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Abstract: In this paper, a single-frequency real-time kinematic positioning (RTK) robust adaptive
Kalman filtering algorithm is proposed in order to realize real-time dynamic high-precision posi-
tioning of smartphone global navigation satellite systems (GNSSs). A robust model is established
by using the quartile method to dynamically determine the threshold value and eliminate the gross
error of observation. The Institute of Geodesy and Geophysics III (IGG III) weight function is used to
construct the position and speed classification adaptive factors to weaken the impact of state muta-
tion errors. Based on the analysis of the measured data of Xiaomi 8 and Huawei P40 smartphones,
simulated dynamic tests show that the overall accuracy of the Xiaomi 8 is improved by more than
85% with the proposed robust RTK algorithm, and the overall positioning error is less than 0.5 m in
both open and sheltered environments. The overall accuracy of the Huawei P40 is improved by more
than 25%. Furthermore, the overall positioning accuracy is better than 0.3 m in open environments,
and about 0.8 m in blocked situations. Dynamic experiments show that the use of the robust adaptive
RTK algorithm improves the full-time solution planar positioning accuracy of the Xiaomi 8 by more
than 15%. In addition, the planar positioning accuracy under open and occluded conditions is 0.8 m
and 1.5 m, respectively, and the overall positioning accuracy of key nodes whose movement state
exhibits major changes improves by more than 20%.

Keywords: robust; adaptative; quartile; smartphone positioning; GNSS

1. Introduction

In recent years, microelectronics and communication technologies have developed
rapidly. The current low-cost global navigation satellite system (GNSS) chipsets have
become more mature in terms of signal acquisition, the anti-multipath, and the integrated
navigation of multiple systems. These chipsets have been used in a large number of emerg-
ing industries such as autonomous driving, smartphone navigation, and UAV logistics.
Smartphone GNSS devices account for more than 80% of the total global GNSS devices
and have a large user group and diversified needs. Therefore, research on the smartphone
GNSS positioning algorithm has great scientific and commercial value [1,2]. At the Google
I/O conference in May 2016, Google announced that it would open the application pro-
gramming interface (API) of original GNSS observations in the Android operating system,
that is, the users could directly obtain the pseudo-range, carrier, Doppler, signal-to-noise
ratio, and other original observation information received by smartphones through fixed
APIs from Android 7. This provides the possibility of developing a GNSS positioning
algorithm suitable for the characteristics of smartphone observations and improving their
positioning accuracy [3–6]. Therefore, many researchers have worked on the GNSS local-
ization algorithms of Android smartphones and have produced a significant amount of
research results.

Wanninger et al. observed and analyzed the signal-to-noise ratio (SNR) of an Huawei
P30 smartphone over a long time and found that the smartphone antenna was not sensitive
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to the L5/E5a frequency, and the SNR decreased after a long observation time [7]. Baku et al.
also used an Huawei P30 to compare and analyze the influence of L1 and L5 frequencies
on the positioning accuracy of the pseudo-range differential global position system (DGPS).
The authors showed that a positioning accuracy of 0.4 m could be achieved by using the
L5 frequency [8]. Gao et al. proposed a single-difference method between satellites to
eliminate the influence of the unfixed difference between the smartphone pseudo-range
and carrier phase observations. The experimental results showed that the smartphone
single-frequency PPP plane positioning accuracy was 1.51 m, and the elevation positioning
accuracy was 2.79 m. The plane positioning accuracy of smartphone single-frequency RTK
was 0.73 m, and the elevation positioning accuracy was 0.78 m [9]. Li et al. proposed a
real-time precise point positioning (PPP) method based on the smartphone data processing
strategy. The authors placed the smartphones on a roof and in a vehicle for dynamic
experiments. The positioning accuracy of the roof test plane was about 1 m, the elevation
positioning accuracy was about 1.5 m, the positioning accuracy of the interior test plane
was 1.0–1.5 m, and the elevation positioning accuracy was 1–2 m [10–12].

Compared with the receiver equipment, smartphones are structurally and spatially
compact, and usually use the built-in linear polarization passive antenna to receive the
GNSS signals. The linear polarization antenna is sensitive to satellite signals but has poor
anti-multipath performance. Furthermore, the pseudo-range and carrier phase observations
can contain many errors. In view of the limitations of the smartphone antenna, Geng et al.
found that the smartphone GNSS chipsets had different initial phase biases (IPBs) for
different satellites, which could lead to unfixed ambiguities. The u-blox ANN-MS patch
antenna was used to connect to a Xiaomi 8, achieving centimeter-level static positioning
accuracy [13,14]. Pesyna et al. showed that the smartphone antenna was the key to quickly
and reliably solving the ambiguity fixing problem and achieving high-precision positioning
accuracy [15]. Daruga et al. successfully achieved fixed ambiguity in an open environment
by estimating the offset and change in the antenna phase center of an Huawei Mate20X [16].

