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Abstract: The Radio Wave Phase Imager uses monitoring and recording concepts, such as Software
Defined Radio (SDR), to image Earth’s atmosphere. The Long Wavelength Array (LWA), New Mexico
Observatory is considered a high-resolution camera that obtains phase information about Earth
and space disturbances; therefore, it was employed to capture radio signals reflected from Earth’s
F ionization layer. Phase information reveals and measures the properties of waves that exist in
the ionization layer. These waves represent terrestrial and solar Earth disturbances, such as power
losses from power generating and distribution stations. Two LWA locations were used to capture the
ionization layer waves, including University of New Mexico’s Long Wavelength Array’s LWA-1 and
LWA-SV. Two locations of the measurements showed wavevector directions of disturbances, whereas
the intersection of wavevectors determined the source of the disturbance. The research described
here focused on measuring the ionization layer wave’s phase shifts, frequencies, and wavevectors.
This novel approach is a significant contribution to determine the source of any disturbance.

Keywords: Software Defined Radio (SDR); Long Wavelength Array (LWA); radio wave imager;
ionosphere waves; phase imaging method; Earth disturbances; wave vectors

1. Introduction

The terrestrial ionosphere is part of the Earth’s upper atmosphere where atoms and
molecules are ionized by incoming solar radiation. This region is divided into three layers
based on ion densities [1]. The ionosphere is the highest region of Earth’s atmosphere as
it starts at about 60 km and reaches over 500 km of altitude that are divided into three
layers named D, E, and F [1]. The D layer of the ionosphere is at approximately 50 to 90 km
altitude. The altitude of the E layer stretches from ~95 km to 150 km above the ground.
However, the F layer is between 140 and 600 km above the surface of the Earth and is the
most significant layer because of its availability during day and night [1,2]. These layers
contain observable waves created by space weather events, including solar flares, coronal
mass ejections originating in sunspots, and Earth-disturbing events, such as earthquakes,
hurricanes, volcanoes, and man-made disturbances [3].

1.1. Ionospheric Disturbances

The ionosphere is a major area of interest within the field of waves. It is the envelope
of ionization layers that surrounds the Earth, and the surfaces of these layers are not flat
and are thought to be the most sensitive Earth entity to disturbances. Waves that exist on
the surface of the Earth’s ionization layer are the primary concern of this research. It is
a widely held view that horizontal and vertical waves are created by solar, geomagnetic,
and meteorological events. A number of researchers have reported that gravity waves,
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such as earthquakes and tsunamis, have waves that affect the ionosphere [4,5]. Weather
events, such as hurricanes and typhoons, might produce waves on the surface of ionization
layers [6–8]. One observer has already drawn attention to the waves associated with
meteorological events, such as hurricanes [7]. Finally, waves may be created by other
atmosphere-disturbing events, including volcanoes, forest fires, and lightning. events [3,9].
Rishbeth found some evidence that the majority of the waves on the surface of the ionization
layer were induced by meteorological events [3].

Dungey explored the dynamics of the magnetosphere system while interacting with
solar wind plasma carrying a southward interplanetary magnetic field. The model dis-
cussed in this study clearly illustrated the link between auroras and neutral points in the
magnetic field [10].

A geomagnetic storm occurred on 17 March 2015 above Millstone Hill (42.6◦N, 71.5◦W,
72◦ dip angle) that revealed different phenomena from prior ones based on relationships
between total electron content (TEC), the highest density in the F2 region (NmF2), electron
temperature, and vertical ion velocity by employing data collected from satellites that
operated at various altitudes and ground-based devices. The topside ionosphere had a
significant plasma density increase, although it was not close to the F2 peak. The authors
interpreted that the electrons’ ability to transport heat was considerably reduced due to
the exceptionally low ionospheric densities below the F2 peak. Therefore, the heat was
trapped in the topside with a heat source above. As a result, the topside scale height raised
even though electron concentrations in the F2 peak reduced, and TEC grew in the SED
(storm-enhanced density). An increase in the density of molecular neutrals that led to
recombination was most likely what reduced the amount of NmF2 [11].

The Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM)
included an empirical representation of subauroral polarization streams (SAPS). The global
thermosphere and ionosphere were simulated by the SAPS driven TIEGCM during a mod-
erately geomagnetically active time for five days (329 to 333) in 2008. The thermosphere’s
overall temperature rose as a result of SAPS and increased with time, but the subauroral
and auroral zones showed a higher increase in neutral temperature; additionally, at higher
elevations, neutral temperature and wind reactions to SAPS were more substantial and
showed seasonal/hemispheric asymmetry. Wang et al. mentioned that significant varia-
tions in thermospheric winds were caused by a strong ion drag impact in the subauroral
SAPS channel in the SAPS-driven TIEGCM. Finally, their report also indicates that the
composition of the thermosphere changed due to heat from SAPS that caused air rich in
molecules to rise in the subauroral and auroral areas and fall in other latitudes [12].

A research investigation that utilized incoherent scatter radars at Millstone Hill (MHO),
Arecibo (AO), and the Defense Meteorological Satellite Program’s (DSMP) in situ topside
ionospheric data concentrated on ion-neutral coupling processes linked with strong elec-
trodynamic forces. A variety of ionospheric and thermospheric disturbance features were
noted and compiled throughout the storm, especially in the afternoon and dusk sectors
over North America [13].

A study of the impact of solar flares on magnetospheric dynamics and the electrody-
namic interaction between the magnetosphere and ionization layers was conducted using
an entire geospace model in conjunction with observational data from the 6 September
2017 X9.3 solar flare event. The study supported the idea that solar flare impacts do not
only affect the atmosphere where radiation energy is absorbed—they also propagate across
geospace via the electrodynamic connection [14].

Extreme perturbations in the equatorial ionosphere caused by the 15 January 2022
eruption of the Tonga volcano created waves traveling from the ocean surface to the whole
atmosphere for more than 12 h. This occurrence offered a research opportunity to increase
knowledge of local and global ionospheric responses caused by volcanoes. Many investiga-
tions were reported about ionospheric perturbations following the eruption. Aa et al. [15]
used Global Navigation Satellite System total electron content data, Global-scale Obser-
vations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind
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data, and ionosonde data to study variations in EIA crests accompanying the ionosphere to
show waves traveling for more than 10 h over a distance 14,000 km away from the Epicen-
ter [15]. Zhang et al. (2022) noticed worldwide propagation of Lamb waves that affected the
ionosphere for days. Ionospheric waves (disturbances) were seen to circle the world three
times. According to Zhang et al. (2022), the waves left Tonga every 1.5 days [16]. Aa et al.
(2022) [15] and Harding et al. (2022) [17] discovered that powerful horizontal neutral wind
perturbations caused by volcanic eruptions might significantly alter the equatorial electric
field. Themens et al. described that the eruption caused large ionospheric disturbances
and a number of subsequent medium ionospheric disturbances. The initial observations of
these ionospheric waves started traveling at about 950 m/s propagating thousands away
from the eruption site [18].

1.2. Ionospheric Response to Man-Made Disturbances

Researchers have been looking at the link between human-caused Earth distur-
bances and their impacts on the ionosphere since the 1960s. Studies showed that the
ionosphere’s response to man-made disturbances, including explosions, rocket launches,
missile launches [19,20], power line emission (PLE), and power line harmonic radiation
(PLHR) [21], arrive as acoustic and gravity waves in the ionization layers. Blecki, Rothkaehl,
and his colleagues looked at some aspects that influence satellite telecommunications qual-
ity. They reported that power sources, such as broadcasting transmitters, power stations,
power lines, and heavy industries, formed a very low-frequency emissions range in the
Earth plasma environment [22].

A recent study is also worth mentioning because its technique involved studying
an isodensity in the lower E area using about 2 and 3 MHz pulsed Doppler radar and
three receivers that measured the phase and amplitude and showed waves exiting on/in
the ionosphere caused by two 1-ton TNT equivalent explosions. The output of small-size
explosions around three orders of magnitude produced infrasound waves that reached the
ionosphere. This is the first proof that explosions of this size had apparent effects on the
lower ionosphere [23].

