and the platforms also had a considerable areal contribution (up to 36.20%,
Figure 5g). The most polluted areas, i.e., the dark red regions in Figure 5a, covered 10%
of the terrestrial regions of China (Figure 5b), in which the plains account for the largest
proportion of the area (as high as 54.41%, Figure 5h) followed by platforms (21.00%,
Figure 5h). These results indicate that PM2.5 pollution in the high-altitude mountains and
hills is less severe, while the plains and the surrounding platforms and hills are more prone
to suffering from long-term pollution.
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We further obtained the 35 µg/m3 dividing line in the average PM2.5 concentration
map during 2000–2019 (Figure 6a), and a spatial overlay analysis of this line and the
topography types was then carried out to obtain the length proportion of the 35 µg/m3

dividing line across the different topography types. We can find from Figure 6a that the
35 µg/m3 dividing line encloses most of the plains and surrounding platforms and hills.
The results (Figure 6b) show that the proportions of the four types of topography were
66.47% for the mountains, 13.38% for the plains, 13.22% for the hills and 6.93% for the
platforms, which indicates that the mountains contributed most to the division of heavy or
mild air pollution, as can be seen in Figures 3 and 5a. From Figure 6c, we found that middle-
elevation mountains occupied most of the proportion in the mountain regions covering the
35 µg/m3 dividing line, which plausibly implies that middle-elevation mountains may be
the types of topography playing a dominating role in separating the air pollution.
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Figure 6. Superimposed distribution map of topography types and 35 µg/m3 dividing line (a),
the length proportion of the 35 µg/m3 dividing line across the different topography types (b), the
segmented length proportion across different elevation levels mountains in the mountains (c). Note:
low elevation is altitude of less than 1000 m, middle elevation is altitude from 1000 to 3500 m, high
elevation is altitude higher than 3500 m [60].

3.2. Mountains’ Blocking Effects on PM2.5 Dispersion

According to Figure 7, the absolute PM2.5 concentration differences between the two
sides of the mountains increased with increases in the buffer zone radii. At first, such
differences for Level I mountains were relatively smaller than those of Level II, and they
were the largest for Level III mountains. However, as the radii of the buffer zones reached
45 km, the PM2.5 concentration differences for Level I mountains increased significantly
and started to exceed Level II and Level III mountains. When the radii of the buffer zones
reached 90 km, the PM2.5 concentration differences for Level I mountains were above
10 µg/m3, surpassing that for Level II and Level III mountains with absolute advantage.
Similar to Level I mountains, Level II mountains had greater PM2.5 concentration differences
on both sides when the radii of the buffer zones reached 45 km or greater, and such
differences increased with the increase in buffer zone radii, but the change amplitude is
smaller than that of Level I mountains. The PM2.5 concentration differences on both sides
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of Level III mountains exhibited no great change when the buffer zone radii exceeded
45 km. It can be concluded from the above results that mountains have significant blocking
effects on PM2.5 concentrations, with Level I mountains’ blocking effects being greater than
Level II mountains, and Level III mountains having the smallest pollutant blocking effects
(Figure 7).
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Figure 7. The absolute PM2.5 concentration differences between the two sides of Level I–III mountains
at different buffer zones. We first averaged the PM2.5 concentration pixels within the 15 km buffer
zones of the two sides of the Level I mountains; then, the absolute value of the difference between
the two average PM2.5 concentrations was calculated. The results for other buffer zones were
found analogously.

