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Abstract: Satellite-derived vegetation fractional cover (VFC) has shown to be a promising tool for dry-
land ecosystem monitoring. This model, calibrated through biophysical field measurements, depicts
the sub-pixel proportion of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and
bare soil (BS). The distinction between NPV and BS makes it particularly important for drylands, as
these fractions often dominate. Two Landsat VFC products are available for the Australian continent:
the original Joint Remote Sensing Research Program (JRSRP) product, and a newer Digital Earth
Australia (DEA) product. Although similar validation statistics have been presented for each, an
evaluation of their differences has not been undertaken. Moreover, spatial variability of VFC accuracy
within drylands has not been comprehensively assessed. Here, a large field dataset (4207 sites) was
employed to compare Landsat VFC accuracy across the Australian continent, with detailed spatial
and temporal analysis conducted on four regions of interest. Furthermore, spatiotemporal features of
VFC unmixing error (UE) were explored to characterize model uncertainty in large areas yet to be
field sampled. Our results showed that the JRSRP and DEA VFC were very similar (RMSE = 4.00–6.59)
and can be employed interchangeably. Drylands did not show a substantial difference in accuracy
compared to the continental assessment; however contrasting variations were observed in dryland
subtypes (e.g., semi-arid and arid zones). Moreover, VFC effectively tracked total ground cover
change over time. UE increased with tree cover and height, indicating that model uncertainty was
low in typical dryland landscapes. Together, these results provide guiding points to understanding
the Australian ecosystems where VFC can be used with confidence.

Keywords: spectral unmixing; arid; semi-arid; ground cover; unmixing error

1. Introduction

Multi-spectral remote sensing of vegetation has proved to be an exceptionally useful tool
for long-term ecological monitoring at multiple scales and relatively low cost [1–4]. Several
vegetation monitoring applications rely on spectral indices (e.g., normalized, enhanced
and soil adjusted vegetation indices, among others) that exploit the particularities of
photosynthetic vegetation (PV) reflectance (i.e., high absorption in the visible red, high
reflection in the near infra-red) [4–6]. In dryland environments, these indices tend not to
be suitable for characterizing the ecosystem condition, as senescent/non-photosynthetic
vegetation (NPV) often dominates the landscape [7–9]. Normalized difference vegetation
index (NDVI) values, for instance, have been shown to be similar for NPV and bare soil
(BS) [10]. As NDVI and other indices are not robust descriptors of vegetation structure in
these environments, alternative models should be considered, such as those calibrated with
field biophysical measurements.

Vegetation fractional cover (VFC) can be defined as the sub-pixel proportion of PV,
NPV and BS [11–13]. VFC has been modelled from multi-spectral satellite data through
several approaches (Table 1 in [14–17]) and has been employed in many studies involving
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vegetation dynamics [18–33]. Scarth et al. [13] developed the first spectral unmixing model
to be routinely applied to imagery at continental [14,34] and global [35,36] scales. This
model relies on extensive field data to derive endmembers and unmix Landsat/MODIS
imagery to obtain VFC at a spatial resolution of 30 m and 500 m, respectively [13,14]. This
study focuses on the continental scale Landsat VFC products, which have several advan-
tages compared to the MODIS products: the calibration–validation data better matches
Landsat data spatially [37]; the long archive of Landsat data in Australia extends back
to 1987; and the image resolution allows applications at a finer scale, such as looking at
within-paddock variations.

The accuracy of Landsat VFC models for the Australian continent has been assessed
through comparison against field data [14,34]. Two models with slight methodological
differences have been published and validated (Table 1): one by the Joint Remote Sens-
ing Research Program (JRSRP) [14], and another by Digital Earth Australia (DEA) [34].
The former has been applied to nation-wide [38,39] and state-wide vegetation monitoring
programs [40,41], and has been utilized in local and regional scale studies [13,18,19,24,30],
whereas DEA VFC has been employed in continental land cover mapping [32], and man-
grove dynamics monitoring [29]. Both products report similar overall root mean square
error (RMSE) (Table 1). JRSRP and DEA VFC are similar, as they both use algorithms after
Scarth et al. [13], though they differ in the methods for pre-processing the satellite imagery
(Table 1) resulting in unequal validation results. These differences also mean that the two
products disagree up to 5% for BS and NPV, and less than 10% for PV [34], although further
analysis of these differences has not been conducted.