1.3. Ionospheric Response Space Weather Disturbances

Studies of space weather events related to ionospheric disturbances continue to be
important because they could help better understand the relationship between Earth
and space disturbances. For example, a geomagnetic storm caused by solar wind deter-
mines strong disturbances of the magnetosphere–ionosphere–thermosphere system. The
atmosphere’s composition changes as a result of the heating [24,25]. Fuller-Rowell et al.
demonstrated how the upper atmosphere reacts to geomagnetic storms starting at a dif-
ferent universal time. The high temperature of the upper thermosphere causing by Joule
heating made a large-scale wind surge which resembles a gravity wave that spread to low
latitudes [24]. Another study reported that Intense geomagnetic storms significantly impact
ionospheric electrodynamics due to the interplanetary electric field penetrating the lower
ionosphere [25,26].

Another type of disturbance in space is a Transient Luminous Event (TLE). These
events are the phenomena of lightning that can occasionally be observed in the upper
atmosphere at altitudes ranging from tens to hundreds of kilometers or they can occur
above a thunderstorm. We expect these types of disturbances to be a spike and not
continuous waves and to be outliers as they are swift events that happen quickly. Many
theories have been suggested regarding TLE creation. Still, the most commonly recognized
concept is that elves are mainly created by electromagnetic pulses (EMPs) from lightning
strikes. Additionally, sprites and halos are caused by quasi-static fields (QEs) from lightning
strikes as well [27,28]. According to TLE energy estimates, the strength of these events can
reach up to 0.01 W/m2, which is large compared to the value of about 0.001 W/m2 that
occurs during some space weather disturbing events [27].
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The aim of this study is to determine the location of the source of ionospheric distur-
bances from the intersection of wavevectors of waves existing in/on the ionosphere (or the
F-layer). The intersection of wavevectors indicates the source of the disturbance.

2. Materials and Methods
2.1. SDR Experimental Method

The SDR Earth Imager collects data from the ionosphere by sending radio signals
up into the atmosphere at a near-vertical incidence from the Earth’s surface. These radio
waves reflect off the ionosphere and return to Earth’s surface where they are imaged using
an antenna array camera (Figure 1).
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Figure 1. A transmitter transmitted a carrier radio wave from the Earth, and the carrier radio wave
was reflected off the ionosphere captured by receiving antenna arrays.

The phase of the carrier wave was measured using the hardware method. This
method uses the quadrature to measure the phase difference between the emitted wave
and the received wave. The phase shifts within the phase images show the presence of the
waves on/in the ionization layer. The phase shift was determined using the relative phase
difference between each pair of antennas at one time. The absolute phase at each antenna
could be measured if the transmitter and all the antennae were synchronized.

The phase difference, ∆ϕ, is determined based on the difference in the path length of
the radio wave (L) propagating from the transmitter to each receiver in the array, which is
expressed as

∆ϕ = 2π

(
L
λ

)
= 2π f

(
L
c

)
(1)

where f is the frequency, λ is the wavelength, and c is the speed of light.

2.2. LWA-SV and LWA-1 Description of New Mexico Experiments

Datasets were captured at the Long Wavelength Array (LWA)-SV station at the Sevilleta
National Wildlife Refuge 34.35◦N, 106.89◦W [28] LWA-1 station. The LWA-SV and LWA-1
(University Radio Observatory) in central New Mexico captured radio wave frequencies
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from 3 MHz to 88 MHz, and each array consisted of 256 pairs of dipole-type antennas,
while each pair of antennas had orthogonal polarizations on one stand. Antennas of the
LWA-SV were arranged in a 110 m by 100 m north–south area distributed in about 100 m
of aperture, as seen in Figure 2 [29]. Array geometry of the LWA-1 was within a 100 m
(east–west) × 110 m (north–south) elliptical shape, as illustrated in Figure 3 [30]. It was
designed to produce high-sensitivity, high-resolution images operating over a wide range of
frequencies [31]. Both radio telescope arrays had a minimum of 5 m of separation between
the antennas, which allowed for easy access of elements for maintenance purposes and
also decreased beam desensitization because of sky noise correlation [32]. They received
a carrier wave after reflection off the ionosphere from a transmitter placed in Santa Fe
and transmitted radio waves with frequencies between 3 and 7 MHz. However, only one
dataset (5.357 MHz) was analyzed as it had an obvious carrier wave. Transmitter and
receiver locations, sent signal, and data specifications utilized during the LWA-SV and
LWA-1 experiments are illustrated in Tables 1 and 2 below.
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Table 1. Transmitter signal and data set specifications used during the LWA-SV experiment.