Nevertheless, in terms of individual mountains, the blocking effects varied greatly
regarding their locations and the ambient PM2.5 pollution condition. This study chose
mountains with significant blocking effects for further analysis, i.e., the PM2.5 concentration
difference (absolute value) between the two sides of these mountains was significantly
higher than 10 µg/m3 (hereinafter referred to as “the typical mountains”). The results show
that 27 ranges of mountains were chosen (as summarized below in Table 2). When the buffer
zones reached a certain radius for Level I mountains, including the Kunlun Mountains
(North), Level II mountains, including the Taihang Mountains and the Tianshan Mountains,
and Level III mountains, including the Huola Mountains, the Taiyue Mountains, the
Longmen Mountains and the Fangdoushan Mountains, the PM2.5 pollution concentration
differences were greater than 20 µg/m3. When the buffer zones reached a certain radius
for Level II mountains, including the Lüliang Mountains, the Qingling Mountains and
the Bogeda Mountains, and Level III mountains, including the Daqingshan Mountains
and the Zhongtiao Mountains, the PM2.5 pollution concentration differences were greater
than 15 µg/m3. It can be concluded from the above results that these mountains have
significant blocking effects on PM2.5, and they make up the key separation belts against
PM2.5 pollution.
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Table 2. The absolute PM2.5 concentration differences between the two sides of Level I–III mountains
at different buffer zones. We first calculated the absolute PM2.5 concentration differences between
the two sides of each mountain, and the absolute values of all the mountains at each level were then
averaged and are provided in the table below. As there are many mountains, only the mountains with
absolute PM2.5 concentration differences between their left and right sides greater than 10 µg/m3

were typically shown in the table below, and these mountains were taken as the typical mountains.

Level of Mountains Mountains Name 15 km 30 km 45 km 60 km 75 km 90 km 105 km

Level I Mountains All Level I mountains 0.59 3.17 5.57 7.32 8.32 10.16 11.76

Level I Mountains Kunlun Mountains
(Northern) 13.09 17.62 21.65 25.29 28.21

Level II Mountains All Level II
mountains 2.23 3.57 4.21 5.02 5.85 6.61 7.22

Level II Mountains T’aihang Mountains 12.76 16.77 20.78 23.41 24.93 26.24
Level II Mountains Tianshan Mountains 11.74 17.08 19.49 19.89 21.41
Level II Mountains Luliang Mountains 16.25 15.67 13.87 12.19 11.27 11.90
Level II Mountains Qinling Mountains 10.25 13.80 15.35 16.14 15.49 15.02 14.59
Level II Mountains Bogda Mountains 10.38 13.40 15.20
Level II Mountains Qilian Mountains 11.94 13.90 14.66 14.81
Level II Mountains Altun Mountains 11.59
Level II Mountains Qimantag Mountains 10.40

Level III Mountains All Level III
mountains 3.42 3.87 4.1 4.35 4.47 4.48 5.18

Level III Mountains Hora Mountains 19.62 24.55 25.17 29.09 32.30 31.79 29.49
Level III Mountains Taiyue Mountains 28.23 29.50 20.83 10.48
Level III Mountains Longmen Mountains 13.92 18.63 21.37 23.68 24.73
Level III Mountains Fangdou Mountains 13.28 16.77 19.43 20.32 13.99 14.50 14.87

Level III Mountains Daqingshan
Mountains 15.20 17.47 17.49 15.61 13.90 12.92

Level III Mountains Zhongtiao Mountains 16.71 10.15 14.74 15.82
Level III Mountains Yanshan Mountains 11.40 14.58
Level III Mountains Hengshan Mountains 14.08 10.37
Level III Mountains Daliang Mountains 10.69 13.67 11.62
Level III Mountains Mufu Mountains 10.63 13.59
Level III Mountains Wudang Mountains 11.02 12.44
Level III Mountains Tolai Mountains 10.07 11.50 12.31
Level III Mountains Qionglai Mountains 10.70 12.25
Level III Mountains Ayirariju Mountains 11.89
Level III Mountains Daxue Mountains 10.06 11.64
Level III Mountains Xionger Mountains 11.40
Level III Mountains Helan Mountains 11.40
Level III Mountains Qianshan Mountains 10.75 11.37

3.3. Elevation for the Position at Which Mountains’ Effective Blocking Effects Begin

We first analyzed the trends in the PM2.5 concentrations that change with the DEM
values within the 105 km buffer zone of the typical mountains mentioned in the above table.
The results (Figure 8) show that the PM2.5 concentrations of Level III mountains, including
the Xiong’er Mountains, the Taiyue Mountains, the Daliang Mountains and the Zhongtiao
Mountains, showed falling trends immediately with the increases in elevations, while the
PM2.5 concentrations of all the other typical mountains rose firstly with the increases in ele-
vations until a certain altitude was reached. Above this altitude, a significant and sustained
decline trend in PM2.5 concentrations can be observed in these mountains. This study
utilized the M-K test to detect whether PM2.5 concentrations exhibited evident downtrends
with increases in mountains’ elevations. As illustrated in Table 3, the results of the M-K
test of all the mountains (UFk value) were dramatically lower than 0, which indicated that
PM2.5 concentrations exhibited a downtrend with the increase in the mountains’ elevation.
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Figure 8. The changing curves between the mean and maximum PM2.5 concentrations and the DEM
values (A–V), and the corresponding trend detection in mean PM2.5 concentrations by M-K test
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(the blue lines) were the maximum PM2.5 concentrations based on pixels of each DEM value.
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Table 3. The results of M-K test for the typical mountains.

