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Abstract: JPEG-LS (a lossless (LS) compression standard developed by the Joint Photographic Expert
Group) compressed image restoration is a significant problem in remote sensing applications. It faces
the following two challenges: first, bridging small pixel-value gaps from wide numerical ranges; and
second, removing banding artifacts in the condition of lacking available context information. As far as
we know, there is currently no research dealing with the above issues. Hence, we develop this initial
line of work on JPEG-LS compressed remote sensing image restoration. We propose a novel CNN
model called CARNet. Its core idea is a context-aware residual learning mechanism. Specifically, it
realizes residual learning for accurate restoration by adopting a scale-invariant baseline. It enables
large receptive fields for banding artifact removal through a context-aware scheme. Additionally,
it eases the information flow among stages by utilizing a prior-guided feature-fusion mechanism.
Alternatively, we design novel R IQA models to provide a better restoration performance assessment
for our study by utilizing gradient priors of JPEG-LS banding artifacts. Furthermore, we prepare a
new dataset of JPEG-LS compressed remote sensing images to supplement existing benchmark data.
Experiments show that our method sets the state-of-the-art for JPEG-LS compressed remote sensing
image restoration.

Keywords: remote sensing image restoration; convolutional neural network; JPEG-LS compression;
image quality assessment

1. Introduction

Due to limitations in storage space and transmission bandwidth, digital images are
usually compressed to remove redundancy [1]. Generally, compression methods trade
image quality for higher data compression rates. However, scientific considerations make
image quality degradation unacceptable for high-performance applications. Thus, near-
lossless compression methods are usually employed in remote-sensing applications for
a trade-off between image quality and compression rates. JPEG-LS is a new generation
of image lossless (LS) compression standard developed by the Joint Photographic Expert
Group (JPEG) that can perform lossless and near-lossless compression [2], where NEAR
indicates the control of information loss. In order to express this concept more clearly,
JPEG-LS in the following description only represents its near-lossless implementation. Due
to its low complexity, JPEG-LS has been widely used in remote sensing applications [3].
Although one image compressed by JPEG-LS may present slighter quality degradation than
compression by general lossy compression schemes (e.g., JPEG and BMP), it still causes
noticeable banding artifacts in some flat image areas. As shown in Figure 1, these banding
artifacts not only lead to information loss but also result in unpleasant visual feelings,
which may severely affect high-performance remote sensing applications. Hence, there is
an urgent need for JPEG-LS compressed remote-sensing image restoration.
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(a) Original Image (b) JPEG-LS NEAR=8 (c) JPEG-LS NEAR=12 (d) JPEG-LS NEAR=16

Figure 1. The artifact of JPEG-LS compressed remote sensing images. A large NEAR value corre-
sponds to a high compression rate, which results in more serious banding artifacts. To show image
details well, we present the compression results in a 16-bit gray-scale format and use local adaptive
histogram equalization to enhance its contrast.

The research community has proposed a lot of compressed image restoration methods,
including model-based methods [4–8] and learning-based methods [9–15]. Specifically,
a fully convolutional neural network (FCN) [16] has achieved state-of-the-art results in
recent years. However, the existing methods all focus on lossy compression schemes and
social media images. As far as we know, there is no specialized research work on JPEG-LS
compressed remote sensing image restoration.

To this end, we develop this initial line of work for JPEG-LS compressed remote sensing
image restoration. Because of the following two core problems, our task is much more
difficult than general lossy compressed image restoration: (1) Due to the requirement of low
information loss, JPEG-LS compressed images exhibit only slight degradation, manifested
by small differences in pixel values from their corresponding references. However, the
pixel value of high-bit remote sensing images varies widely. Thus, our task is not only
a problem of high-precision restoration but also of bridging small pixel-value gaps from
wide numerical ranges. (2) Most remote sensing images cover many flat areas that contain
little context information. However, as shown in Figure 1, JPEG-LS compressed banding
artifacts generated from run-length coding [17] usually occur in such flat areas. Thus, our
task may lack context information when removing JPEG-LS banding artifacts.