Distinguishing the differences in spectral signals from NPV and BS can be partic-
ularly difficult in drylands [10,13,25,42–44]. Endmembers for NPV and BS appear to
be highly correlated, especially in arid zones (i.e., correlation coefficient of 0.82 for the
Australian arid zone [25]). The difficulty in separating BS and NPV has been attributed
to high soil brightness in arid and semi-arid areas [42], which also have large bare soil
fractions that can override the spectral signals from sparse vegetation [43]. However, Guer-
schman et al. [14] found weak negative relations between model error and soil brightness
in bare soil dominated areas (i.e., BS > 50%). Inaccurate estimation of NPV substantially
hinders the applications of VFC, especially for those that rely on total ground cover (i.e.,
monitoring erosion risk [26]) and even more so in ecosystems dominated by non-green
vegetation [18,19,24].

Table 1. Published validation results for Joint Remote Sensing Research Program’s (JRSRP) and Digital
Earth Australia’s (DEA) vegetation fractional cover algorithms. (BRDF: bidirectional reflectance
distribution function, RMSE: root mean square error, PV: photosynthetic vegetation, NPV: non-
photosynthetic vegetation, BS: bare soil).

Producer Technical
Differences Overall RSME RMSE

PV
RMSE
NPV

RMSE
BS Reference

JRSRP

BRDF, atmospheric and
topographic

correction of Landsat
imagery following

Flood et al. [45]

11.6% 11.2% 16.2% 13.0% [14]

DEA

BRDF, atmospheric and
topographic

correction of Landsat
imagery following Li, et al.

[46,47]

11.9% 11.9% 17.1% 14.2% [34]

Specific validation analyses of VFC in some areas of Australian drylands have been
published, generally reporting decreased estimation accuracy [24,25,48]. Melville et al. [48]
found JRSRP’s algorithm to be more accurate at detecting PV compared to NPV and BS
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when considering a subset of 20 field sites in Fowler’s Gap Arid Zone Research Station.
More recently, a recalibration of JRSRP’s algorithm for the Australian arid zone (Figure 1a)
using 1405 field calibration/validation sites [25], increased accuracy for all three fractions
compared to the original products. Nonetheless, a comprehensive assessment of VFC
in drylands across the Australian continent is required to illustrate its effectiveness and
encourage more applications. The analyses presented here were designed to address
this gap and answer the following questions: (1) How different are the JRSRP and DEA
VFC image products? (2) How does the accuracy of the VFC unmixing model change
within drylands? (3) How well do the endmembers represent the land cover in Australian
drylands?
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Figure 1. Vegetation in Australian drylands. (a) The location of field sample plots and drylands
subdivisions across Australia. The dataset consists of 4243 field sites sampled following Muir et al.
(2011); 162 were sampled previous to the dataset employed in Guerschman (1171 sites), and a further
2874 were sampled afterwards. Drylands were mapped according to the average aridity index for the
period 1976–2005 (Harwood et al., 2019) after the following thresholds: 0.05 ≤ arid < 0.2 ≤ semi-arid
< 0.5 ≤ dry sub-humid < 0.65. (b–g) Field photographs of select field sites (b) Hummock grassland on
dune slope; (c) Tussock grassland on plain; (d) Grassy woodland near creek; (e) Chenopod shrubland
on plain; (f) Open scrub on plain; (g) Hummock grassland on plain. Photographs (a–d) and (f,g) were
obtained from https://data.tern.org.au/rs/public/data/field_validation/sitedata/, accessed on
15 September 2022, (e) was captured by the authors in May 2021.
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2. Materials and Methods
2.1. Study Area

Drylands dominate the Australian continent, covering 90% when mapped according
to the average aridity index for the period 1976–2005 [49] (Figure 1a). The aridity index was
calculated as the relation of precipitation to potential evapotranspiration after the following
thresholds: 0.05 ≤ arid < 0.2 ≤ semi-arid < 0.5 ≤ dry sub-humid < 0.65. Vegetation cover
in Australian drylands is dominated by several types of grasslands, shrublands, and open
woodlands [50] (Figure 1b–g).