Mountains’
Level

Mountains’
Name UFk Value The Starting

Position (m)
4

DEM (m)

Max PM2.5
Value 1©
(µg/m3)

Max PM2.5
Value 2©
(µg/m3)

Mean PM2.5
Value 1©
(µg/m3)

Mean PM2.5
Value 2©
(µg/m3)

Max PM2.5
Pollution
Blocking

Effects
(µg/m3)

All typical mountains −99.41 ** 163 228 102.31 98.38 52.83 59.71 39.30%

Level I
Kunlun

Mountains
(North)

−93.22 ** 1963 832 102.31 102.31 62.19 62.47 38.93%

Level II Lüliang
Mountains −72.07 ** 650 397 96.64 96.64 63.71 65.15 32.59%

Level II Qilian
Mountains −85.56 ** 1745 649 52.92 52.92 41.33 37.39 29.34%

Level II Taihang
Mountains −68.07 ** 143 208 98.38 98.38 52.83 75.31 23.45%

Level II Qingling
Mountains −84.93 ** 475 156 85.55 85.54 71.46 67.45 21.15%

Level II Altuns
Mountains −102.40 ** 845 42 69.04 65.35 56.67 60.76 7.04%

Level III Mufu
Mountains −56.97 ** 332 329 71.84 71.83 61.54 45.59 36.54%

Level III Daqingshan
Mountains −53.14 ** 1057 81 52.42 52.42 30.74 33.31 36.46%

Level III Longmen
Mountains −93.62 ** 604 240 81.48 81.47 49.32 53.37 34.50%

Level III Helan
Mountains −62.71 ** 1183 203 59.60 59.60 41.63 40.61 31.86%

Level III Fangdou
Mountains −50.38 ** 179 92 66.48 66.48 54.36 45.69 31.28%

Level III Yanshan
Mountains −65.13 ** 58 110 65.27 65.27 39.61 47.22 27.65%

Level III Hengshan
Mountains −72.91 ** 311 149 72.41 72.40 56.01 54.18 25.17%

Level III Huala
Mountains −78.32 ** 1191 324 72.26 72.26 57.46 58.54 18.99%

Level III Da Xueshan
Mountains −88.78 ** 652 64 60.33 60.06 57.69 49.41 17.73%

Level III Qionglai
Mountains −82.10 ** 544 95 85.88 85.88 75.01 72.30 15.81%

Level III Wudang
Mountains −75.54 ** 131 49 66.09 62.18 58.30 58.45 6.00%

Level III Xiong’er
Mountains −42.36 ** 121 0 80.34 77.06 76.77 76.77 0.37%

Level III Taiyue
Mountains −66.65 ** 435 0 87.75 85.68 85.50 85.50 0.21%

Level III Daliang
Mountains −98.49 ** 249 0 75.87 73.94 73.94 73.94 0.00%

Level III Zhongtiao
Mountains −68.27 ** 122 0 81.25 80.31 80.31 80.31 0.00%

The UFk value is a variable used to characterize the upward or downward trend of a series by M-K test, and
an UFk value below 0 indicates a downtrend, whereas an UFk value above 0 indicates an upward trend. “**”
representing a confidence level of p < 0.001. This is achieved based on the 105 km buffer zone for the purpose
of covering the large mountains. The starting position is the elevation for the position at which blocking effects
begin, as well as the position at which the positive UFk value shifts into negative one. 4DEM is the difference of
the elevation for the starting position and the lowest elevation in the 105 km buffer zone (i.e., the mountains’ foot).
Max PM2.5 value 1© is the max PM2.5 value within the 105 km buffer zone, which is the highest pixel value of the
PM2.5 concentration within the considered regions of the mountains. Max PM2.5 value 2© is the max PM2.5 value
within the regions from the mountains’ foot to the starting position, which is the highest pixel value of the PM2.5
concentration within the considered regions of the mountains. Mean PM2.5 value 1© is the mean PM2.5 value at
the mountains’ foot, which is the averaged PM2.5 concentration for the pixels located at the mountains’ foot. The
mountains’ foot is represented by the area with the lowest elevation within the 105 km buffer zone. Mean PM2.5
value 2© is the mean PM2.5 value at the position at which blocking effects begin, which is the averaged PM2.5