To deal with the above problems, we propose a novel CNN network called CARNet.
Its core idea is a context-aware residual learning mechanism. It has the following three key
components: First, we design a scale-invariant baseline to realize high-accuracy pixel-value
recovery. Since the pixel value of high-bit remote sensing images may vary widely, directly
learning the latent clean image may amplify slight degradation caused by near-lossless
compression. Hence, we consider residual mapping learning may be more efficient for our
task. Inspired by [18], we propose a scale-invariant baseline to mine residual features. Scale-
invariant means learning in fixed scale space, which can reduce pixel value reconstruction
errors caused by image scale changes. Hence, our baseline can provide spatial accuracy
that is good at residual learning to enable high-precision recovery for minor degradation.
Second, we propose a context-aware subnet to supplement context information. Our scale-
invariant baseline may perform well in learning residual mapping, but due to limited
receptive fields, it may lack the ability to extract rich context information. Hence, we
design a context-aware subnet that focuses on mining context information. It can provide
large receptive fields for exploring context information, thus showing promising results
in JPEG-LS banding artifact removal. Third, we propose a prior-guided feature fusion
mechanism to ease the information flow among the above two stages. Our scale-invariant
baseline and context-aware subnet focus on solving the two core problems of JPEG-LS
compressed remote sensing image restoration, respectively. It may not work if we directly
fuse them and further use the fused features to reconstruct the latent clean image. Hence,
we progressively integrate context features into our scale-invariant baseline. This scheme
forms a prior-guided reconstruction that provides better features for restoration. Further,
we notice that the gradient angle values of banding artifacts are almost π/2 or 3π/2. This
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is a noteworthy local feature of JPEG-LS compressed remote sensing images. By utilizing
this JPEG-LS compression prior, we design special loss functions to strengthen the overall
supervision in gradient-value space, thus further improving restoration performance.

Alternatively, researchers usually employ two commonly used Reference (R) Image
Quality Assessment (IQA) algorithms (i.e., PSNR and SSIM [19]) for quantitatively eval-
uating restoration performance. However, these metrics are no longer suitable for our
study due to the particularity of JPEG-LS-degraded remote sensing images. Specifically,
the above problem is manifested in the following two aspects: (1) Because of the near-
lossless character of JPEG-LS compression, SSIM scores of JPEG-LS-degraded images under
different compression rates are very close (e.g., numerical differences do not appear until
the third decimal place). It may be hard to distinguish the perceptual quality of different
JPEG-LS-degraded images through such a tiny numerical difference. (2) R IQA models
may become unreliable when the original reference image is degraded [20]. Due to the
particular perspective of the remote sensing image, the evaluation results of PSNR and
SSIM in our task may be inconsistent with human judgment. To this end, we propose novel
R IQA algorithms, LS-PSNR and LS-SSIM, to provide better quantitative assessment for
our research. Specifically, we first design novel R IQA models Qg in gradient-value space
then combine Qg with pixel-value-space R IQA models Qp (i.e., PSNR and SSIM). Our
LS-PSNR and LS-SSIM may be viewed as a process of conditioning Qp using Qg, where the
predicted Qg score serves as prior knowledge. Adopting this conditioning process, our R
IQA models greatly expand the difference among predicted scores. Additionally, through
utilizing Qg priors, our R IQA models show promise in yielding predictions of human
quality judgments.

Furthermore, we prepare a new dataset of JPEG-LS compressed remote sensing images
to supplement existing benchmark data. Experiments show that our method sets the
state-of-the-art for JPEG-LS near-lossless compressed remote sensing image restoration.
The contributions of this paper are highlighted as follows:

• We develop the initial line of work on JPEG-LS near-lossless compressed remote
sensing image restoration.

• We propose a novel CNN network, called CARNet, to deal with new challenges in
this initial line of work. Its core idea is a context-aware residual learning mechanism.
Further, we design special loss functions to further improve restoration performance
by utilizing JPEG-LS compression priors.

• We propose novel R IQA algorithms, called LS-PSNR and LS-SSIM, to provide better
assessment results for our research by utilizing special characteristics of JPEG-LS
banding artifacts.

• We prepare a new dataset of JPEG-LS compressed remote sensing images to supple-
ment existing benchmark data. Experiments show that our method sets the state-of-
the-art for JPEG-LS near-lossless compressed remote sensing image restoration.

2. Related Work

Some early works [21–23] treat compression artifact removal as a denoising problem
by modeling compression artifacts as additive noise. These works only consider the
smoothness or regularity in pixel intensities. In their restored images, edges and textures
may be smoothed. Other works [24–26] treat compression artifact removal as an image
inverse problem. These methods further consider the nonstationarity of image content,
but they ignore the content-correlated characteristic of the compression noise. Further, due
to ill-posedness, prior knowledge is required to regularize the solutions of their methods.

Recently, CNNs have been widely used for low-level image processing problems
and have achieved excellent results. CNN-based restoration for compressed images was
first introduced by Dong et al. [9]. However, their small-scale network limits the network
receptive field, and the training process of their network converges too slowly. Then,
DnCNN [11] boosts performance on general blind image restoration tasks. Later, a wavelet
transform-based network, MWCNN [27], brings further improvements. In other explo-
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rations, a deep convolutional sparse coding network [28] combines model-based methods
with deep CNN. Additionally, a Dual-domain Multi-scale CNN (DMCNN) [14] is proposed
for JPEG compressed image restoration by enlarging the receptive fields on both the pixel
and DCT domains. Their model shows promising restoration results, but their network
architecture is too redundant. Alternatively, some works [13,29] propose a feed-forward
fully convolutional residual network. Their model is trained with a generative adversarial
framework. However, restoration results produced by such networks are often not vivid,
and the training process of a generative adversarial network is usually arduous.