Santa Fe Transmitter (35.71144◦N, 106.0084◦W)

Date and Time UT 01 August 2021, 20:29:30

Transmitted Frequency 5.3570 MHz

Mode-Send CW Tone (Continuous Wave)

Receiver LWA-SV (34.348◦N, 106.886◦W)

Center Frequency 5.33999 MHz

Polarization Zero

Date and Time of First Frame 8 January 2021, 20:29:20

Sample Rate 100,000 Hz

Recorded Time 1765.895 s

Table 2. Transmitter signal and data set specifications used during the LWA-1 experiment.

Santa Fe transmitter (35.71144◦N, 106.0084◦W)

Date and Time UT 01 August 2021, 17:57:32

Transmitted Frequency 5.3570 MHz

Mode-Send CW Tone (Continuous Wave)

Receiver LWA-1 (34.069◦N, 107.628◦W)

Center Frequency 5.33999 MHz

Polarization Zero

Date and Time of First Frame 8 January 2021, 18:00:00

Sample Rate 100,000 Hz

Recorded Time 1731.281 s

The distance between the Santa Fe transmitter and WA-SV is about 171 km, whereas
the LWA-1 station is about 235 km away from the transmitter. The separation between the
two stations—LWA1 and LWA-SV—is around 75 km, as shown in Figure 4 [30].
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3. Results
3.1. LWA-1 and LWA-SV Experimental Results

The LWA Software Library (LSL) was created to manage the specific data formats
produced by LWA-1 and LWA-SV and to make them available for basic analysis tools [33].
A total of about 28 min of each data (LWA-1 and LWA-SV) using a sampling frequency of
100 kHz was obtained by digitally acquiring more than three giga-samples in total. After
the initial analysis step, data were found to be consistent throughout the recording time
after pre-conditioning (channel selection, noise reduction, etc.). The calculated wavevector
(LWA-SV) remained pointed in a north–south direction around 90% of the time, which
was in agreement with the physical locations of the transmitter and the receiver array.
However, the wavevector for the LWA-1 signals pointed northeast–southwest between 30
to 65 degrees 70% of the time, which showed the effects of the ionospheric disturbances
that occurred during the recording time.

The first step of the data analysis was to represent the data as a waterfall plot. Figure 5
shows a visual illustration of the transmitted signal strength represented by colors over
time and varies with the spectrum of frequencies used to look at the carrier wave extracted
from the frequency range.
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3.1.1. Carrier Frequency

The carrier frequency (5.357 MHz) worked only as a carrier wave to carry wave
information of waves existing in/on the ionosphere to the antenna array. The carrier
radio wave propagated through the atmosphere and reflected off the ionization layers.
The receiving antennas received the reflected waves at different paths depending on the
antenna position. The hardware method used a quadrature to measure the phase of the
emitted and received waves to determine their phase difference. The difference in phase of
the transmitted and received radio waves was a measure of the phase shift.

3.1.2. Relative Unwrapped Phase

The time difference image was unwrapped, and its relative phase values were deter-
mined by taking an antenna close to the center of the LWA-1 and LWA-SV arrays. The
relative phase image removed the absolute phase shift that resulted from the tilted carrier
wave. Figures 6 and 7 show examples of relative unwrapped phase images taken from
LWA-1 and LWA-SV during three seconds of collection time. Antenna number 10 is used as
a reference for LWA-1 in Figure 6. Antenna number 134 is used as a reference for LWA-SV
in Figure 7.
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Figure 7. The graphic shows an example of relative unwrapped phases vs. time in 3 s for LWA-SV. 

3.2. Spatial Phase Image 

Figure 7. The graphic shows an example of relative unwrapped phases vs. time in 3 s for LWA-SV.