concentration for the pixels located at the starting position. Max PM2.5 pollution blocking effects is the PM2.5
concentration declining amplitude calculated by the mean PM2.5 value at the starting position and the max PM2.5
value within regions from the mountains’ foot to the starting position.

This study further obtained the significant starting position of the mountains’ effective
blocking effects (i.e., the elevation value from which the PM2.5 concentration started to
have a significant and sustained decline, herein after “the starting position”) using the M-K
test. Table 3 showed that in general, an altitude of 163 m was the overall significant starting
position at which all typical mountains’ comprehensive effective blocking came into play,
but such significant starting positions varied among different mountains. Among them,
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the Kunlun Mountains (North) had the highest starting position (832 m), followed by the
Qilian Mountains (649 m), the Lüliang Mountains (397 m), the Mufu Mountains (329 m),
the Huola Mountains (324 m), the Longmen Mountains (240 m), the Taihang Mountains
(208 m), the Helan Mountains (203 m), the Qingling Mountains (156 m), the Hengshan
Mountains (149 m), the Yanshan Mountains (110 m) and the rest of the mountains (below
100 m). It could be concluded that mountains have significant blocking effects on the
diffusion of PM2.5.

Moreover, it can be seen from the table below that mountains had different levels
of blocking effects on PM2.5 concentrations. The max PM2.5 pollution blocking effects
for the Kunlun Mountains (North, Level I mountains), the Lüliang Mountains (Level II
mountains), the Mufu Mountains, the Daqingshan Mountains, the Longmen Mountains,
the Helan Mountains and the Fangdou Mountains (Level III mountains) are greater than
30%. For Level II mountains, including the Qilian Mountains, the Qingling Mountains,
the Taihang Mountains, the Yanshan Mountains and the Hengshan Mountains (Level III
mountains), have the max PM2.5 pollution blocking effects, higher than 20%. For the rest of
the mountains, the max PM2.5 pollution blocking effects are below 20%.

4. Discussion

The present study showed that plains are the most polluted geomorphology type,
while mountains have the least PM2.5 pollution. From the map of population counts and
road density in China (Figure A4), we can find that there are much fewer human activities
over the mountainous areas, and the trees in the mountains contribute to the reduction
in PM2.5 pollutants [8,9]. By comparison, the geographically low-lying places, such as the
North China Plain, the Guanzhong Plain and the Sichuan Basin, are vulnerable regions
to haze PM2.5 pollution, mainly because there are dense pollution sources, such as urban
land and farmland [17,18,39,47,49]. Moreover, significant numbers of people and roads are
widespread there (Figure A4), so high-intensity air pollutants are emitted by the frequent
human activities that occur there. The appearance of mountains near these places makes
it difficult for emissions to spread across regions, which aggravates the cumulative effect
of PM2.5 pollution over that and nearby areas. This fact, coupled with the relative quasi-
stationary air condition in these low-lying places, have made these places the most polluted
regions in China [8,9,72].