Geng and Laurichesse et al. smoothed the pseudo-range observation values of smart-
phones by using Doppler and carrier phase observation values in order to reduce the
gross error and improve the accuracy. The experimental results showed that the smoothed
pseudo-range could significantly improve the positioning accuracy [17,18]. Wang et al.
proposed a filtering algorithm for object position constrained by the phase epoch difference,
which effectively smoothed the pseudo-range noise of a Xiaomi 8. In pedestrian and vehicle
experiments, planar accuracies of 0.65 m and 1.03 m were achieved, respectively [19]. Guo
et al. analyzed the quality of the observed values of Huawei Mate 20/30 and Xiaomi
8 smartphones, and proposed a method to eliminate the pseudo-range gross error using
information such as the SNR, height angle, and pre-test and post-test residuals. The experi-
mental results showed that the static plane accuracy and elevation positioning accuracy
were better than 1 m and 2 m, respectively [20].

Some researchers also used the robust estimation method to deal with gross errors
that could not be eliminated in preprocessing. Chen et al. added robust modules in the
filtering process to reduce the impact of gross errors that could not be eliminated by pre-
processing the positioning results. The convergence time and positioning accuracy were
significantly improved for a Xiaomi 8 [21]. Zhu et al. established a GNSS mathematical
model that is more suitable for smartphones and used robust Kalman filtering to make
parameter notes. The experimental results showed that compared with the traditional
model, the GPS/BDS/GLO horizontal and vertical RMS decreased by 23.91% and 62.06%
respectively [22]. Zhang et al. proposed a random model that combined elevation and
SNR. The template function of the SNR was used to estimate the unmodeled error. After
using this model, the overall accuracy of RTDs in complex environments improved by
more than 10% [23]. Gong et al. proposed a RWTLS-LM-IGG algorithm by combining the
weighted total least squares (WTLS), Lagrange multipliers (LM), and IGG weight functions.
Experiments with simulated and actual data showed that the new method can effectively
weaken the influence of gross errors [24].
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Kalman filtering is not robust against observation and dynamic model anomalies; there-
fore, it cannot obtain reliable dynamic positioning results. The observation anomaly can
be estimated by a robust model, and the dynamic model anomaly is usually corrected by
adaptive estimation. Peng et al. combined innovation vector robust Kalman filtering and
Sage–Husa adaptive filtering. The experimental results showed that the accuracy of this
method in the plane and elevation directions improved by 1 cm and 4 cm, respectively [25,26].
Su et al. proposed a mixed weighting function considering the signal-to-noise ratio and
altitude angle. The experimental results showed that the hybrid weighting function can
weaken the influence of the multipath on carrier phase observations and improve the RTK
positioning accuracy [27]. Odijk et al. presented a closed-form expression, which enables the
single-frequency PPP-RTK user to compute the variance matrix of the network corrections
by themselves, and the experimental results showed that the single-frequency PPP can fix
the ambiguity in 10 min, even with a low-cost receiver. The plane positioning accuracy was
sub-centimeter-level and the elevation positioning accuracy was centimeter-level [28]. In sum-
mary, there is limited research on robust and adaptive algorithms for Android smartphones.
The real-time kinematic positioning (RTK) is a relatively mature and widely used positioning
technology that can achieve centimeter-level accuracy and meet the people’s needs of daily
navigation and positioning. Therefore, this paper studies the robust adaptive algorithm for
GNSS single-frequency RTK of Android smartphones.

In the following, first, we list several smartphones that support the GNSS raw data
output and summarize the characteristics of smartphone observations. Secondly, the
double-difference location algorithm and standard Kalman filter parameter estimation
method are discussed. A new RTK location model based on the quartile robust adaptive
Kalman filter is proposed, including the quartile robust model and classification adaptive
factor model. Subsequently, we collect three groups of static data and dynamic data to verify
the effectiveness of the quartile robust model and the classification adaptive factor model.

2. Characteristics of Smartphone Observations

Table 1 lists the receiving satellite systems and frequencies of several Android smart-
phones that support the GNSS raw data output in the market. Two representative smart-
phones, a Xiaomi 8 and Huawei P40, are used for the experiment. The Xiaomi 8 captures a
small number of satellite signals, but its tracking status is relatively stable [20]. The Huawei
P40 captures a large number of satellite signals, but its tracking ability is weak, and it is
easy to lose its lock in complex environments [1]. As the number of L5 and E5a satellite
signals received by the Xiaomi 8 and Huawei P40 is small and the overall quality is poor,
the carrier phase observation value of Huawei P40 frequencies B1C and B2a cannot be
analyzed. Therefore, the experimental part only calculates the single-frequency data of four
systems, i.e., GPS (L1) + GLO (R1) + GAL (E1) + BDS-3 (B1I).

Table 1. Different smartphone-receiving satellite systems and frequency bands.