2.2. Datasets

A continental field dataset following the State-wide Landcover and Tree Study (SLATS)
protocol [37] was obtained from the Queensland Government Department of Environment
and Science [51]. This dataset contained 4207 unique observations in time (i.e., 435 site
revisits are considered separate individual observations) where ground, mid and over
storey cover were recorded through star-transects within ~1-hectare circular plots. The
observations span from February 1997 to June 2021 and are spread throughout Australia
(Figure 1a). The dataset also included the JRSRP unmixed fractional cover values from the
cloud-free Landsat (5, 7 or 8) image closest to the field observation date of the 3 × 3 pixels
area overlapping each plot [14].

DEA’s Landsat Collection 3 products were also employed in the analyses. These two
products are ‘DEA Fractional Cover’ [34] and ‘DEA Water Observations’ [52]. Both products
are derived from Landsat surface reflectance archives consisting of imagery obtained by
the multispectral sensors aboard Landsat 5, 7 and 8. The water observations product
was used to mask cloud, cloud shadow and water from the image archive. The reader is
referred to Mueller et al. [53] for details on the production and applications of ‘DEA Water
Observations’ product.

Additionally, a raster layer of vegetation structure over the Australian continent
(Figure 2) [54] was used to analyse the distribution and magnitude of the unmixing error.
This dataset integrated Landsat 5 and 7, Advanced Land Observing Satellite (ALOS) Phased
Arrayed L-band Synthetic Aperture Radar (PALSAR) and Ice, Cloud, and land Elevation
(ICESat), and Geoscience Laser Altimeter System (GLAS) data, at a spatial resolution of
30 m (matching VFC datasets derived from Landsat imagery). In contrast to other widely
used vegetation structure maps of Australia (e.g., The National Vegetation Information
System’s Major Vegetation Groups Map), this dataset is spatially continuous and consistent
in scale and detail across the entire continent [55].
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2.3. Methodological Framework

The datasets described above were processed and combined for 3 different analyses
(Figure 3). Firstly, JRSRP and DEA VFC products were compared to understand their
similarities and differences (Section 2.3.1). Secondly, the SLATS field dataset was employed
to explore spatial and temporal properties of JRSRP VFC accuracy (Section 2.3.2). Thirdly,
the DEA VFC was employed for exploring the model’s uncertainty across drylands through
the unmixing error band (Section 2.3.2).
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addresses a separate research question.

2.3.1. JRSRP and DEA VFC Comparison

The comparison of JRSRP and DEA vegetation fractional cover was based on the
SLATS dataset. Raw field data (i.e., ground, mid and overstorey measurements) were
processed following Guerschman et al. [14] to obtain the proportion of PV, NPV and BS.
To match JRSRP VFC values in the SLATS dataset, DEA VFC was extracted following a
similar method (already processed fractional cover values were directly extracted instead
of extracting surface reflectance and applying the unmixing algorithm afterwards). Mean
and standard deviation of the pixels overlapping the 100-m diameter plots were extracted
from the cloud, cloud shadow and water-free image closest to the field observation date.
Only image dates within 60 days (prior or after) the field observations and with at least 75%
valid pixels were considered. Since the image filtering and extracting methods were not the
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same as the SLATS dataset, the number of pixels included and the dates of the images were
occasionally different. On average, DEA extractions for each plot included 0.41 (σ2 = 0.91)
fewer pixels than JRSRP and were obtained 0.31 (σ2 = 7.49) days later. Moreover, 61 sites
were discarded from the analysis as no DEA VFC images matching the criteria above could
be identified.

Accuracy assessments were undertaken for both products using the field-measured
cover fractions. The statistics employed to characterize accuracy were RMSE for each
fraction and the overall product (i.e., root mean of the mean square error across the 3 frac-
tions), where errors are the difference between measured and estimated. Similarity analyses
comparing extracted values of both products included scatterplots for each cover fraction;
RMSE (where ‘errors’ are the difference between estimations); bias (calculated as the mean
difference between DEA and JRSRP predicted cover fractions); and Pearson’s correlation
coefficient (r). 95% confidence intervals were determined for RMSE and bias assuming χ2

and t-student distributions, respectively. As the RMSE interval tends to be asymmetric, the
limit further from the mean was employed to simplify notation (i.e., estimated RMSE ±
distance to further limit).