3.2. Spatial Phase Image

The area of antenna locations in the x-direction and y-direction represents phase image
using a relative unwrapped phase, as shown in Figure 8. The color of the phase image
represents the size of the phase shift using unwrapped angles. The positive side illustrates
the top of the wave, whereas the negative side shows the bottom side of the wave. The
height of a wave represents the amplitude that could be positive or negative. The imaging
processing of the relative unwrapped phase was done using a mesh used on the antenna
positions and divided into several rectangular shapes. The area (dx × dy) of each cell
was around 6 m2, as depicted in Figure 9. Each stand had only one relative unwrapped
phase, and the pixels outside the image were to zero. Parameters were the center frequency
5.334999 MHz and carrier bin 5.351500 MHz with a sample rate of 100 kHz. The relative
unwrapped phases were calculated by taking the stand number 134 of LWA-SV and 10
of LWA-1 as a reference, which were located close to the center of the antenna locations.
Polarization zero was chosen as cross-polarizations were provided in the dataset.
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A 2D Fourier transformed over the space domain was applied to the relative phase
image, f (x,y), to obtain a complex Fourier image, F(u,v) in the spatial frequency domain for
each time of data collection,

F(u, υ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π(ux,υy) dxdy (2)

where u and v are the spatial frequencies,

F(u, υ) = FRe(u, υ) + jFIm (u, υ) (3)

|F(u, υ)| =
√

F2
Re(u, υ) + F2

Im (u, υ), (4)

φ(u, υ) = tan−1
∣∣∣∣ FIm (u, υ)

FRe (u, υ)

∣∣∣∣ , (5)
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and where |F(u, υ)| and φ(u, υ) are the amplitude and phase distributions of the spatial
spectrum given by F(u, υ). A 2D Fourier image depicted this symmetry criterion graphically
as a succession of symmetric points in the u and v plane, as shown in Figure 10.
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3.3. Analysis

The datasets were collected using two locations of receiving antenna array on 8 January
2021. The first frame of LWA-SV started recording at 20:29:20, whereas the first frame of
LWA-1 was at 18:00:00. Both datasets lasted around 28 min.

3.3.1. Analysis of LWA—SV Spatial Frequency Result

The 2D Fourier image showed many frequency peaks or approximately 170 peaks, as
shown in Figure 11a,c. Each peak represented a set of waves on the ionosphere with its
own amplitude, frequency, and wave vector. One pair of peaks located close to the origin
had a frequency of 0.06 cycles/m and a wavelength of 16.667 m, which was the largest
peak and was studied the most for its possible location of creation. It had a wave vector
that sometimes pointed north–south and sometimes slightly tilted from this direction, as
shown in Figure 11. Different time sequences were tested to check the direction of the
wavevectors. As a result, the wavevector maintained pointing around 90% of time in a
north-south direction, and 10% of time was tilted in a westward direction.
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Figure 11. (a) A Fourier image of LWA−SV that shows many peaks which represent sets of detected
waves. The the strongest (yellow circle) has 0.06 cycles/m, and the wavevector (yellow arrows)
pointing north–south. (b) The inverse Fourier transform (IFT) of (a) revealing the north–south waves.
(c) A similar set of waves pointing north–south tilt in a westward direction. (d) The IFT of (c) revealing
the tilted waves.
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The 2D Fourier images of LWA-SV displayed many spatial frequency peaks (around
170 on one side). The Fourier image shows symmetry sides representing many sets of
waves on the ionosphere, as shown in Figure 11.

3.3.2. Analysis of LWA–1 Spatial Frequency Results

A 2D Fourier transform space domain was also applied to a relative phase image for
LWA-1 to obtain Fourier images for each time of data collection.

The Fourier image reveals symmetrical sides representing numerous sets of waves on
the ionosphere, and the 2D Fourier images of LWA-SV exhibited several spatial frequency
peaks of about 170 on one side, Figures 12–14.
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set of waves and its wave vector.
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Figure 14. (a) A Fourier image demonstrating the wave direction (0.06 cycles/m) of LWA-1 with
angles about 60 degrees eastward (northeast–southwest) from the north–south direction as well as its
IFT in (b).

The LWA-1 phase image showed corresponding waves to those seen by LWA-SV.
The main Fourier peak was 0.06 cycles/m and was like LWA-SV’s but had a northeast–
southwest wavevector instead of a north–south one. The 0.06 cycles/m wave was the
largest and strongest peak on both sets of data and was studied the most due to its possible
location of creation.

