Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers
Abstract
:1. Introduction
2. Lightning Mapping Algorithm and Experiment
2.1. Lightning 3D Mapping Algorithm
- (1)
- Select one station as the main station and obtain all of the possible radiation source matches of each source of the main station within a certain time window considering the triangle inequality. The time delay of two 2D results of each station is estimated by the cross-correlation waveform.
- (2)
- Calculate the 3D location of all matches using Equations (8) and (9).
- (3)
- Quality control is performed using the following four metrics for each possible 3D location:
- (a)
- Length of the common vertical line is less than a certain threshold. Here it is set to less than half of the minimum value of and .
- (b)
- and are less than an empirical value of 10°, that is, the difference between the incident vector of the 3D location point relative to each station and the incident vector provided by the 2D location of each station should be small.
- (c)
- Difference between the time delay of the calculated position to two stations and the actual time delay of two 2D results (denoted by DT) is less than a threshold, which is set to be 5 μs.
- (d)
- Since the antenna gain of each station is the same, the signal strength received by the station near the 3D location point should not be smaller than that of the farther one.
- (4)
- Considering that there may be a radiation source satisfying multiple sets of matches, the matching pair with the smallest DT is selected as the most reasonable match in the time window. The corresponding 3D radiation source location is included in the final 3D mapping results. If none of the above quality controls are met, no 3D radiation source will be involved.
- (5)
- Remove all 2D result matches involving the 3D radiation source obtained in Step 4, and repeat Step 4 to obtain another 3D radiation source location until the end of all matches. Because the detection efficiency varied for a source with different distances to two stations, there will be sources detected only by one station and only included in the 2D result.
2.2. Experiment and Data
2.3. Error Analysis
3. Three-Dimensional Mapping on Lightning Discharge
3.1. An IC Lightning Flash
3.2. A CG Lightning Flash
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dwyer, J.R.; Uman, M.A. The Physics of Lightning. Phys. Rep. 2014, 534, 147–241. [Google Scholar] [CrossRef]
- Qie, X.; Zhang, Q.; Yuan, T.; Zhang, T. Lightning Physics; China Science Press: Beijing, China, 2013. [Google Scholar]
- Yang, J.; Qie, X.; Zhang, G.; Zhang, Q.; Feng, G.; Zhao, Y.; Jiang, R. Characteristics of Channel Base Currents and Close Magnetic Fields in Triggered Flashes in SHATLE. J. Geophys. Res. 2010, 115, D23102. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.-M.; Stanley, M.; Regan, A.; Harlin, J.; Pongratz, M.; Stock, M. Total Lightning Observations with the New and Improved Los Alamos Sferic Array (LASA). J. Atmos. Ocean. Technol. 2006, 23, 1273–1288. [Google Scholar] [CrossRef]
- Wang, Y.; Qie, X.; Wang, D.; Liu, M.; Su, D.; Wang, Z.; Liu, D.; Wu, Z.; Sun, Z.; Tian, Y. Beijing Lightning Network (BLNET) and the Observation on Preliminary Breakdown Processes. Atmos. Res. 2016, 171, 121–132. [Google Scholar] [CrossRef]
- Yoshida, S.; Wu, T.; Ushio, T.; Takayanagi, Y. Lightning Observation in 3D Using a Multiple LF Sensor Network and Comparison with Radar Reflectivity. Electr. Eng. Jpn. 2016, 194, 1–10. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Lightning Mapping with with an Array of Fast Antennas. Geophys. Res. Lett. 2018, 45, 3698–3705. [Google Scholar] [CrossRef]
- Lyu, F.; Cummer, S.A.; Lu, G.; Zhou, X.; Weinert, J. Imaging Lightning Intracloud Initial Stepped Leaders by Low-frequency Interferometric Lightning Mapping Array. Geophys. Res. Lett. 2016, 43, 5516–5523. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, R.; Qie, X.; Xing, H.; Liu, M.; Sun, Z.; Qin, Z.; Zhang, H.; Li, X. A Low Frequency 3D Lightning Mapping Network in North China. Atmos. Res. 2021, 249, 105314. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Velocities of Positive Leaders in Intracloud and Negative Cloud-to-Ground Lightning Flashes. J. Geophys. Res. Atmos. 2019, 124, 9983–9995. [Google Scholar] [CrossRef]