Since the assessment of restoration results consists of quantitative and qualitative
evaluation, the most-recent works move towards two genres. On the one hand, some
works focus on improving quantitative accuracy. For example, inspired by spatial-wise
convolution for shift-invariance, Fan et al. [30] proposes a “scale-wise convolution” to
convolve across multiple scales for scale-invariance. Their network shows that modeling
scale-invariance into neural networks in a proper way may bring significant benefits to
image restoration performance. On the other hand, some works focus on improving quali-
tative visual feelings. Ehrlich et al. [31] proposes QGAC that adopts a quantization table to
make a single model able to correct JPEG artifacts at any compression rate. Additionally,
Jiang et al. [32] presents FBCNN that can achieve flexible JPEG image restoration by manual
control of compression quality factor. Further, Zamir et al. [15] proposes a multi-stage
architecture that progressively learns restoration functions for the degraded inputs, thereby
breaking down the overall recovery process into more manageable steps.

Based on the above research, we develop this initial line of work for JPEG-LS com-
pressed remote sensing image restoration. We refer to the proposed network as CARNet;
it can achieve accurate restoration while performing well in banding artifact removal by
adopting a context-aware residual learning mechanism.

3. Method

In this section, the proposed method is introduced. The proposed CARNet is intro-
duced first, then followed by the loss function, and last but not least, the novel R IQA
algorithm is illustrated.

3.1. CARNet Framework

The framework of the proposed CARNet is shown in Figure 2. The entire network is
an end-to-end system that takes a JPEG-LS near-lossless compressed image C as input and
directly generates the output image O. The network is fairly straightforward, with each
component designed to achieve a specific task. As illustrated, our model contains three
components: scale-invariant baseline, context-aware subnet, and prior-guided reconstruc-
tion. In order to express the network learning process conveniently, we use Φ to represent
3× 3 convolution, and σ to indicate PReLu [33] activation.
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Figure 2. The framework of the proposed CARNet. Each component of our network is designed to
complete a specific task.

3.1.1. Scale-Invariant Baseline

Since a near-lossless compressed image degrades slightly, it only shows small pixel-
value differences from its reference, and its restoration requires high accuracy. Generally
speaking, the learning process of small residual values may be easier to converge than direct
regression of large pixel values, especially for remote sensing images, which are usually
10-bit to 12-bit and present wide numerical ranges. Hence, we propose a scale-invariant
baseline to achieve residual learning. As shown in Figure 2, it takes compressed image C
as input, obtains low-level feature F, then extracts the basic residual features using five
res-blocks, where:

F = σΦ(C) (1)

and each res-block’s output can be represented as F̃i:

F̃i = F̃i−1 + σΦ(F̃i−1) (2)

where i = 1, 2, 3, 4, 5; F̃0 = F. Without any downsampling operation, our baseline ex-
tracts residual features from full-res inputs. This scale-invariant network ensures accurate
residual mapping and thus can achieve high-accuracy restoration. Further, our network
learns small pixel-value differences from a deep network, thus making it easy to meet the
problem of vanishing gradients. Based on [11,34], the residual mapping also simplifies the
convergence process.

3.1.2. Context-Aware Subnet

Remote sensing images usually cover large flat areas that may not present obvious
context information. However, most JPEG-LS banding artifacts occur in these flat areas.
Thus, due to learning in fixed-scale space, our scale-invariant baseline may lack receptive
fields to obtain enough context information for banding artifact removal in such flat
areas. It needs additional context information. To this end, we propose the context-aware
subnet to mine context information by adopting various techniques to enlarge receptive
fields. As shown in Figure 3, our context-aware subnet is a U-Net-like structure that
consists of downsampling convolution, dilated convolution, and pixel-shuffle upsampling
convolution. These architectures are all effective designs to enlarge receptive fields, which
greatly expands the whole network’s receptive fields. Further, we noticed that image
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gradient features contain rich contextual information. Thus, rather than only taking the
compressed image as input, our context-aware subnet adopts gradient maps as additional
input priors. Based on the above schemes, our context-aware subnet has enough receptive
fields to effectively mine context information for JPEG-LS banding artifact removal in
flat areas.

Context-Aware Subnet PC,G

Downsample

Conv3×3

Stride 2

Upsample

PixelShuffle Conv

Dilated Conv

Dilation 2,4,8

Figure 3. The framework of Context-Aware Subnet.