3.3.3. Intersection of the 0.06 cycle/m Wave Vectors from LWA-SV and LWA–1

There are two places on the surface of the ionosphere reflecting the carrier radio wave.
They lie mid-way between Santa Fe and LWA-SV and LWA-1, as shown in Figure 15. Each
place had its own set of waves. Their Fourier images nicely revealed the intersection points
of their wavevectors that represented the location of the source that created the waves.
Possible local wave sources were Albuquerque and its nearby power-generating stations.
The two sets of data showed a range of vectors in the LWA-1 Fourier image from around
25 to 60 degrees and from around (0 to 13 degrees) in the LWA-SV image. As a result, the
intersection points covered a swath of area between Albuquerque and the power stations.
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4. Discussion of LWA-1 and LWA-2 Results

The receiving antenna arrays functioned well as cameras where each antenna repre-
sented one pixel in the phase image. Hence, the 256 antennas in the array represented
256 pixels in the phase image. The same carrier wave was transmitted; however, there
was a short time difference in collecting the raw dataset between the two LWAs. Their
2D Fourier images showed the same spatial frequency peaks, although not all peaks were
similar. The results of the 0.06 cycles/m were the same in terms of their amplitudes, but
their wave vectors were different. The wave vectors were different because the direction of
the source of the waves was different, i.e., Albuquerque. Albuquerque essentially acted as
a point source of disturbance as its waves emanated radially 360 degrees outward. Thus,
LWA-1 and LWA-SV saw different wave vectors of the same set of waves. Triangulation
using the two sets of wave vectors was used to find the source of the disturbance.

Fourier image analysis showed the presence of ~170 sets of waves that were likely
created by both space and Earth disturbing events. There has been some previous research
showing a link between man-made Earth disturbing events and ionosphere responses.
Such events like these generate waves that have a clear impact on the ionosphere. For
example, waves on the ionization layer have been known from ionosondes [34]. This SDR
Atmosphere imager has been shown to provide new information, such as the presence of
numerous sets of waves with different amplitudes, frequencies, and wave vectors.

Only one set was studied for its possible location of creation, i.e., the strongest peak
had a spatial frequency of 0.06 cycles/m with a wavelength of 16.67 m/cycle. The wavevec-
tor of this set of waves at LWA-SV and LWA-1 were the same, and both often pointed
in the north–south direction and sometimes slightly tilted off this direction. Based on
triangulation of the wavevectors, the location of the possible disturbances that created this
set of waves was from the local power generating stations and possibly the grid of their
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transmission lines around Albuquerque, which is considered a main consumer of power.
Time measurements over a 1 s and 3 s period of the 0.06 cycles/m peak had a frequency of
30 Hz. A frequency of 30 Hz could have resulted from the resonances of the 60 Hz in-phase
current being transmitted within the power grid around Albuquerque. Several power
generators supply Albuquerque and are spatially close to each other; therefore, it is possible
that their interference can produce the frequency of 30 Hz found in the measurement.

5. Conclusions

The SDR Earth Imager enabled imaging of the Earth’s ionosphere layer. The wave
vector of one set of waves—the strongest with 0.06 cycles/m—was followed in time at both
LWA-SV and LWA-1 stations. The most likely sources for this set of waves are the local
power generating stations and power usage in Albuquerque, which is a primary consumer
of power.

Further investigations are warranted to determine which wave vectors relate to the
power of ionospheric waves and local disturbances, such as the power generating stations
around Albuquerque.

6. Patents

Patent No: US 10,451,731 B2. Date: 22 October 2019. A Software Defined Radio Earth
Atmosphere Imaging system with at least one imager that includes: a radio wave emitter
configured to emit a sky wave, a ground wave, and a first line signal; radio wave detectors,
including a radio wave detector with a two-dimensional array of radio wave receivers and
a radio wave detector for receiving a carrier wave and a ground wave and transmitting
a second-time signal; a vector network analyzer, including a Global Navigation Satellite
System and at least one synchronization clock; a vector network analyzer in electrical
communication with the radio emitter via a first wire and with the radio wave detector
via a second wire with the wires used to transmit time signals; a software-defined radio
in electronic communication with a vector network analyzer; and a computing device in
electronic communication with the vector network analyzer.
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