According to the results of Figures 3 and 5, it can be seen that almost all the heavily
PM2.5 polluted areas in China were encircled by high mountains, which was not conducive
to the dispersion of local PM2.5 pollutants. This was consistent with the conclusions of
prior studies in the Guanzhong Basin and the Beijing–Tianjin–Hebei region [47–49]. While
preventing the cross-regional spread of air pollutants, the mountains lead to a heavy air
pollution concentration in the mountain basins. For example, on the right side of the
Taihang Mountains, an evident differentiation of PM2.5 pollution levels could be observed,
i.e., the closer the areas to the mountains’ basins, the more serious the PM2.5 pollution
would be, which could be the result of the accumulation of PM2.5 pollutants induced
by the terrain–meteorological conditions near the mountains’ basins [55]. This result
is supported by a previous study [72], which identified four typical weather patterns,
i.e., the south-westerly winds, the north-easterly winds, the south-easterly winds and
the stagnant air conditions that exist over the Beijing–Tianjin–Hebei Region, which was
partially enclosed by the Yan Mountains (in the north), the Taihang Mountains (in the west)
and the Dabie Mountains (in the south). The regional atmospheric circulation coupled
with the influence of topography comprehensively amplified the effects of emissions by an
average of 50% to 150% in the Beijing–Tianjin–Hebei region, and formed an atmospheric
pollution convergence line near the foothills of the mountains. Such comprehensive effects
of terrain–meteorological conditions near the upside of the Kunlun Mountains and the
Altun Mountains as well as the right side of the Qionglai Mountain are also responsible for
the accumulated pollution belt along these mountains. Additionally, the distance between
the pollution sources and the mountains also has important influences on the distribution
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of PM2.5 concentrations over the mountains. For example, the urban agglomeration from
Zhengzhou city to Shijiazhuang city constitutes a pollution source distribution belt in the
eastern Taihang Mountains, and a heavy distribution belt of PM2.5 pollution is also seen in
the mountains close to these anthropogenic sources. Similarly, in the Qinling Mountains, a
heavily PM2.5 pollution area is formed over its northern part, which is near the Guanzhong
urban agglomeration. Likewise, there is an accumulated pollution belt along the upside of
the Kunlun Mountains, as it is near the natural emission source of the Taklimakan desert.

China is a country of varied topographical features with highlands in the west and
plains in the east. The topographies in China constitute a descending three-step ladder, and
these topographic features have significant effects on the atmospheric circulation of China,
and further impact the diffusion of air pollutants. The research by Xu X. et al. (2015) [73]
suggested that the typical topographic features of China generate a long-term clockwise
vertical vortex structure on the east side of the Qinghai–Tibet Plateau, forming a sinking air
flow region over the “leeward slope area” of the Qinghai–Tibet Plateau, which corresponds
to the “weak wind area” on the east side of the terrain, and the combined effects of the
sinking air flow and “weak wind area” are not conducive to the diffusion of air pollution
emissions in industrial zones and urban agglomerations in eastern China, in particular by
inhibiting the convection transport of pollutants to high altitudes, so that the east side of
the Chinese plateaus presents a “south-north” belt of haze area. The mountains’ blocking
effects on the dispersion of PM2.5 concentrations are controlled by prevailing winds in the
lower troposphere [47,49,52,53,72], while the instantaneous effects induced by wind can
finally form the overall effects induced by the composited wind direction during the last 20
years, and change the long-term topography impacts on air pollution. Central and eastern
China, with their high PM2.5 levels, are the typical regions with East Asian monsoons
in significant seasonal shifts of prevailing winds [49,72]. That is to say, the mountains’
blocking effects are also greatly influenced by the monsoon climate in China.

In addition, our findings show that when the mountains are located in a heavily
polluted area, were not high enough or had gaps between them, the spatial overflow
effects of air pollution appeared. For example, due to large gaps between the mountains
or insufficient height, the PM2.5 pollutants seem to overflow through the gaps among the
Level III mountains of the Wudang Mountains, the Tongbai Mountain and the Dahong
Mountains (Figure A5), which means that the presence of these mountains could not
effectively block the cross-regional spread of PM2.5. The overflow effects of pollution may
be related to the local circulation of the mountain–valley breeze and the land–sea breeze
brought by the alternation of day and night as well as the land–sea breeze resulted by
the temperature pressure differences between land and sea in different seasons [50–52].
When the mountains are not high enough, the local circulations may transport the PM2.5
pollutants in low places across the mountains [49]. Moreover, the gaps between mountains
can serve as convenient channels for transporting PM2.5 pollutants easily.