3.1.3. Prior-Guided Reconstruction

Since context information is a supplement to residual features, we do not directly
adopt the fused features to reconstruct the latent clean image but use a prior-guided feature
fusion mechanism to propagate context information from our context-aware subnet to later
stages. As shown in Figure 2, once we obtain the context features, we adopt them to guide
the residual feature learning in our baseline. In order to give full play to the guiding role
of the context prior, we first integrate context features into the basic residual features by
a concatenate operation; we then extract context-aware residual features F̃ using another
three res-blocks. Finally, the learned context-aware residual features F̃ are fed into three
convolutional layers to generate the output image O. The process can be simply expressed
as:

O = σΦ(F + F̃) (3)

This scheme forms a prior-guided reconstruction, which eases the information flow
among stages. Hence, our context-aware subnet can provide context information that is
lacking in residual mapping, which helps the whole network to achieve great performance
in both accurate restoration and banding artifact removal.

3.2. Loss Function

We design a loss function L that consists of three components, and we minimize it
during the network training. It is expressed as:

L = LMSE + L1 + LG (4)

We use mean squared error (MSE) as the major loss function to supervise the whole
network, which can be written as:

LMSE =
1
n

n

∑
i=1

(Oi − Ii)
2 (5)

where I is the ground-truth image and n is the number of pixel points.
Considering the difficulty of learning small pixel-value differences, we add the L1

norm to strengthen the overall supervision in pixel-value space:

L1 =
1
n

n

∑
i=1
|Oi − Ii| (6)



Remote Sens. 2022, 14, 6318 7 of 18

Further, we notice that the banding artifact has a strong local gradient feature: the
gradient angle values are almost π/2 or 3π/2. Thus, based on this prior, we propose the
gradient angle loss LG to further strengthen the overall supervision in gradient-value space.
It is expressed as:

LG =
1
n

n

∑
i=1

(AI
i − AO

i )
2 (7)

where AI and AO represent the gradient angle of the ground-truth and output, respectively.
Additionally, we adopt a Sobel operator to calculate image gradients.

3.3. R IQA Algorithm

JPEG-LS compression artifacts appear as horizontal bands with distinct image gradient
characteristics. (1) As banding artifacts become severe, the mean value of the deviation
between horizontal and vertical image gradients increases continuously. (2) Most of the
gradient angles shown in banding artifact areas are π/2 or 3π/2. We design two novel R
IQA models in gradient-value space by utilizing the above characteristics. Based on the
first characteristic, similar to PSNR, we propose G-PSNR, which computes the deviation
difference of horizontal and vertical image gradients between C and I. Based on the
second characteristic, similar to SSIM, we propose G-SSIM, which computes the structural
similarity of image gradient angles between C and I. Our G-PSNR and G-SSIM can
assess the degradation severity caused by JPEG-LS banding artifacts but may be limited in
evaluating the pixel-value similarity between C and I. Thus, one step further, we combine
Qg (G-PSNR and G-SSIM) with Qp (PSNR and SSIM) and propose LS-PSNR and LS-SSIM,
which fuses image-similarity evaluation and artifact-severity assessment. The specific
calculation process is as follows.

As illustrated in Figure 4, given an input image I and its compressed version C, PSNR
and SSIM scores are generated to account for the perceptual quality difference Qp between
I and C in pixel-value space. Then, a gradient component predicts the horizontal gradient
GX and vertical gradient GY of I and C, respectively, followed by the calculation of gradient
angle A. Later, G-PSNR and G-SSIM scores are generated to account for the perceptual
quality difference Qg between I and C in gradient-value space. The above calculation
processes are expressed as follows:

G-SSIM = FS(AI , AC) (8)

G-PSNR = 10log10(
R2

dd
) (9)

where AI and AC represent gradient angles of I and C, respectively, FS indicates the SSIM
function that is used to predict SSIM scores, dd represents the difference in the mean
deviation of the horizontal and vertical gradient between I and C, and R indicates the
range of mean deviations. The mean deviation is computed through the window mean
method. The above calculation processes can be illustrated as:

dd =
1
n

n

∑
i=1

(dC − dI)
2 (10)

dC = E[|GY
C |]− E[|GX

C |], dI = E[|GY
I |]− E[|GX

I |] (11)

R = dmax(dC, dI)−min(dC, dI)e (12)

where E[|GX
C |], E[|GY

C |], E[|GX
I |], and E[|GY

I |] indicate the window means of |GX
C |, |GY

C |,
|GX

I |, and |GY
I |, respectively. The above window size is set as 11× 11. Last but not least,

LS-PSNR and LS-SSIM calculation combines Qg with Qp, which can be expressed as:

LS-PSNR = αFP(I, C) + (1− α)G-PSNR (13)
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LS-SSIM = βFS(I, C) + (1− β)G-SSIM (14)

where FP indicates the PSNR function that is used to predict PSNR scores. In our study, we
set α = 0.7, β = 0.5. The formal computation program of LS-PSNR is shown in Algorithm 1.

Original
Image I

JPEG-LS 
Compression

Compressed 
Image C

Gadient Gadient

PSNR,SSIM

Gx,Gy

G-PSNR G-SSIMLS-PSNR,LS-SSIM

Gx,GyAngle Angle

Figure 4. Overview of the proposed LS-PSNR and LS-SSIM.