Mobile Phone Type GNSS Chipsets Type GPS GLONASS GALILEO BDS QZSS

Xiaomi 8 Broadcom BCM47755 L1/L5 R1 E1/E5a B1I J1/J5
Huawei Mate 20 Hisilicon Hi1103 L1/L5 R1 E1/E5a B1I/ J1/J5

Huawei P30 Hisilicon Hi1103 L1/L5 R1 E1/E5a B1I/ J1/J5
Huawei P40 Hisilicon Hi1105 L1/L5 R1 E1/E5a B1I/B1C/B2a J1/J5

The GPSTest software is used to acquire the original observation data in RAW format
from the smartphone. A Python program developed by us is used to convert the pseudo-
range, carrier, Doppler, and SNR observation values. The analysis of the measured data
reveals that under the condition of a short baseline, the positioning accuracy of the receiver
GNSS RTK is centimeter-level, and that of the smartphone is decimeter- or meter-level.
This is because the smartphones use consumer-grade positioning chipsets and linearly
polarized antennas. At the same time, due to the high sensitivity of the linearly polarized
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antenna, the observation value is seriously affected by the multipath effect, which can be
about 1.5–3 m.

The pseudo-range observations contain many gross errors. The pseudo-range noise is
between 5 and 10 m, which is about 10 times more than the receiver noise. The cycle slip
ratio of the carrier phase observation value is between 10 and 30, and the cycle slip epoch
number accounts for 5–10% of the total epoch number, which exceeds 20% under severe
occlusion. The SNR of the smartphone is 5–10 Db-Hz lower than that of the receiver and
is between 25 and 40 dB-Hz. Most smartphones have a duty cycle mechanism in order to
reduce their power consumption, which will also cause a discontinuity in the carrier phase.

3. Methods
3.1. GNSS RTK Positioning Algorithm

The inter-satellite double-difference observation model can eliminate the satellite and
receiver clock errors and weaken other types of error. For a smartphone rover station j,
considering B1I and L1 frequency bands of BDS and GPS, respectively, as examples, the
pseudo-range and carrier-phase double-difference observation equations are established
as follows [29]:
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ij −∇∆Npq,B

ij − f
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(1)

where i and j are the reference station and smartphone rover station, respectively, p and q
are synchronously observed reference satellites and non-reference satellites, respectively, B
and G represent the BDS and GPS systems, respectively,∇∆ is a double-difference operator,
and N represents the integer ambiguity parameter. The carrier phase observation value is
denoted by ϕ, P is the pseudo-range observation value, ρ is the geometric distance between
stations and satellites, c is the speed of light, f is the frequency point, I is the ionospheric
delay correction, T is the tropospheric delay correction, and ε denotes the measurement
noise and multipath effects.

The double-difference model can significantly reduce the impact of ionospheric and
tropospheric delays when the baseline length is short. The residual ionospheric and
tropospheric delay errors are of centimeter-level and can be absorbed by the meter-level
pseudo-range noise of smartphones [30]. Therefore, Equation (1) can be converted into (2).
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(2)

3.2. Standard Kalman filter

The state equation and measurement equation of a standard Kalman filter are given in
Equation (3) as

xk = Axk−1 + Wk−1
zk = Hxk + Vk

}
(3)

where A is the state transformation matrix, W is the process noise, z is the observed value
vector, H is the coefficient matrix, V is the measurement noise, k and k− 1 are the current
epoch and the previous epoch, respectively, and xk and xk−1 are the corresponding state
vectors. The main structure of a state vector is shown as follows:

xk =
[

xkykzkvxk vyk vzk axk ayk azk ∆NB
n ∆NG

n

]
(4)
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where the first nine parameters are position, velocity, and acceleration parameters, re-
spectively; ∆N is the single-difference ambiguity of different frequency points of different
systems. The main calculation process of the standard Kalman filter is

xk,k−1 = Ak,k−1xk−1
Pk,k−1 = Ak,k−1 Pk−1AT

k,k−1 + Qk,k−1

Kk = Pk,k−1HT(HPk,k−1HT + Rk
)−1

xk = xk,k−1 + Kkvk
Pk =

(
I−KkHT

k
)
Pk,k−1


(5)

where xk,k−1 is the predicted state vector, Pk,k−1 is the prediction error covariance matrix,
Qk,k−1 is the process noise matrix, Kk is the Kalman gain matrix, Rk is the measurement
noise covariance matrix, vk is the innovation vector, and Pk and Pk−1 are the estimation
error covariance matrices of the current and previous epochs, respectively.

The Kalman filtering algorithm is generally used for the dynamic positioning solu-
tion; however, it has strict requirements for functional and random models. Therefore,
there are usually errors in observation values and kinematic models when it is applied to
dynamic data. The observation errors are due to the dynamic characteristics of moving
objects, which makes the surrounding scenes complex and changeable, inevitably leading
to abnormal observations and gross errors of observations. This seriously affects the ac-
curacy and reliability of positioning results, and even leads to filtering divergence. For
the kinematic models, moving objects in practice generally do not have a regular motion,
and the constant velocity or constant acceleration model used is often inconsistent with the
actual state of moving objects, resulting in large prediction errors and affecting the accuracy
of positioning results.