2.3.2. Field Validation of VFC Accuracy

Spatial variability in VFC accuracy across drylands was analysed using the SLATS
star-transects field calibration–validation dataset [50], divided into 3 subsets (drylands,
semi-arid zone, and arid zone) defined using the aridity index thresholds previously
described (Figure 1a). The validation statistics employed for the analysis were RMSE
(where errors are the difference between observed and predicted), bias (calculated as the
mean difference between observed and predicted cover fractions) and Pearson’s correlation
coefficient (r). 95% confidence intervals were determined for RMSE and bias in the same
way as Section 2.3.1.

Temporal variability in accuracy across drylands was analysed to assess VFC’s power
of detection of ground cover changes over time. The complete dataset was subset following
2 criteria: locations sampled at least twice, and showing large bare soil estimation error (i.e.,
a difference of at least 15% between measured and estimated BS in one or more image). The
subset of sites with repeated measures consisted of 133 sites (and a total 527 observations—
Figure 1a), 51 of which displayed large BS errors. Change in field-measured and satellite
estimated bare soil was calculated as the difference between the value at a given date
and the previous observation. Time difference between subsequent field measurements
spanned from 1 day to over 16 years, with a median of 162 days (i.e., close to 5 months). For
ease of interpretation, bare soil change was transformed to ground cover change following

Ground cover change = (BSt − BSt−1)×−1 (1)

where BS is the bare soil fraction; subscript t identifies an observation on a given date
and t−1 the immediately previous observation. A linear regression was fitted between
field-measured and VFC ground cover change and validation statistics (RMSE, bias, and r)
were calculated. The 95% confidence intervals were determined for RMSE and bias in the
same way as Section 2.3.1.

To assess ground cover trend detection, the proportion of observations for which
measured and estimated ground cover change direction significantly disagreed was cal-
culated. Change direction disagreements were identified as differences in sign between
measurement and estimation (i.e., whether positive and negative, or positive/negative and
0). The disagreement was considered significant when the absolute difference was over 5%.

2.3.3. Unmixing Error Analysis

There is a considerable area of Australia yet to be field-sampled and which is, therefore,
not represented in calibration or validation of the algorithms (Figure 1a). Some of these
areas may be different enough to those that are sampled that the quality of VFC products is
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unknown. This section of the analysis explored an alternative method to assess the quality
of VFC across the Australian drylands including unsampled and poorly sampled regions.

Both JRSRP and DEA VFC provide a quality assessment band depicting the unmixing
error of the model. This error is determined by the vector of residuals between the modelled
(mixture of endmembers) and observed spectra [25]. The values in the unmixing error
band are calculated as the Euclidean norm of the residual vector [56]. Thus, the unmixing
error can be interpreted as a measure of how well the endmembers characterize the spectral
response of each pixel of an unmixed image. The unmixing error does not replace validation
analyses, nevertheless, it provides some information on the model’s uncertainty.

To analyse the quality of DEA’s Landsat fractional cover in the Australian drylands, the
spatial distribution of the unmixing error band values were explored in contrasting periods
of time. Two annual median composites were created for the Australian drylands. The years
2016 and 2019 were selected for the analysis due to the contrasting rainfall records across
the continent: 2016 showed records of above average rainfall (Figure A1) while the contrary
was true for 2019 (Figure A2). A quality filter from DEA Water Observations product [52]
was applied to the image collection, discarding pixels affected by cloud cover, shadow, and
water following Mueller et al. [53]. A total of 30,170 DEA datasets were collected for 2016
and 30,766 for the year 2019. A composite image was prepared for each of these years using
the median unmixing error value of each image pixel in the dataset. Spatial statistics (mean,
standard deviation, maximum and minimum) of the unmixing error were computed, and
the composites were reclassified to highlight areas where unmixing error was at least one
standard deviation greater than the mean. Error patterns were explored visually to assess
anecdotal observations of larger unmixing errors in densely forested areas and an analysis
of correlation between unmixing error values and vegetation structural classes [55] was
performed. The reference vegetation structure dataset (Section 2.2) represents the year
2009, so it was assumed that no widespread changes in structural classes across Australian
drylands occurred between 2009 and 2019.

The SLATS field dataset (Section 2.2) was used to fit linear regressions between un-
mixing error and field-measured fractions to explore factors underlying spatial patterns.
Lastly, correlation between unmixing error and estimation errors (RMSEs of each fraction
and overall) were tested to examine possible relationships between model uncertainty and
prediction accuracy.