Algorithm 1 LS-PSNR
Input: original image I, compressed image C, parameters: α
Output: LS-PSNR
1: compute PSNR between I and C
2: compute |GX

C |, |GY
C |, |GX

I |, and |GY
I | using Sobel operator

3: compute E[|GX
C |], E[|GY

C |], E[|GX
I |], and E[|GY

I |] using Average Filter, window size set
to 11× 11

4: compute R using Equation (12)
5: if R < 0 then
6: raise Value Error: “R must ≥ 0.”
7: end if
8: compute dd using Equations (10) and (11)
9: compute G-PSNR using Equation (9)

10: compute LS-PSNR using Equation (13)
11: return LS-PSNR

The proposed R-IQA models have several merits. They may be viewed as a process
of conditioning Qp on Qg, where the predicted Qg score serves as “prior” knowledge
of JPEG-LS banding artifacts. Hence, the predicted scores of our R IQA models show
promise in estimating the severity of JPEG-LS banding artifacts, which could provide a
better evaluation of our restoration performance.

3.4. Dataset

We have collected a large dataset with 10-bit and 12-bit panchromatic remote sensing
images, which have a resolution from 5353 × 17,144 to 16,296 × 16,968. In each data type,
we randomly select some images as test data and adopt the remaining as training data.
To train our model to adapt to different compression ratios, we prepare the corresponding
degraded images using the JPEG-LS compression method at different NEAR value settings
(i.e., 8, 12, and 16). Further, due to the limitation of computing resources, we crop high-res
remote sensing images to a uniform size of 256× 256. After the above processing, we
collect a large remote sensing image dataset consisting of 51,966 10-bit image patches and
14,715 12-bit image patches, each containing three types of JPEG-LS compressed patches at
different NEAR values.
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Alternatively, in order to evaluate the performance of our R IQA models for indicating
the similarity between one remote sensing image and its JPEG-LS compressed one, we
prepared a manually labeled dataset consisting of 200 image pairs. Each image pair contains
a 12-bit remote-sensing image and its corresponding LPEG-LS-degraded one (NEAR = 16).
Additionally, each data pair is marked by a Mean Opinion Score (MOS) that indicates
the images’ similarity. Our MOS result is an arithmetic average of three experts’ scores.
Figure 5 presents the distribution of our MOS-labeled dataset. Additionally, Figure 6 shows
visual examples of different MOS scores.

Figure 5. MOS distribution histogram.

I

C

MOS scores

Bad Pool Fair Good Excellent

0 10 20 30 40 50

Figure 6. MOS visual examples. The visual example is presented as a Likert. The possible similarity
range is labeled from low to high with five adjectives: Bad, Poor, Fair, Good, and Excellent; and five
exemplar image pairs are shown above each Likert mark.

4. Results and Discussion
4.1. R IQA Model Performance Evaluation

We evaluate the proposed R IQA models from the following two aspects: first, whether
their predicted scores could provide proper assessments for distinguishing tiny similarity
differences; and second, whether their evaluation results conform to the human visual
evaluation system. We conduct experiments on our MOS-labeled dataset. Additionally, we
use PSNR and SSIM as the comparison benchmarks.

4.1.1. Distribution Analysis

We first analyze the distribution of model-predicted scores using our large-scale
remote sensing image dataset. Figure 7 shows the predicted scores’ distribution of all
R IQA models. On the one hand, please see each sub-figure. It presents a box plot of
all models’ predicted scores under a specific JPEG-LS compression setting, which clearly
shows that the predicted scores of our R IQA models, LS-PSNR and LS-SSIM, have a much
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wider distribution range than all benchmark models. On the other hand, please compare
three sub-figures in each line. They present the predicted score’s distribution of one dataset
compressed under different JPEG-LS NEAR values. It can be found that the variation in
our models’ predicted scores are more in line with changing compression-ratio trends. All
the above improvements show that our R IQA models perform well in distinguishing tiny
similarity differences.

(a) NEAR=8 (b) NEAR=12 (c) NEAR=16

10 bit

Image

12 bit

Image

Figure 7. The predicted scores’ distribution of all R IQA models as box plots. In each box, the central
orange mark represents the median, while the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the ‘+’ symbol. Further, in order to compare
the predicted scores’ distribution of different R IQA models at the same scale, we enlarged the
predicted scores of SSIM and LS-SSIM by one hundred times to reach the same magnitude as PSNR
and LS-PSNR.