3.3. Quartile Robust Model

In order to reduce the influence of gross errors of observations, robust estimation
is usually integrated into Kalman filtering. The variance expansion factor is used before
calculation of the matrix gain to adjust the variance of different observations in the obser-
vation noise matrix, i.e., to reduce the impact caused due to gross error by adjusting the
weights of different observations. The Institute of geodesy and geophysics III (IGG III)
weight function [31] is widely used in the calculation of variance expansion factors due to
its advantages such as boundedness, segmentation, continuity, and efficiency. It is divided
into three parts: “normal”, “suspicious”, and “abnormal”, based on the error size of the
observed value. The “normal” part is not subject to weight adjustment, the “suspicious”
part is subject to weight reduction according to (6), and the “abnormal” part is set to zero
to eliminate the gross error [32,33], but to avoid calculation problems, we usually set it to
10−6, shown as follows:

λi =
1
γi

, γi =


1 wi < k0

k0
wi
×
(

k1−wi
k1−k0

)2
k0 < wi < k1

10−6 wi > k1

(6)

where λi is the variance expansion factor, γi is the equivalent weight amplification factor,
wi is the standardized innovation value, and k0 and k1 are constant thresholds, which are
generally selected based on experience. As the standardized innovation value can reflect
the current epoch observation value relative to the previous epoch state, it can be used
to judge the abnormality of the observation value. The value of wi is determined by the
following expression:

wi =
vi
σvi

(7)

where vi is the new interest value, and σvi is the standard deviation of the new interest
value in the current epoch.
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Let the two observations be i and j, respectively, and adjust the measurement noise
covariance matrix Rk by the variance expansion factor λk. This is shown as follows:

Rii = λii ∗Rii
Rjj = λjj ∗Rjj

Rii =
√

λiiλjj ∗Rij

(8)

where Rii and Rjj represent the variance of observations i and j, respectively, Rij is their
covariance, λii and λjj denote the variance expansion factor of Rii and Rjj, respectively, and
Rii, Rii and Rij are the variance and covariance of the observed values i and j after variance
expansion, respectively.

Although conventional robust Kalman filtering can eliminate most gross errors, there
are few smartphone observations in the same epoch, and the mean and standard deviation
used for data standardization are greatly affected by outliers. Furthermore, k0 and k1 as
constant thresholds cannot change according to the quality of overall observations in the
current epoch. The quartile method has high calculation efficiency and does not require any
prior distribution of data. It discards the part with a large absolute value in a group of data
and only uses the values around the data center, which can avoid the impact of abnormal
values on the criteria. Therefore, a new method based on the quartile method is proposed
to establish a robust model and calculate the variance expansion factor to dynamically
determine the threshold value without standardizing the innovation value. The modified
expression is as follows:

λi =
1
γi

, γi =


1 |vi| < k̃0

k̃0
|vi |
×
(

k̃1−|vi |
k̃1−k̃0

)2
k̃0 < |vi| < k̃1

10−6 |vi| > k̃1

(9)

where k̃0 and k̃1 are the dynamic thresholds determined by the quartile method, which can
be obtained as follows:

k̃0 = min(|Q1|, |Q3|) k̃1 = min(|Q1− 3 ∗ IQR|, |Q3 + 3 ∗ IQR|) (10)

where min(∗) is the smaller value and | ∗ | is the absolute value. As the value with a smaller
absolute value is closer to the median and closer to the “normal value area”, k̃0 and k̃1 both
choose the value with a smaller absolute value.

Figure 1 is the quartile threshold map, where Q1 and Q3 are the upper and lower quar-
tiles, respectively, IQR is the interquartile range, Median denotes the median, Q1—3 * IQR
is the upper bound, and Q3 + 3 * IQR is the lower bound.
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The variance expansion factor λi is determined according to (9). In (5), the Kalman
gain matrix becomes

Kk = Pk,k−1HT
(
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)−1
(11)
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where Rk and Kk are the covariance matrix of measurement noise and the Kalman filter
gain matrix after variance expansion, respectively.

3.4. Classification Adaptive Factor Model

For the kinematics model, constant velocity and constant acceleration models are
usually used at present. However, in actual situations, objects often do not move at a
constant velocity or a constant acceleration. In order to mitigate the effects of error caused
by the abnormality of the kinematic model, the adaptive factor α is introduced based on
robust Kalman filtering and is applied to the state covariance matrix of the measurement
update at time k [34–37]. This factor is mainly determined by the selection of an adaptive
factor model and the construction of state error discriminant statistics.