The blocking effects of the mountains depended heavily on the mountains’ level and
the sizes of their buffer zones. The mountains’ level reflected their overall conditions,
including the average height, coverage and density of the mountain ranges itself (i.e.,
the area that a mountain range covers and the number of picks within the coverage of
the mountain range). When the mountains’ height, coverage and density are higher, the
mountain blocking effects will be greater with less significant overflow effects of pollution,
i.e., the PM2.5 concentration differences between the two sides of the mountains will be
greater. In contrast, when the mountains’ height, coverage and density are lower, the
mountains’ blocking effects will be smaller with significant overflow effects of pollution,
i.e., the PM2.5 concentration differences between the two sides of the mountains will be
smaller. Therefore, we can find that the blocking effects of Level I mountains are generally
greater than that of Level II mountains, and Level III mountains’ blocking effects are
relatively smaller (Figures 6–8, Tables 2 and 3). In addition, the small buffer zones may only
cover the central parts of the mountains, especially for the Level I and Level II mountains
(the coverage for them is generally greater than that for Level III mountains), and under this
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circumstance, the absolute PM2.5 concentration differences are small as the PM2.5 values
tend to be the same at both sides of the central parts of the mountains. When the buffer
zones began to cover the areas surrounding the mountains and are big enough to reflect the
air pollution condition around the mountains, the absolute PM2.5 concentration differences
between the two sides of the mountains began to be evident as the PM2.5 values tend to
differ for having different levels of air pollutions caused by the pollution sources located at
the two sides of the mountains. This may explain why the blocking effects of Level I and
Level II mountains started to surpass that of Level III mountains and became greater when
the buffer zones’ radii exceeded 45 km.

The present research quantified the mountains’ blocking effect on PM2.5 pollution on
a long-time and macro scale. If there is no or little topographical fluctuation over a region,
under the combined influences originated from various external factors, the air pollution
there will eventually tend to be consistent. The appearance of the mountains separates
the spatial continuity in external environment, leading to the meteorology conditions
not being the same over the regions on the mountains’ two sides. We believe that PM2.5
pollution impacts result from the external factors, such as the regional emissions and
meteorology, which will ultimately be reflected in the inconsistent concentrations of air
pollutants between the two sides of the mountains. With the comprehensive impacts from
the composited wind direction and other changes in meteorology, the side with more
pollution sources is more likely to have severe accumulated air pollution on a long-time
scale. This phenomenon is embodied by the typical mountains, such as the Northern side
of the Kunlun Mountains, the Eastern side of the Taihang Mountains, etc., where a large
number of artificial and/or natural PM2.5 pollution sources are located in these regions, and
mass pollutants are blocked. The PM2.5 concentrations increase at first in the lower parts
of the mountains, as pollutants there will aggregate under the comprehensive influences
from topography and meteorology, and when the height of the mountains reaches a certain
altitude, the PM2.5 concentrations start to decline sustainably. This likely due to the fact
that there are less emissions over these high elevation regions and the trees there help
in the reduction in the PM2.5 pollutants [55,74]. This concludes that mountains’ blocking
effects on PM2.5 pollution will not come into significant play until a certain mountain
elevation (hereinafter, the effective blocking position) is reached, and PM2.5 pollution might
be enhanced continuously below such elevation. This conclusion is supported by the results
in Figure 8. While as the external conditions vary from mountain to mountain, the effective
blocking position and blocking effects for the mountains on PM2.5 pollution are un-uniform.
In reality, there exist large air pollution sources in the mountains’ coverage areas and
their surrounding areas, and the air pollution in the pixels where these pollution sources
are located is usually higher, which explains the results in Table 3, i.e., the max PM2.5
concentration within the 105 km buffer zone and the regions from the mountains’ foot to
the position at which blocking effects begin are much greater than the PM2.5 concentration
of the mountains’ foot.

Certainly, this study still has some room for improvement. Firstly, topography can
influence PM2.5 concentrations by changing the physical and chemical processes, including
transport dispersion, natural and anthropogenic emissions, chemical conversions and dry
and wet depositions in the atmosphere. Therefore, further studies are greatly encouraged
to thoroughly disentangle this complex scientific question. Secondly, due to the absence
of nationwide-measured PM2.5 concentration data, the results derived from the remote
sensing data inversion of PM2.5 concentration may be subject to the precision of the inversed
data themselves. Moreover, the data obtained herein have different spatial resolutions.
When matching the data resolution, we resampled the PM2.5 concentration value as 90 m
in order to match the DEM data with a higher resolution. The non-matched resolution of
data may bring uncertainties in the research results. Furthermore, the mountains’ data
were obtained from the artificial vectorization on the basis of the achievements by previous
studies. The results show that the mountains were distributed in a continuous way with
equivalent width, which is different from the actual mountain distribution conditions, and
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will also bring about uncertainties to the research conclusions. Last but not least, when
further investigating the blocking effect of mountains, the wind direction and the effects of
adjacent mountains are highly recommended to be considered.