- Yuan, S.; Qie, X.; Jiang, R.; Wang, D.; Wang, Y.; Wang, C.; Srivastava, A.; Tian, Y. In-Cloud Discharge of Positive Cloud-to-Ground Lightning and Its Influence on the Initiation of Tower-Initiated Upward Lightning. J. Geophys. Res. Atmos. 2021, 126, e2021JD035600. [Google Scholar] [CrossRef]
- Yuan, S.; Qie, X.; Jiang, R.; Wang, D.; Sun, Z.; Srivastava, A.; Williams, E. Origin of an Uncommon Multiple-Stroke Positive Cloud-to-Ground Lightning Flash with Different Terminations. J. Geophys. Res. Atmos. 2020, 125, e2019JD032098. [Google Scholar] [CrossRef]
- Hare, B.M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J.R.; Leijnse, H.; Mitra, P.; et al. LOFAR Lightning Imaging: Mapping Lightning with Nanosecond Precision. J. Geophys. Res. Atmos. 2018, 123, 2861–2876. [Google Scholar] [CrossRef]
- Proctor, D.E. A Hyperbolic System for Obtaining VHF Radio Pictures of Lightning. J. Geophys. Res. 1971, 76, 1478–1489. [Google Scholar] [CrossRef]
- Betz, H.-D.; Marshall, T.C.; Stolzenburg, M.; Schmidt, K.; Oettinger, W.P.; Defer, E.; Konarski, J.; Laroche, P.; Dombai, F. Detection of In-Cloud Lightning with VLF/LF and VHF Networks for Studies of the Initial Discharge Phase. Geophys. Res. Lett. 2008, 35, L23802. [Google Scholar] [CrossRef]
- Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-Based Three-Dimensional Lightning Mapping System: Initial Observations in Central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Li, Y.; Wang, Y.; Zhang, T.; Wu, B.; Liu, Y. Experimental Study on Location Accuracy of a 3D VHF Lightning-Radiation-Source Locating Network. Sci. China Earth Sci. 2015, 58, 2034–2048. [Google Scholar] [CrossRef]
- Bitzer, P.M.; Christian, H.J.; Stewart, M.; Burchfield, J.; Podgorny, S.; Corredor, D.; Hall, J.; Kuznetsov, E.; Franklin, V. Characterization and Applications of VLF/LF Source Locations from Lightning Using the Huntsville Alabama Marx Meter Array: VLF/LF lightning locations using HAMMA. J. Geophys. Res. Atmos. 2013, 118, 3120–3138. [Google Scholar] [CrossRef]
- Rhodes, C.T.; Shao, X.M.; Krehbiel, P.R.; Thomas, R.J.; Hayenga, C.O. Observations of Lightning Phenomena Using Radio Interferometry. J. Geophys. Res. 1994, 99, 13059. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Qie, X.; Liu, M.; Cao, D.; Wang, D. Lightning VHF Radiation Location System Based on Short-Baseline TDOA Technique-Validation in Rocket-Triggered Lightning. Atmos. Res. 2013, 129–130, 58–66. [Google Scholar] [CrossRef]
- Thomas, R.J. Accuracy of the Lightning Mapping Array. J. Geophys. Res. 2004, 109, D14207. [Google Scholar] [CrossRef]
- Edens, H.E.; Eack, K.B.; Eastvedt, E.M.; Trueblood, J.J.; Winn, W.P.; Krehbiel, P.R.; Aulich, G.D.; Hunyady, S.J.; Murray, W.C.; Rison, W.; et al. VHF Lightning Mapping Observations of a Triggered Lightning Flash: Triggered Lightning. Geophys. Res. Lett. 2012, 39, L19807. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao YQie, X.; Zhang, T.; Wang, Y.; Chen, C. Observation and study on the whole process of cloud-to-ground lightning using narrowband radio interferometer. Sci. China Ser. D Earth Sci. 2008, 51, 694–708. [Google Scholar] [CrossRef]
- Shao, X.M.; Krehbiel, P.R.; Thomas, R.J.; Rison, W. Radio Interferometric Observations of Cloud-to-Ground Lightning Phenomena in Florida. J. Geophys. Res. 1995, 100, 2749. [Google Scholar] [CrossRef]
- Stock, M.G.; Akita, M.; Krehbiel, P.R.; Rison, W.; Edens, H.E.; Kawasaki, Z.; Stanley, M.A. Continuous Broadband Digital Interferometry of Lightning Using a Generalized Cross-Correlation Algorithm. J. Geophys. Res. Atmos. 2014, 119, 3134–3165. [Google Scholar] [CrossRef]
- Stock, M.G.; Krehbiel, P.R.; Lapierre, J.; Wu, T.; Stanley, M.A.; Edens, H.E. Fast Positive Breakdown in Lightning. J. Geophys. Res. Atmos. 2017, 122, 8135–8152. [Google Scholar] [CrossRef]
- Rison, W.; Krehbiel, P.R.; Stock, M.G.; Edens, H.E.; Shao, X.-M.; Thomas, R.J.; Stanley, M.A.; Zhang, Y. Observations of Narrow Bipolar Events Reveal How Lightning Is Initiated in Thunderstorms. Nat. Commun. 2016, 7, 10721. [Google Scholar] [CrossRef] [Green Version]