The classification adaptive factor model divides the state parameters of the object
into two categories: position and velocity. It constructs adaptive factors applicable to posi-
tion and velocity prediction information to control the influence caused by the abnormal
position and velocity vectors, respectively [38]. The state error discriminant statistics are
used to judge the abnormality of the motion model. Commonly used statistics include
state discrepancy statistics, prediction residual statistics, and variance component ratio
statistics. The prediction residual may contain errors due to other sources, and the variance
component is more complex and inefficient than the statistics. Therefore, the state discrep-
ancy value is utilized as the state error discrimination statistics [39,40]. The method for
construction of the position state discrepancy is as follows:

∆xk =
||X̃k − X̂k,k−1 ||√

tr(Pk,k−1)
k = 1, 2, 3 (12)

where ∆xk represents the position discrepancy statistic, tr is the trace of the matrix, X̃k is
the robust solution at the current epoch, and X̂k,k−1 is the predicted position solution at the
current epoch. Similarly, the speed state discrepancy can be constructed as

∆
.
xk =

||
.̃

Xk −
.̂

Xk,k−1 ||√
tr(Pk,k−1)

k = 4, 5, 6 (13)

where ∆
.
xk is the speed discrepancy statistic,

.̃
Xk is the accurate speed value of the current

epoch, and
.̂

Xk,k−1 is the predicted speed value of the current epoch. The value of
.̃

Xk can be
calculated as follows:

.̃
Xk =

X̃k − xk−1
t

(14)

where X̃k is the robust solution at the current epoch, xk−1 is the estimated position at the
previous epoch, and t is the sampling interval.

Similarly, the IGG III weight function is used to calculate the position and speed
adaptive factors, shown as follows:

α =


αP

αV
1

. . .
1

 (15)

where α, αP, and αV denote the classification, position, and speed adaptive factor matri-
ces, respectively.
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The discrepancy values of position and speed states are used as the discriminant
statistics. After determining the adaptive factor through the classification adaptive factor
model, the prediction error covariance matrix in (5) is changed to

Pk,k−1 =
1
α

(
Ak,k−1 Pk−1AT

k,k−1 + Qk−1

)
(16)

where Pk,k−1 is the prediction covariance matrix adjusted by the adaptive factor.

4. Experiments and Results Analysis

An Huawei P40 and Xiaomi 8 were used for dynamic simulation and dynamic tests,
respectively, in order to verify the effectiveness of the robust adaptive algorithm and
analyze the dynamic positioning performance of Android smartphones. As the duty cycle
mechanism will cause discontinuous carrier phase observations, the Xiaomi 8 actively turns
off the duty cycle mechanism, while the Huawei P40 turns off the duty cycle mechanism
by default. Six groups of data were collected in the experiment. Three groups of static data
and three groups of dynamic data were solved in dynamic mode. Table 2 provides the
specific data collection contents and strategies.

Table 2. Data collection content and strategy.

Solution
Mode

Baseline
Code

Sampling
Interval/s

Sampling
Duration/h

Collection
Environment

Acquisition
Mode

Baseline
Length/km

Simulated
dynamics

S1 1 3.34 tree shelter static 0.07
S2 1 2.66 broad road static 1.10
S3 1 2.01 broad square static 9.00

Dynamic
D1 1 0.45 tree shelter walk 1.40 (farthest)
D2 1 0.48 tree shelter trolley 0.08 (farthest)
D3 1 0.66 broad road vehicle 2.87 (farthest)

4.1. Simulated Dynamic Test

The simulated dynamic test data were collected by the Xiaomi 8 and Huawei P40 on
10 July, 2 July, and 11 July 2022. The sampling interval was 1 s; the sampling durations were
3.34 h, 2.66 h, and 2.01 h; the baseline lengths were 68 m, 1.1 km, and 9 km, respectively. For
the convenience of subsequent expression, the three groups of data were denoted as S1, S2,
and S3. The three groups of data were processed using the four-system single-frequency GPS
(L1) + GLO (R1) + GAL (E1) + BDS-3 (B1I). Table 3 shows the specific solution strategy. In the
data preprocessing phase, the experiment eliminated satellites with an elevating angle less
than 15 degrees, a signal-to-noise ratio less than 20 dB, and an uncertainty greater than 0.1.

Table 3. Calculation strategy of simulated dynamic experiment.

Content Method

Solution mode GPS(L1) + GLO(R1) + GAL(E1) + BDS-3(B1I)
Ephemeris Broadcast ephemeris

Ionospheric model Klobuchar
Tropospheric model Saastamoinen

Stochastic model elevating angle and uncertainty
Parameter estimation model Robust Kalman filtering

Pretreatment rules ELE < 15◦, SNR < 20 dB, Uncertainty > 0.1

Figure 2 shows the surrounding environment of S1, S2, and S3 smartphone rover
stations from left to right. Figure 3a–c show the tracking satellite of S1, S2, and S3 smart-
phone rover stations, respectively. Figure 3d–f represent the changes in position dilution of
precision (PDOP) values of S1, S2, and S3 baselines, respectively, under the four-system
solution mode. In Figure 3, the red and blue colors represent the relevant contents of the
Xiaomi 8 and Huawei P40. Table 4 shows the specific statistical information of S1, S2, and
S3 baseline Xiaomi 8 and P40 tracking satellites and PDOP values.
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Table 4. Statistics of effective satellite numbers and PDOP values.