4.1.2. Performance Analysis

We then analyze the assessment performance of R IQA models on our MOS-labeled
dataset. For quantitative evaluation, we adopt Root Mean Squared Error (RMSE), Pearson’s
Linear Correlation Coefficient (PLCC), and Spearman Rank-Order Correlation Coefficient
(SROCC) as indexes. RMSE measures the absolute error between R IQA scores and MOS—
a smaller value of RMSE shows better performance. PLCC describes the correlation between
R IQA scores and MOS, and SROCC measures the monotony of the R IQA model’s predic-
tions. Larger values of PLCC and SROCC indicate better performance. Following usual
practice [35], the R IQA predicted scores are passed through a logistic nonlinearity before
computing the RMSE, PLCC, and SROCC measure.

The quantitative evaluation results are shown in Table 1. We have notice that PSNR
gets negative PLCC and SROCC scores, which indicates that the PSNR-predicted score is
the polar opposite of MOS. Though SSIM has relatively higher PLCC and SROCC scores, it
gets the highest RMSE score, which presents the SSIM-predicted score as a weak correlation
with MOS. On the contrary, our LS-SSIM achieves the lowest RMSE score and the highest
PLCC and SROCC scores, followed by our LS-PSNR. The above result shows that our R
IQA model performs well in all aspects, including accuracy, correlation, and monotone
consistency. Hence, we consider that our R IQA models can excellently yield predictions of
human quality judgments.
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Table 1. RMSE, PLCC, and SROCC results of different R IQA models. Best results bold.

Model PSNR SSIM LS-PSNR LS-SSIM

RMSE ↓ 0.0178 0.0231 0.0074 0.0033
PLCC ↑ −0.8485 0.4641 0.8432 0.9523

SROCC ↑ −0.7771 0.4719 0.7882 0.9328

4.2. JPEG-LS Image Restoration Performance Evaluation
4.2.1. Implementation Details

We use Adam [36] optimizer with an initial learning rate set as 0.0001, and we scale
down the learning rate by a factor of 0.9 when the validation loss stops decreasing. We
train our model with 200 epochs and a batch size of 16. Our code is implemented with
PyTorch [37] and runs on a PC with two Intel(R) Xeon(R) E5-2640 v4 CPUs and one GTX
2080Ti GPU.

We compare our method with the start-of-the-art restoration networks ARCNN [9],
DMCNN [14], SCN [30], and MPRnet [15]. The results of these methods are generated by
the codes released by the authors using their recommended experiment settings. Since there
is no existing public remote sensing dataset for restoration research, all comparisons are
trained and tested on our dataset. As illustrated in the above section, our LS-PSNR and LS-
SSIM scores show consistent assessment results with MOS, which can well evaluate JPEG-
LS artifact removal performance. Further, high PSNR and SSIM scores may correspond to
high pixel-value similarity. Thus, rather than only adopting our R IQA models as evaluation
indexes, we also use PSNR and SSIM to indicate restoration accuracy.

For qualitative evaluation, we adopt the above Likert plot as an index. Figure 8
presents a Likert-plot assessment example. An image labeled with a MOS score of 5 has
a PSNR predicted score of 1, SSIM predicted score of 3, LS-PSNR predicted score of 4,
and LS-SSIM predicted score of 5. The result is consistent with the quantitative comparison
that show that our R IQA models show much closer predicted results with MOS. Hence,
through the above subjective and objective comparisons, we believe our R IQA models are
promising for providing better evaluation results in our study.

PSNR SSIM LS-PSNR LS-SSIM

I C

MOS scores

Bad Pool Fair Good Excellent

0 10 20 30 40 50

Figure 8. Visual illustration of R IQA model predicted scores.

4.2.2. Objective Comparisons

The quantitative results are shown in Tables 2–5. Significantly, the proposed CAR-
Net model outperforms all the other methods on all evaluation metrics. As shown in
Tables 2 and 3, our model far surpasses all image restoration methods in PSNR and also
achieves small gains in SSIM, which indicates that our model presents accurate restorations
in pixel-value space. Please see Tables 4 and 5—our model significantly advances the state-
of-the-art by consistently achieving better LS-PSNR and LS-SSIM scores on all datasets,
which shows our model performs well in JPEG-LS banding artifact removal. Further,
by comparing the restoration performance of different compression rates (NEAR value), we
notice that all models present consistently decreased performance as the NEAR value gets
smaller, which indicates that JPEG-LS compressed image restoration becomes harder when
the compression rate decreases. Hence, we consider the study of near-lossless compressed
image restoration in our work may be more challenging than the existing common works
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of lossy compressed image restoration, which means the small gains presented in the above
evaluation results are acceptable.

Table 2. PSNR (dB) results, data type: 10-bit (NEAR = 8) means a 10-bit remote sensing image
compressed by JPEG-LS with a NEAR value set to 8. Best results bold.