3. Results
3.1. JRSRP and DEA Landsat Fractional Cover

Field validation results were similar for the JRSRP and DEA products (Table 2), sug-
gesting that differences in image pre-processing do not have a considerable effect on the
final unmixed imagery. DEA VFC showed a slightly lower accuracy (i.e., higher RMSE
values) overall and for two out of three cover fractions, and a marginally higher accuracy
at detecting green vegetation compared to JRSRP VFC. The importance of these differences
is negligible when comparing their magnitude to the confidence intervals (Table 2).

Table 2. Validation results (using SLATS star-transect field dataset) for Joint Remote Sensing Research
Program’s (JRSRP) and Digital Earth Australia’s (DEA) vegetation fractional cover algorithms. RMSE:
root mean square error (%), PV: photosynthetic vegetation, NPV: non-photosynthetic vegetation, BS:
bare soil. 95% confidence intervals are shown between parentheses.

Producer
Overall
RMSE

RMSE
BS

RMSE
PV

RMSE
NPV

JRSRP 14.13 (±0.31) 13.83 (±0.30) 9.86 (±0.21) 17.61 (±0.39)

DEA 14.39 (±0.32) 14.28 (±0.31) 9.80 (±0.21) 17.93 (±0.39)
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Direct comparisons of JRSRP and DEA estimations showed they were extremely simi-
lar for all cover fractions (Figure 3). Modelled cover fractions appear to be highly correlated
(r ≥ 0.94), while the difference in estimations were consistently low (RMSE ≤ 6.66) and
unbiased (−1.01 ≤ bias ≤ 1.92). The highest correlation and lowest difference between
predictions were found for PV, while the opposite is true for NPV. Nonetheless, estimations
of the dead fraction showed the lowest bias (−0.87), as DEA predictions tend to be higher
than JRSRP for lower NPV values and conversely for high NPV values (evidenced by the
slope and origin of linear fit in relation to the 1:1 agreement in Figure 4). Bias for BS (PV)
shows values further from 0, as DEA estimations are consistently higher (lower) than those
of the JRSRP product.
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3.2. Field Validation Statistics
3.2.1. Spatial Variability

Validation statistics obtained for the SLATS dataset were consistent across spatial cate-
gories (Figure 5). The green vegetation fraction had the lowest error (7.02 ≤ RMSE ≤ 10.61)
and highest correlation (0.78 < r < 0.88) when considering the continental dataset, drylands,
and subregions within drylands. In all cases, PV was followed by BS and NPV in increasing
(decreasing) RMSE (correlation) order. Bias, conversely, was consistently closer to 0 for
the bare soil fraction (−0.53 ≤ bias ≤ 0.70), suggesting that the model does not system-
atically overestimate or underestimate total vegetation cover. Slight overestimation and
underestimation of PV and NPV, respectively, was identified for most categories.

When analysing each fraction separately, some variability was detected across the field
dataset and subsets. Results for the continental and dryland subsets were approximately
equal; however, subtle differences in model accuracy were observed for subregions within
drylands. Both PV and NPV were most accurately estimated in the arid zone (bottom
centre and right charts in Figure 5). Nonetheless, the difference in PV accuracy compared to
other regions and levels was larger than in NPV. The arid zone also displayed the highest
RMSE for the bare soil fraction. Moreover, the correlation coefficients in this area were
the lowest across all regions and levels for the three fractions. In contrast, the semi-arid
zone showed the lowest accuracy and highest bias for PV estimation compared to all other
regions and levels.
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Figure 5. Scatterplots showing the field-observed (y-axis) and JRSRP-modelled (x-axis) fractions (%)
of bare soil (left), photosynthetic vegetation (middle) and non-photosynthetic vegetation (right) for
the Australian continent (n = 4207), drylands within Australia (n = 3876) and two of its subtypes:
the semi-arid zone (n = 2116) and the arid zone (n = 1425). The black line corresponds to the 1:1
agreement, the dashed line is the linear fit between the observed and predicted values. Pearson’s
correlation coefficient (r), root mean square error (RMSE), and bias (calculated as the mean difference
between observed and predicted) are displayed. Confidence intervals of 95% are shown for RMSE
and bias.