Baseline
Code

Mobile
Phone Type

Effective Satellites PDOP

Max Min Ave Max Min Ave

S1
Xiaomi 8 14 5 10.7 2.55 1.32 1.68

Huawei P40 21 2 14.3 2.21 1.04 1.28

S2
Xiaomi 8 20 7 16.5 1.96 1.08 1.22

Huawei P40 22 13 19.1 1.77 1.01 1.19

S3
Xiaomi 8 22 11 16.7 2.12 1.06 1.31

Huawei P40 23 11 19.6 1.69 0.91 1.13

The following observations can be made from Figure 3a–c and Table 4:

(1) On average, the Huawei P40 can receive signals from 14.3, 19.1, and 19.6 satellites,
and the Xiaomi 8 can receive signals from 10.7, 16.5, and 16.7 satellites. Compared
with the latter, the former can track 3–4 more satellites, mainly BDS-3 satellites. This
is due to a problem in the design of the hardware signal channel of the Xiaomi 8.

(2) Although the Huawei P40 captures signals from a large number of satellites, most
satellites in the sheltered environment (S1) are frequently locked and unlocked alter-
nately. This behavior is mainly related to the antenna layout inside the smartphone
and the hardware, such as the internal loop tracker. In a good environment (S2, S3), the
Huawei P40 exhibits a stable tracking of more satellites than the Xiaomi 8, providing
better satellite geometry.

(3) The PDOP is an important index to measure the satellite positioning accuracy. Gen-
erally, a PDOP value of less than 3 is considered to indicate a good satellite spatial
geometric distribution. It can be observed from Figure 3d–f and Table 4 that the
change trend of the PDOP value is consistent with the number of satellites. As the
Huawei P40 can capture signals from a higher number of satellites, the PDOP value is
small. However, due to its poor ability to lock satellites in a sheltered environment,
the value shows strong fluctuations, which will affect the positioning results.

In summary, the Huawei P40 captures signals from a higher number of satellites
than the Xiaomi 8 and has a relatively small PDOP value. However, its stability is poorer
compared to that of the Xiaomi 8; therefore, the positioning accuracy will be affected in
sheltered environmental conditions.

Four-system single-frequency (L1 + R1 + E1 + B1) RTK calculation experiments were
conducted using the measured baseline data of S1, S2, and S3 with different lengths and
different environments. Compared with conventional RTK, robust RTK adds a quartile
robust model that conforms to the characteristics of smartphone data, which can reasonably
determine the weights of observation data from different satellites. Next, the conventional
RTK mode and robust RTK mode were compared and analyzed with respect to convergence
speed and positioning accuracy, and the positioning performance of the Xiaomi 8 and P40
single-frequency RTK algorithm was evaluated.

Figures 4–6 show the positioning deviation diagram corresponding to baseline data of
S1, S2, and S3 of the Xiaomi 8 in three directions of E/N/U under the conventional RTK and
robust RTK positioning methods. Figures 7–9 show the positioning deviation diagram of the
Huawei P40 for S1, S2, and S3 baselines in E/N/U directions under the conventional RTK and
robust RTK positioning methods. Table 5 shows the RMS positioning results, convergence times,
and lifting ratios of the Xiaomi 8 in the E/N/U directions. Table 6 shows the RMS positioning
results, convergence times, and lifting ratios of the Huawei P40 in the E/N/U directions.
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Table 5. RMS values, lifting ratios, and convergence times in E/N/U directions for Xiaomi 8 under
simulated dynamic conditions.

Baseline
Code

Solution
Mode

RMS Planar
Accuracy/m

Overall
Accuracy/m

Convergence
Time/sE/m N/m U/m

S1
Conventional 0.547 1.306 4.836 1.416 5.039 -

Robust 0.188 0.113 0.266 0.219 0.345 74
Lifting ratio 65.6% 91.3% 94.5% 84.5% 93.1% -

S2
Conventional 9.644 4.08 6.244 10.471 12.192 -

Robust 0.234 0.123 0.361 0.264 0.448 236
Lifting ratio 97.6% 97.0% 94.2% 97.5% 96.3% -

S3
Conventional 1.634 0.498 0.82 1.708 1.895 -

Robust 0.108 0.186 0.177 0.215 0.279 134
Lifting ratio 93.4% 62.7% 78.4% 87.4% 85.3% -

Table 6. RMS values, lifting ratios, and convergence times in E/N/U directions for Huawei P40
under simulated dynamic conditions.