Data NEAR JPEG-LS ARCNN SCN DMCNN QGAC MPRNet FBCNN CARNet

10-bit
8 47.80 50.30 50.74 50.75 50.76 50.79 50.80 50.94

12 44.46 47.82 48.65 48.72 48.78 48.81 48.82 48.99
16 42.33 45.97 46.99 47.17 47.23 47.23 47.28 47.56

12-bit
8 58.73 59.53 60.76 60.78 60.78 60.80 60.80 60.93

12 55.58 56.61 58.39 58.38 58.41 58.41 58.43 58.52
16 53.36 55.98 56.73 56.71 56.75 56.78 56.80 56.96

Table 3. SSIM results, data type: 10-bit (NEAR = 8) means a 10-bit remote sensing image compressed
by JPEG-LS with a NEAR value set to 8. Best results bold.

Data NEAR ARCNN SCN DMCNN QGAC MPRNet FBCNN CARNet

10-bit
8 0.9935 0.9941 0.9941 0.9941 0.9941 0.9941 0.9942
12 0.9901 0.9912 0.9913 0.9913 0.9913 0.9913 0.9914
16 0.9864 0.9880 0.9882 0.9882 0.9882 0.9883 0.9883

12-bit
8 0.9992 0.9993 0.9993 0.9993 0.9993 0.9994 0.9994
12 0.9985 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989
16 0.9981 0.9984 0.9984 0.9989 0.9984 0.9989 0.9984

Table 4. LS-PSNR (dB) results, data type: 10-bit (NEAR = 8) means a 10-bit remote sensing image
compressed by JPEG-LS with a NEAR value set to 8. Best results bold.

Data NEAR JPEG-LS ARCNN SCN DMCNN QGAC MPRNet FBCNN CARNet

10-bit
8 42.19 45.51 46.06 46.14 46.14 46.18 46.21 46.32

12 38.62 43.11 44.05 44.02 44.05 44.07 44.11 44.35
16 36.60 41.43 42.49 42.52 42.50 42.51 42.53 42.82

12-bit
8 52.88 54.00 55.57 55.56 55.55 55.59 55.58 55.79

12 49.27 50.84 53.20 53.17 53.19 53.19 53.19 53.45
16 46.68 50.09 51.52 51.47 53.48 51.52 53.54 51.83

Table 5. LS-SSIM results, data type: 10-bit (NEAR = 8) means a 10-bit remote sensing image com-
pressed by JPEG-LS with a NEAR value set to 8. Best results bold.

Data NEAR ARCNN SCN DMCNN QGAC MPRNet FBCNN CARNet

10-bit
8 0.7138 0.7194 0.7183 0.7185 0.7193 0.7193 0.7202
12 0.6853 0.6937 0.6935 0.6938 0.6938 0.6938 0.6945
16 0.6636 0.6725 0.6728 0.6728 0.6727 0.6728 0.6734

12-bit
8 0.8464 0.8518 0.8516 0.8517 0.8520 0.8522 0.8541
12 0.8039 0.8138 0.8129 0.8130 0.8139 0.8139 0.8148
16 0.7787 0.7853 0.7833 0.7836 0.7856 0.7855 0.7871

4.2.3. Statistical Analysis of Quantitative Results

Here, we conduct a statistical analysis of the above quantitative experiment results
to confirm whether the proposed methodology is effectively better or if it is borderline.
Specifically, Figure 9 shows the quantitative results’ distribution of all evaluation indexes.
Each sub-figure presents a box plot of all models’ predicted scores for one evaluation
index on different dataset types. The median value (labeled with the orange line) indicates
all model’s average scores. Please see each box—the max value presents our model’s
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predicted scores, and the lowest value presents ARCNN’s predicted scores. Although the
compared methods’ predicted scores of different indexes show different distributions, our
model far surpasses the median value of other models in PSNR and LS-PSNR. Further, our
model only achieves small gains in SSIM and LS-SSIM. However, the gap between our
model’s score and the median value is larger than the disparity among other state-of-the-art
models. Hence, we consider that the proposed methodology is effectively better than
state-of-the-art methods.

(a) PSNR (b) SSIM

(c) LS-PSNR (d) LS-SSIM

ARCNN

CARNet (Ours)

CARNet (Ours)

ARCNN

ARCNN

CARNet (Ours)

CARNet (Ours)

CARNet (Ours)

CARNet (Ours)

ARCNN

ARCNN

ARCNN

ARCNN

ARCNN

ARCNN

ARCNN

ARCNN

ARCNN

CARNet (Ours) CARNet (Ours)

CARNet (Ours)

CARNet (Ours)

CARNet (Ours)

CARNet (Ours)

Figure 9. The quantitative results’ distribution of all evaluation indexes on our 10-bit dataset, box
plot. In each box, the central orange mark represents the median, while the bottom and top edges of
the box indicate the max and min values, respectively.