Remote Sens. 2022, 14, 6322 10 of 19

3.2.2. Change Detection

Ground cover change was reasonably estimated for sites with small and large BS
estimation errors. For sites where the bare soil fraction was consistently well estimated,
observed and satellite derived ground cover change were highly correlated (r = 0.86) and
similar (RMSE = 6.76) (Figure 6a). In contrast, locations where high error was detected
at least once, displayed substantially higher RMSE (Figure 6b). Nevertheless, these sites
also presented a positive and high correlation (r = 0.78) which denotes agreement between
measured and estimated ground cover change. In both cases, bias was not significantly
different to 0, indicating no systematic under or overestimation of change. Moreover, signif-
icant errors in trend detection were found in 15.71% and 17.16% of change observations for
small error and large error sites, respectively. This is reflected in the proportion of points in
Figure 6a,b falling on quadrats II and IV.
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Figure 6. Scatterplots of field-measured and modelled total ground cover (100 –bare soil fraction (%))
change across the continent. The black line corresponds to the 1:1 agreement. Dashed lines on y = 0
and x = 0 are displayed to highlight the proportion of points falling on quadrants I (+, +) and III (-, -).
(a) Scatterplots of sites where BS error < 15%, n = 261 (199 in drylands). (b) Scatterplots of sites where
BS error > 15% at least once, n = 134 (104 in drylands).

3.3. Unmixing Error Analysis

The unmixing error (UE) appears low and relatively homogeneous over space and
time. The spatial mean unmixing error was 10.11% for the wet year (2016) and 9.19% for
the dry year (2019). As UE depicts the distance between input and model-fitted spectra,
these results show that, on average, the spectral response of the pixels across time and
space was close to 90% of the spectra fitted by the unmixing model. Nonetheless, a degree
of spatial heterogeneity was evident, with comparable spatial patterns of distribution in
both years (Figure 7). These patterns of spatial variability also resulted in similar unmixing
variance for 2016 (σ = 3.24 %) and 2019 (σ = 3.14%).
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Figure 7. Unmixing error images within drylands of (a) a wet year (2016) and (b) a dry year (2019).

The clustered spatial distribution of relatively high UE values in distinct patches
suggests that the model quality may be influenced by non-random characteristics of the
surface. UE values tend to be higher near the dryland’s boundary for both years (Figure 8).
The spatial distribution of these error patterns matches the distribution of landscapes with
high tree cover density (i.e., forests) and over 15 m of height (Figure 2) [55]. The unmixing
error consistently increased in response to shifts in tree density classes (Figure 8). Within
each tree cover density class, there is a positive UE response to height class shift. This
is particularly evident for the height class shift from “very tall” (mean UE = 18.31%) to
“extremely tall” (mean UE = 27.91%) within the “Open Forest” tree cover density class
(Figure 9). Moreover, moderate yet significant correlations (p < 0.01) were found between
unmixing error and the observed cover fractions (except with NPV). The unmixing error
tended to increase with the proportion of green vegetation, and more weakly decrease as
the bare soil fraction increased (Figure A3).
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Figure 9. Box plots showing year 2016 (top) and year 2019 (bottom) median unmixing error distribu-
tion for 16 vegetation structural classes in Australian drylands. n > 50,000 for every structural class
(Structural classes definitions in Figure 8).

Although the unmixing error depicts the model’s uncertainty, it was found not to be
strongly linked to accuracy errors detected through field validation. A significant (p < 0.01),
but low correlation (|r| < 0.18) was found between unmixing errors and absolute errors
for each fraction as well as with the mean absolute error (average of absolute error for the
three fractions) (Table 3). These results evidence that unmixing error does not equate to
prediction error.

Table 3. Correlation between unmixing error and absolute model prediction error of all field sites
(n = 4207).

Pearson’s Correlation
Coefficient p Value

PV 0.165 >0.000001
NPV 0.132 >0.000001

BS −0.175 >0.000001
Overall 0.044 >0.01

4. Discussion
4.1. Comparison of JRSRP and DEA VFC

Remarkably small differences were found between JRSRP and DEA vegetation frac-
tional cover. It had been reported [34] that these products typically disagree up to 5% for
BS and NPV, and less than 10% for PV. The results of this research (Figure 4) were opposite,
as similarity was higher for PV and lower for NPV and BS. Furthermore, the differences
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presented in Table 2 and Figure 4 may not only be due to image pre-processing, but also
because the methods employed for extracting DEA VFC (Section 2.3.1) are slightly different
compared to those of the SLATS dataset [14].