Baseline
Code

Solution
Mode

RMS Planar
Accuracy m

Overall
Accuracy/m

Convergence
Time/sE/m N/m U/m

S1
Conventional 0.579 0.785 1.084 0.975 1.458 417

Robust 0.365 0.374 0.611 0.523 0.804 119
Lifting ratio 36.9% 52.4% 43.6% 46.4% 44.8% 71.5%

S2
Conventional 0.136 0.227 0.178 0.265 0.319 211

Robust 0.077 0.149 0.121 0.168 0.207 54
Lifting ratio 43.4% 34.4% 32.0% 36.6% 35.2% 74.4%

S3
Conventional 0.161 0.091 0.26 0.185 0.319 415

Robust 0.104 0.058 0.198 0.119 0.231 288
Lifting ratio 35.4% 36.3% 23.8% 35.7% 27.6% 30.6%

We determine the convergence standard as a deviation of less than 0.5 m for 60 con-
secutive epochs in three directions of E/N/U. This is mainly because the smartphone
antenna and GNSS chipsets are of poor quality, the pseudo-range observation contains
many gross errors, and the conventional RTK cannot reasonably assign weights to them.
These reasons cause the Kalman filtering system to be unstable and the ambiguity to se-
riously deviate from the true value, and from Figures 4–6 and Table 5, we can make the
following conclusions:

(1) The Xiaomi 8 cannot converge in the conventional four-system single-frequency RTK
solution mode. The robust RTK with the quartile model can eliminate large gross
errors and reasonably allocate the weights to the observation values according to the
robust weight function. This results in the improvement of its convergence speed and
positioning accuracy.

(2) The S1 baseline is an environment where half the sky is sheltered by trees, while S2
and S3 are open-roadside and open-square environments, respectively. However,
under the robust RTK solution mode, the baseline planar accuracy of the Xiaomi 8
under S1, S2, and S3 can be kept within 0.3 m, and the elevation positioning accuracy
is kept within 0.5 m. As a result, the overall positioning accuracy is significantly
improved by more than 85%. This is because the quartile model effectively eliminates
gross errors and reasonably assigns weights to observations of different quality, which
improves the positioning accuracy.

The following conclusions can be obtained from Figures 7–9 and Table 6:
In the robust RTK solution mode, the planar and elevation accuracies of the Huawei

P40 under S2 and S3 baseline conditions are maintained within 0.2 m. The overall position-
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ing accuracy remains within 0.3 m, which is higher than that of Xiaomi 8. This is because
the Huawei P40 can receive signals from a higher number of satellites, providing better
satellite geometric spatial structure and more redundant data. The planar positioning and
overall accuracies are improved by more than 35% and 25%, respectively, which effectively
improves the convergence speed and positioning accuracy. Compared with S2 and S3
baseline solution results, the Huawei P40 has planar and elevation positioning accuracies
of 0.523 m and 0.611 m, respectively, under the S1 baseline, which are significantly lower.
This is because the Huawei P40 has poor satellite tracking and locking capabilities, and
the number of satellites whose signals can be received fluctuates severely in a sheltered
environment. This causes a frequent reset of ambiguity parameters and an inability to
calculate positioning results with a high accuracy.

4.2. Dynamic Test

The dynamic test data were collected by a Xiaomi 8 on 12 March, 22 May, and 24 June
2022. The sampling interval was 1 s, and the sampling durations were 0.66 h, 0.48 h, and
0.45 h, respectively. The modes used for data collection were walking on the road, trolley
on the basketball court, and vehicle on the road. For the sake of convenience of subsequent
expressions, the three groups of data were recorded as D1, D2, and D3, respectively. The
three groups of data were processed using the four-system single-frequency GPS (L1) +
GLO (R1) + GAL (E1) + BDS-3 (B1). As the observation value received by the Huawei P40
is interrupted many times and is obviously abnormal, the dynamic experiment did not
process the relevant data of the Huawei P40. Table 7 shows the specific solution strategy.

Table 7. Calculation strategy of dynamic experiment.

Content Method

Solution mode GPS (L1) + GLO (R1) + GAL (E1) + BDS-3 (B1I)
Ephemeris Broadcast ephemeris

Ionospheric model Klobuchar
Tropospheric model Saastamoinen

Stochastic model Altitude angle and uncertainty
Parameter estimation model Robust adaptive Kalman filtering

Content Method
Pretreatment rules ELE < 15◦, SNR < 20 dB, Uncertainty > 0.1

Figure 10 shows the specific test scenario of D1, D2, and D3 dynamic data measure-
ments. CHC P5 is a high-precision GNSS receiver, and its positioning accuracy is far higher
than that of smartphones. Therefore, the Xiaomi 8 is fixed on the side of the antenna
sucker connected with the CHC P5 receiver to jointly conduct dynamic data acquisition and
acquire the receiver solution results as the true values. Figures 11–13 show the D1 walking
dynamic track, D2 trolley dynamic running track, and D3 vehicle dynamic running track.
Figures 14 and 15 show the turning and straight-line details for the D1 walking dynamic
track and D3 vehicle dynamic track, respectively. In these figures, blue, red, and green
represent the reference track of the CHC P5 receiver, normal RTK operation track, and
robust adaptive RTK operation track, respectively. Table 8 shows the dynamic RMS values
and lifting ratios of the Xiaomi 8 in E/N/U directions.
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Table 8. RMS values and lifting ratios in dynamic E/N/U directions.