4.2.4. Subjective Comparisons

For subjective comparisons, Figures 10–12 present some restored results from our large-
scale remote sensing image dataset. JPEG-LS compressed images show severe banding
artifacts. Among all restored results, the early work, ARCNN with limited receptive
fields, performs worst, as it almost cannot remove any banding artifacts. On the contrary,
since SCN, MPRnet, and our CARNet have different effective mechanisms to expand the
network’s receptive fields, they all perform better than ARCNN. Among their comparison,
MPRNet is relatively poor and still shows banding artifacts, and SCN is too strong and
causes problems with smoothing. Our model achieves the best visual feelings, in that it
removes most banding artifacts without over-smoothing. Besides, more visual results can
be found in our supplementary materials.
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(b) ARCNN

(e) MPRNet

(a) JPEG-LS

(f) CARNet(ours)(d) Original Image

(c) SCN

Figure 10. Visual comparison with state-of-the-art methods on a test 10-bit image patch (NEAR = 8).

(b) ARCNN

(e) MPRNet

(a) JPEG-LS

(f) CARNet(ours)(d) Original Image

(c) SCN

Figure 11. Visual comparison with state-of-the-art methods on a test 10-bit image patch (NEAR = 12).
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(b) ARCNN

(e) MPRNet

(a) JPEG-LS

(f) CARNet(ours)(d) Original Image

(c) SCN

Figure 12. Visual comparison with state-of-the-art methods on a test 10-bit image patch (NEAR = 16).

4.3. Ablation Studies

Here, we present ablation experiments to analyze the contribution of each component
of our model. We mainly demonstrate the effectiveness of the proposed context-aware
mechanism by removing our context-aware subnet from the whole network. We conduct
this experiment on our 12-bit remote sensing image dataset with the NEAR value set to
16. The results are shown in Table 6. It can be seen that all evaluation indicators drop
as our context-aware subnet is removed from the whole network. Particularly, the PSNR
score shows a substantial drop from 47.56 dB to 47.26 dB. Hence, we believe the context-
aware mechanism significantly improves our model’s restoration performance by enlarging
receptive fields to extract context features.

Table 6. Ablation studies of context-aware mechanism (w/o—without).

Model PSNR SSIM LS-PSNR LS-SSIM

CARNet with context-aware subnet 47.56 0.9883 42.82 0.6734
CARNet w/o context-aware subnet 47.26 0.9881 42.52 0.6728

4.4. Color JPEG Image Restoration Performance Evaluation

To better highlight the academic contribution of our proposed model to deep learning
architectures, we conduct an experiment on color JPEG pictures with three channels. For fair
comparisons, we use libjpeg [38] for compression with the baseline quantization setting.
Based on [32], we employ DIV2K [39] and Flickr2K [40] as our training data to generate
synthetic JPEG images. Specifically, all synthetic JPEG images used for training our model
are compressed using the libjpeg scheme with quality factor (QF) 10. All methods are tested
on the commonly used RGB benchmark LIVE1 [41]. Please see Figure 13. It is one example
from LIVE1, where we see that the visual feelings produced by the restored result from
our CARNet are far superior to those of DnCNN and MWCNN. Our CARNet generates a
comparable overall image quality to FBCNN, one of the state-of-the-art methods for JPEG
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artifact removal. Hence, we consider our proposed CARNet an academic contribution to
deep learning architectures.

JPEG (QF=10) DNCNN

Original Image FBCNN CARNet (Ours)

MWCNN

Figure 13. Visual comparison with state-of-the-art methods on a color JPEG image from the
LIVE1 dataset.

5. Conclusions

In this paper, we propose a novel CNN model, CARNet, to explore the restoration of
JPEG-LS compressed remote sensing images. It shows promise in solving the challenging
problems in our study through a context-aware residual learning mechanism. Specifically, it
achieves high-accuracy restoration by adopting a scale-invariant baseline to learn residual
mapping. It performs well in JPEG-LS banding artifact removal by using a context-aware
subnet to enlarge receptive fields. Additionally, it eases the information flow among stages
by utilizing a prior-guided feature fusion mechanism. Alternatively, we propose novel
R IQA models, LS-PSNR and LS-SSIM, to provide better evaluation results for our study.
By adopting the characteristics of JPEG-LS banding artifacts as priors, our R IQA models
can excellently yield predictions of human quality judgments and effectively distinguish
tiny similarity differences among JPEG-LS-degraded images. Further, we prepare a new
dataset of JPEG-LS compressed remote sensing images to supplement existing benchmark
data. The evaluation results indicate that our work is the current state-of-the-art among
all CNN-based methods. However, our method requires training a new model for each
compression ratio, which is very time-consuming and computationally intensive. Hence,
our next work will focus on designing a framework that can accommodate a wide range of
JPEG-LS compression ratios.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/rs14246318/s1, Figure S1. Visual comparison with state-of-the-art methods on a test 12 bit
image patch (NEAR = 8), Figure S2. Visual comparison with state-of-the-art methods on a test 12 bit
image patch (NEAR = 12), Figure S3. Visual comparison with state-of-the-art methods on a test 12 bit
image patch (NEAR = 16).
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