Comparison of VFC unmixing results has been undertaken through different methods.
Flood [57,58], for example, carried out pixelwise assessments to understand the effect of
different sensors (i.e., Enhanced Thematic Mapper, Operational Land Imager, and Multi
Spectral Instrument) on deriving surface reflectance and on the result of applying the
unmixing model of Scarth et al. [13]. Both studies analysed close to 100 Landsat scenes
covering Eastern Australia and timespans not greater than 18 months. Although this study
used fewer pixels, they were sampled from across the whole Australian continent, and
covered a timespan close to 25 years.

4.2. Variability in VFC Estimation Accuracy

The validation results obtained for the continental scale (Figure 5) were moderately
different to previously published accuracy metrics (Table 1). Specifically, when comparing
RMSE values, VFC was approximately 1.5% and 0.9% less accurate at detecting, respectively,
non-green vegetation and bare soil, and close to 1.3% more accurate for green vegetation
than that reported by Guerschman et al. [14]. Moreover, slightly decreased correlation
(except PV) and increased bias were evident for the three fractions. These differences could
be attributed to a significant increase in the number of observations: from approximately
1100 employed for calibration and cross-validation in Guerschman et al. (2015) to over
4200 used to calculate validation statistics in this study. Newly visited sites might contain
spectral values different to the calibration data of the model and result in weaker measured
performance. For instance, the observations of the newer field dataset tend to have smaller
PV (median of 9.53% vs 17%) fraction, and a larger NPV (54.46% vs 45%) fraction [14]. It
is assumed, however, that the updated set of observations better depict the variability in
surface properties across the Australian continent, as it represents a much larger sample.
Thus, the validation statistics presented in this article provide an enhanced estimation of
VFC performance.

Equivalent validation results were obtained for the continental and continental dry-
lands levels. This is closely related to the fact that over 90% of Australia’s landmass is
classified as arid, semi-arid, or subhumid [59]. Accordingly, the dryland subset of field
observations consists of almost 92% of the complete dataset. The most significant change,
although subtle, was increased accuracy for the NPV fraction. These results disagree with
findings in other dryland regions across the world [42,43], but concur with previously
described [14] slightly smaller estimation errors recorded in dry and bright bare (BS > 50%)
soils of Australia.

Spatial variability in VFC accuracy was evident within drylands. The arid zone
displayed the smallest RMSE value for PV, while the opposite was true for the semi-arid
zone (Figure 5) This difference may be attributed to the fact that both measured and
estimated PV values tend to be clustered near 0 for the arid zone, while the distribution
is more disperse in the semi-arid zone (Figure 5). A similar, less pronounced effect was
detected for BS, which could also be related to the difference in observed BS fractions
between these subsets (median of 18.75% in the semi-arid zone vs median of 46.79% in the
arid zone).

Performing model validation at large scale may have ignored the effects of localized
variability. For example, the differences in PV and BS detection accuracy described above
became diffuse when characterizing the whole drylands region. This issue has been also
reported in the literature. For instance, Melville et al. [48] detected larger inaccuracies
related to NPV overestimation and BS underestimation in a small area (20 SLATS field
observations) within Broken Hill Complex (arid zone). Conversely, Shumack et al. [25]
observed that Landsat VFC overestimated BS and PV, and underestimated NPV when
compared to classified imagery obtained through an Uncrewed Aircraft System (UAS) in 4
sites within the Simpson desert. These authors found that the VFC model could be locally
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enhanced by deriving endmembers from a subset of ~1400 field observations within the
arid zone. However, their regional scale cross-validation results (Figure 4d in [25]) were
not substantially different to those presented here (bottom row of Figure 5).

4.3. Change Detection

Accuracy in estimation of ground cover change corresponded with accuracy of in-
dividual observations. Namely, large error sites showed higher RMSE values both for
individual observations and change between two subsequent timestamps. However, both
subsets (large error sites and small error sites) displayed high correlations between esti-
mations and measurements, and a low proportion of erroneous trend detection. Thus,
despite the relatively large prediction error, the results confirm vegetation fractional cover
modelled from Landsat satellite time series can effectively detect changes in ground cover
through time (i.e., from 1 day to over 16 years in this research). These findings might
not be representative of the entire Australian territory, as the field sites visited more than
once are geographically limited to the central-northern and eastern portions of the country
(Figure 1a). Nonetheless, these sites are well distributed across climate zones, as there are
sites in arid, semi-arid, dry subhumid, and humid areas.