- Hare, B.M.; Scholten, O.; Dwyer, J.; Trinh, T.N.G.; Buitink, S.; ter Veen, S.; Bonardi, A.; Corstanje, A.; Falcke, H.; Hörandel, J.R.; et al. Needle-like Structures Discovered on Positively Charged Lightning Branches. Nature 2019, 568, 360–363. [Google Scholar] [CrossRef]
- Shao, X.M.; Holden, D.N.; Rhodes, C.T. Broad Band Radio Interferometry for Lightning Observations. Geophys. Res. Lett. 1996, 23, 1917–1920. [Google Scholar] [CrossRef]
- Tilles, J.N.; Liu, N.; Stanley, M.A.; Krehbiel, P.R.; Rison, W.; Stock, M.G.; Dwyer, J.R.; Brown, R.; Wilson, J. Fast Negative Breakdown in Thunderstorms. Nat. Commun. 2019, 10, 1648. [Google Scholar] [CrossRef] [Green Version]
- Akita, M.; Nakamura, Y.; Yoshida, S.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D. What Occurs in K Process of Cloud Flashes? J. Geophys. Res. Atmos. 2010, 115, D07106. [Google Scholar] [CrossRef]
- Morimoto, T.; Kawasaki, Z. VHF Broadband Digital Interferometer. IEEJ Trans. Elec. Electron. Eng. 2006, 1, 140–144. [Google Scholar] [CrossRef]
- Yoshida, S.; Biagi, C.J.; Rakov, V.A.; Hill, J.D.; Stapleton, M.V.; Jordan, D.M.; Uman, M.A.; Morimoto, T.; Ushio, T.; Kawasaki, Z.-I. Three-Dimensional Imaging of Upward Positive Leaders in Triggered Lightning Using VHF Broadband Digital Interferometers: Three-Dimensional Imaging of UPLS. Geophys. Res. Lett. 2010, 37, L05805. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, S.; Dong, W. The Three-Dimensional Locating of VHF Broadband Lightning Interferometers. Atmosphere 2018, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qiu, S.; Shi, L.; Huang, Z.; Wang, T.; Duan, Y. Three-Dimensional Reconstruction of Cloud-to-Ground Lightning Using High-Speed Video and VHF Broadband Interferometer: HSV and BITF Joint Observations. J. Geophys. Res. Atmos. 2017, 122, 13420–13435. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Zhou, B.-H.; Shi, L.-H. Synchronized Observations of Cloud-to-Ground Lightning Using VHF Broadband Interferometer and Acoustic Arrays: VHF and Acoustic Joint Observations. J. Geophys. Res. 2012, 117, D19204. [Google Scholar] [CrossRef]
- Sun, Z.; Qie, X.; Jiang, R.; Liu, M.; Wu, X.; Wang, Z.; Lu, G.; Zhang, H. Characteristics of a Rocket-Triggered Lightning Flash with Large Stroke Number and the Associated Leader Propagation. J. Geophys. Res. Atmos. 2014, 119, 13388–13399. [Google Scholar] [CrossRef]
- Sun, Z.; Qie, X.; Liu, M.; Jiang, R.; Wang, Z.; Zhang, H. Characteristics of a Negative Lightning with Multiple-Ground Terminations Observed by a VHF Lightning Location System: A Multiple-Grounded Lightning. J. Geophys. Res. Atmos. 2016, 121, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Sun, Z.; Jiang, R.; Tang, G.; Liu, M.; Li, X.; Zhang, H.; Yuan, S.; Tian, Y.; Qie, X. A Rocket-Triggered Lightning Flash Containing Negative-Positive-Negative Current Polarity Reversal during Its Initial Stage. J. Geophys. Res Atmos. 2021, 126, e2020JD033187. [Google Scholar] [CrossRef]
- Stock, M.; Krehbiel, P. Multiple Baseline Lightning Interferometry-Improving the Detection of Low Amplitude VHF Sources. In Proceedings of the 2014 International Conference on Lightning Protection, Shanghai, China, 11–18 October 2014; pp. 293–300. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Lu, W.; Zheng, D.; Zhang, Y.; Chen, S.; Huang, Z. Performance Evaluation for a Lightning Location System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes. J. Atmos. Ocean. Technol. 2012, 29, 1835–1844. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Qie, X.; Liu, M.; Jiang, R.; Zhang, H. Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers. Remote Sens. 2022, 14, 6378. https://doi.org/10.3390/rs14246378
Sun Z, Qie X, Liu M, Jiang R, Zhang H. Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers. Remote Sensing. 2022; 14(24):6378. https://doi.org/10.3390/rs14246378
Chicago/Turabian StyleSun, Zhuling, Xiushu Qie, Mingyuan Liu, Rubin Jiang, and Hongbo Zhang. 2022. "Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers" Remote Sensing 14, no. 24: 6378. https://doi.org/10.3390/rs14246378
APA StyleSun, Z., Qie, X., Liu, M., Jiang, R., & Zhang, H. (2022). Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers. Remote Sensing, 14(24), 6378. https://doi.org/10.3390/rs14246378