5. Conclusions

Using high spatial resolution and long time-series data of annual PM2.5 concentrations
inversed by remote sensing data, this study quantitatively investigated the impacts of
different topography types on PM2.5 pollution on a macro scale during the past two decades.
Additionally, this study particularly carried out studies to disentangle the blocking effects
of mountains on the dispersion of PM2.5 pollutant. Furthermore, the strength and the
starting position of the mountains’ blocking effects were identified. The main conclusions
were drawn as follows.

In China, the levels of PM2.5 pollution effects varied among different types of to-
pography. High-altitude mountains and plateaus have lower levels of PM2.5 pollution
throughout the years, while the plains and surrounding platforms and hills tend to suffer
from long-term severe PM2.5 pollution. The average PM2.5 concentration for the plains
is 36.03 µg/m3 during 2000–2019 and 18.55 ug/m3 for the mountains. The annual PM2.5
concentrations over 10% of China’s land exceeded 35 µg/m3 every year in the past two
decades. The middle-elevation mountains may play a dominating role in separating the
air pollution.

Mountains form the framework of China’s topography, and have significant, evident
blocking effects on the spread of PM2.5 pollution across areas. Generally, Level I mountains
provide better blocking effects than Level II mountains, while Level III mountains have
the smallest blocking effects. The discrepancies of the blocking effects in different level
mountains begin to manifest when the radii of buffer zones reach 45 km or higher. The
absolute PM2.5 concentration differences between the mountains’ two sides are higher
for Level I mountains, including the Kunlun Mountains (North), Level II mountains,
including the Taihang Mountains and the Tianshan Mountains and Level III mountains,
including the Huola Mountains, the Taiyue Mountains, the Longmen Mountains and the
Fangdoushan Mountains.

The mountains’ effective blocking effects on PM2.5 pollution will not come into play
unless an altitude is reached, PM2.5 concentrations increase below such altitude and reduce
above such altitude. The altitude at 163 m is the overall significant starting position for
all typical mountains, while the exact altitude values for different mountains are varied.
In heavily polluted areas, there will be spatial overflow effects of pollution when the
surrounding mountains are not high enough or the mountains’ stretch breaks.
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Figure A1. The buffer zones at 105 km and 150 km set for the Kunlun Mountains on both its sides.
The black line for the buffer zone at 105 km is large enough to cover the coverage of the Kunlun
Mountains and their foothills and nearby lands.
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Figure A2. The schematic diagram for different buffer zones on the left and right side of the moun-
tains (a). The purple buffer zones are the right buffers with radii of 15, 30, . . . , 105 km, and the green
buffer zones are the left buffers with radii of 15, 30, . . . , 105 km. Two examples are provided in (b),
one is the horizontally located mountains of the Qinling Mountains, the other is the vertically located
mountains of the Taihang Mountains.
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Figure A3. The schematic diagram for the mountains’ coverage, ridge line, the buffer zones and the
pollution sources. The green dotted line is the line of the position at which the mountains’ blocking
effects on PM2.5 pollution begin. More information is provided in the above picture.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure A4. Population counts and road density map in China. The population counts map origi-

nated from the WorldPop Hub, and was resampled from 100 m to 8 km. The road density map was 

provided by Global Roads Inventory Project (GRIP) dataset at an 8 km resolution. (a,b) are the Map 

of South China Sea Islands. 

Figure A4. Population counts and road density map in China. The population counts map originated
from the WorldPop Hub, and was resampled from 100 m to 8 km. The road density map was provided
by Global Roads Inventory Project (GRIP) dataset at an 8 km resolution. (a,b) are the Map of South
China Sea Islands.
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