The results presented here support the use of Landsat VFC timeseries for monitoring
ground cover in drylands at broad scale (i.e., regional/continental). Prior studies have
identified inconsistencies and unexpected responses of the PV fraction to conditioning
factors such as rainfall, specifically in arid environments [18,19,25]. However, landscapes
in this region tend to be dominated by BS and NPV, which could explain why ground
cover change was correctly estimated in most of the sites in this study. Moreover, time-
series analysis of Landsat VFC has also been successfully employed to monitor local scale
effects of grazing management [13,24]. Occasional erroneous trend detection identified
in this research (Figure 6), and the mentioned issues reported in the literature highlight
that careful evaluation should be undertaken before employing Landsat VFC for local
temporal analysis.

4.4. Unmixing Error

Two different factors likely explain the unmixing error response to vegetation struc-
tural complexity: the correlation between unmixing error and the PV fraction, and the
presence of shadows. Analysis performed for this research showed that field-measured
photosynthetic cover (PV) correlated positively with the unmixing error of the images
(Section 3.3, Figure A3a). For instance, a 10% increase in field-measured PV is paired with a
marginal 1.58% rise of unmixing error, which could explain higher unmixing error values
in a wet year (2016) compared to a dry year (2019). However, this does not fully account
for unmixing error variability (r2 = 0.47). One hypothesis that could explain the variance
further is related to the shading effects of tree cover density and height in the landscape.
Shading affects surface spectral signals by generally reducing reflectance values [60,61],
consequently decreasing the ability of the selected endmembers to characterize the surface
composition. A common solution to this problem has been to include an additional ‘shadow’
endmember in the spectral unmixing model [10,44,62]. However, such an approach does
not resolve the issue of uncertainty related to ground cover estimation because of further
limitations of linear spectral unmixing. First, due to its spectral behaviour, the shadow
endmember would likely be highly correlated with other endmembers. Moreover, Landsat
imagery may not have sufficient and/or relevant bands to unmix the four endmembers.
It should be noted that the current three-endmember spectral unmixing model relies on
additional synthetic bands to satisfactorily unmix BS, PV and NPV [13,14,25]. Furthermore,
the field calibration/validation dataset does not include shadow proportion measurements
and using a generic shadow endmember would significantly alter the methodological
approach of this field observation-calibrated model. Lastly, even if the proportion of shade
could be unmixed, information on the surface that the shadows are being cast on would
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be missing, thus the total proportion of BS, PV, and NPV within the pixel would still
be unknown.

5. Conclusions

JRSRP and DEA VFC image products can be used interchangeably, increasing the
possibility of different users accessing this valuable dryland monitoring tool. Each product
has its own advantages and disadvantages. JRSRP VFC is readily available as seasonal
composites (i.e., one image every 3 months), making it appropriate for time series decom-
position and analyses of long-term change. DEA VFC, on the other hand, is available at a
higher temporal frequency, making it more useful for monitoring short-term change.

The accuracy of vegetation fractional cover derived from Landsat images over the
Australian continent was shown to be variable over space and time. Our results provide
guiding points to understanding the Australian ecosystems where VFC can be used with
confidence. At continental and drylands levels, accuracy is similar, suggesting that there
are no further limitations on their applicability to studies of vegetation dynamics over
the entire dryland ecosystem of Australia. However, it was found that the accuracy of
modelled cover fractions varied within drylands. Our results suggest that although large
estimation errors may occur, Landsat VFC can effectively track ground cover trends in
different environments. Future versions of the continental VFC dataset based on additional
validation datasets and a new machine learning approaches [63] are expected to overcome
some of the limitations discussed in this paper.

VFC is a suitable tool for monitoring ground cover across large areas and conditions.
This study revealed that the model’s uncertainty is generally low in drylands. Vegetation
structure complexity (i.e., tree cover density and height) explained much of the spatial
distribution of comparatively high unmixing errors recorded from the time series of Landsat
images used. Landscapes with sparse/low tree cover show a very low model uncertainty.
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(%) against unmixing error (%). The dashed line represents the linear fit between the variables. In-
tercept and slope were significant with p < 0.0000001 in both cases (n = 4207). 
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