Baseline Code Solution Mode
RMS Planar

Accuracy/m
Overall

Accuracy/mE/m N/m U/m

D1
Conventional 1.765 1.443 2.173 2.28 3.15

Robust adaptation 0.828 1.22 1.851 1.474 2.085
Lifting ratio 53.1% 15.5% 14.8% 35.4% 33.8%

D2
Conventional 0.458 0.549 1.034 0.715 1.257

Robust adaptation 0.345 0.285 0.944 0.447 1.045
Lifting ratio 24.7% 48.1% 8.7% 37.5% 16.9%

D3
Conventional 0.637 0.656 2.067 0.914 2.26

Robust adaptation 0.603 0.49 1.679 0.777 1.85
Lifting ratio 5.3% 25.3% 18.8% 15.0% 18.1%

The following conclusions can be obtained from Figures 11–15:

(1) Compared to the solution results obtained using the CHC P5 receiver as a reference,
the dynamic trajectory of the red conventional RTK solution results deviates sig-
nificantly. This deviation is particularly obvious in the turning section because the
Kalman filter suffers from hysteresis when there is a sudden motion state change.
Consequently, the weight relationship between the predicted and measured values
cannot be adjusted in a timely manner. On the other hand, the deviations between
the green robust adaptive RTK solution results and the reference track of CHC P5 are
small for straight or turning sections, and the track is obviously better. This is because
the adaptive model can determine the adaptive factor according to the discriminant
statistics, reasonably adjust the weight relationship between the predicted and mea-
sured values in a timely manner, and improve the impact caused by the lag of the
Kalman filter to a certain extent.

(2) The planar accuracies of D1, D2, and D3 dynamic data from the Xiaomi 8 in the robust
adaptive RTK solution mode are 1.474 m, 0.447 m, and 0.777 m, respectively. The
corresponding elevation accuracies are 1.851 m, 0.944 m, and 1.679 m, respectively.
The overall positioning accuracies increase by 33.8%, 16.9%, and 18.1%, respectively.

Compared with D2 and D3, the low accuracy of the D1 dynamic data solution is caused
by the high elevation difference at the beginning, the serious occlusion of the subsequent
road sections, and the large gross errors in the observed values. Therefore, the improvement
ratio of the overall positioning accuracy is larger than the former two. The effectiveness of
the adaptive model is determined by selecting some nodes with large motion state changes
from D1, D2, and D3 dynamic data for accuracy statistics and analysis. Figure 16 shows
the map of D1, D2, and D3 dynamic track node selection position markers. Each black box
selects 10 consecutive node coordinates for precision statistics. Table 9 shows the specific
accuracy statistics and lifting proportions of some nodes of the dynamic track.
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Baseline Code Solution Mode
RMS Planar

Accuracy /m
Overall

Accuracy/mE/m N/m U/m

D1
Conventional 2.979 1.875 3.835 3.521 5.206

Robust adaptation 0.712 1.204 1.286 1.399 1.900
Lifting ratio 76.1% 35.8% 66.5% 60.3% 63.5%

D2
Conventional 0.186 0.590 0.797 0.619 1.009

Robust adaptation 0.101 0.268 0.554 0.286 0.624
Lifting ratio 45.6% 54.6% 30.5% 53.7% 38.2%

D3
Conventional 0.342 0.380 1.786 0.511 1.858

Robust adaptation 0.169 0.113 1.428 0.203 1.443
Lifting ratio 50.7% 70.4% 20.0% 60.3% 22.4%

It can be observed from Figure 16 and Tables 8 and 9 that the planar positioning
accuracies of the robust adaptive RTK for key nodes of D1, D2, and D3 dynamic data are
1.339 m, 0.286 m, and 0.203 m, respectively, and the elevation positioning accuracies are
1.286 m, 0.554 m, and 1.428 m, respectively. The planar and elevation accuracies and the
lifting ratios are better than the results obtained using the full-time solution. The adaptive
model can effectively reduce the position error caused by the abnormal kinematics model,
which proves its effectiveness.

5. Conclusions

In this study, a robust adaptive RTK positioning algorithm was proposed, which added
robust adaptive models to the conventional RTK positioning model in order to provide
continuous and accurate dynamic positioning results. The key models in the proposed
algorithm were discussed, including the GNSS RTK positioning model, quartile robust
model, and adaptive model using the classification adaptive factor. The algorithm was
validated using simulated and actual dynamic experiments, where the latter were carried
out in open and sheltered environments. The simulated dynamic test results showed
that compared with the Xiaomi 8, the Huawei P40 could capture more satellites, but had
a weaker satellite locking ability and poor stability. The proposed quartile robust RTK
algorithm could effectively eliminate large gross errors, and reasonably allocate weights
to different observations according to the innovation vector. It could also improve the
overall positioning accuracies of the Xiaomi 8 and Huawei P40 by more than 80% and
25%, respectively. The dynamic experiment results showed that the applied classification
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adaptive factor model could significantly reduce the error caused by the kinematic model,
especially when there were significant changes in the motion state. It can be gathered from
the full-time solution results that the overall positioning accuracies in the occluded and
open environments improved by more than 30% and 15%, respectively. In conclusion,
the algorithm can provide a reference for obtaining continuous and accurate dynamic
positioning results.
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