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Abstract: In this article, the local spatial correlation of multiple remote sensing datasets, such as
those from Sentinel-1, Sentinel-2, and digital surface models (DSMs), are linked to machine learning
(ML) regression algorithms for flash floodwater depth retrieval. Edge detection filters are applied to
remote sensing images to extract features that are used as independent features by ML algorithms to
estimate flood depths. Data of dependent variables were obtained from the Hydrologic Engineering
Center’s River Analysis System (HEC-RAS 2D) simulation model, as applied to the New Cairo, Egypt,
post-flash flood event from 24–26 April 2018. Gradient boosting regression (GBR), random forest
regression (RFR), linear regression (LR), extreme gradient boosting regression (XGBR), multilayer
perceptron neural network regression (MLPR), k-nearest neighbors regression (KNR), and support
vector regression (SVR) were used to estimate floodwater depths; their outputs were compared and
evaluated for accuracy using the root-mean-square error (RMSE). The RMSE accuracy for all ML
algorithms was 0.18–0.22 m for depths less than 1 m (96% of all test data), indicating that ML models
are relatively portable and capable of computing floodwater depths using remote sensing data as
an input.

Keywords: floodwater depth; ML; Sentinel-1; SAR data; DEM; remote sensing; hydraulic modeling;
feature extraction

1. Introduction

Floodwater depth identification during or after flash flood events is critical in determin-
ing hazard degrees and risk zone maps for the economy and human life [1,2]. Compared
with direct surveying methods, measurement techniques, such as side-scan and multi-
beam sonar, hydrologic modeling, and flow water depth, based on remote sensing are
fast, large-scale, and quasi-synchronous with high spatial resolutions. Furthermore, direct
surveying methods to determine floodwater depth can be extremely precise, but they are
greatly influenced by weather conditions and costly, and surveying field crews are not
authorized to reach sensitive flooded areas.

In addition, optical and synthetic aperture radar (SAR) images, and the digital ele-
vation model (DEM) based on airborne light detection and ranging (LiDAR), have been
integrated and classified for floodwater surface identification [3,4]. Although SAR data are
superior to optical satellite data, as SARs can penetrate cloud cover, they suffer from a long
revisit time [5–7].

Studies have employed a variety of hydrodynamic 1D, 2D, and 3D software to simulate
water levels and floodwater depths, including HEC-RAS, Delft-3D, and LISFLOOD-FP [8,9].
These models require rainfall, soil moisture, flood maps, gauge discharge, cross-sections,
and other hydrological inputs to simulate water depth. The disadvantage of employing
hydrodynamic models to simulate floodwater depth is the requirement of a large input
dataset and extensive computation and calibration.

Recently, the growth of urban regions and infrastructures such as highways and
trains has extended the flood-prone regions in New Cairo, Egypt, which has increased the
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severity of floods [10]. Several studies have mapped flood inundation in New Cairo, but
none have addressed floodwater depth. Numerous hydrological characteristics and flood
models, such as the Hydraulic Engineering Center’s River Analysis System (HEC-RAS),
have been applied to map and forecast flood inundation [11–13], and machine learning
(ML) algorithms have been used to map flood inundation [14–16]. No study has attempted
to quantify floodwater depth and duration during flood disasters in Egypt so far.

Supervised ML regression algorithms are used to learn a function that combines a set
of feature data (independent variables) to predict a dependent variable [17,18]. Random
forest regression (RFR) is a kind of ensemble learning [19], i.e., a decision tree supervised
ML algorithm based on a set of rules [17].

Furthermore, ML has been used for data extraction, pattern recognition, regression,
and classification problems since the start of the 21st century. Research has shown that ML
algorithms, such as support vector machine (SVM), RFR, and extreme gradient boosting
(XGBR), can efficiently produce spatial predictions [19,20]. RF and XGBR use both decision
trees and the bagging technique [21]. Some researchers have trained ML algorithms to
estimate water depths using the pixel reflectance values of satellite data, and validated the
results through field observation [22].

The current work aims to estimate flash flood water depths by concatenating the
spectral information of remote sensing data, such as Sentinel-1 SAR data, digital surface
models (DSMs), and land-use maps, at feature levels, and apply a regression algorithm
using ML techniques, such as gradient boosting regression (GBR), RFR, linear regression
(LR), XGBR, multilayer perceptron neural network regression (MLPR), k-nearest neighbors
regression (KNR), and support vector regression (SVR). ML has many properties that make
it appropriate for obtaining water depths from remote sensing images. For example, ML
algorithms are ideal for processing locally joined data, such as raster data with a spatial
grid structure. Moreover, the floodwater levels of unknown locations can be considered the
weighted averages of nearby known water depths, as obtained by geographic interpolation.
Therefore, I investigate the impact of adjacent pixels of remote sensing data on floodwater
depth prediction through ML algorithms. An informative and appropriate number of
features should be derived for the subsequent regression ML algorithms. The performance
of extracted features and their importance in improving accuracy and accelerating the
algorithm are investigated.

2. Study Area and Dataset
2.1. Study Area

New Cairo is in the southeast of Egypt’s Cairo Province. It was established in 2000,
with a land area of approximately 70,000 acres. A 90-square-kilometer area with altitudes
ranging from 200 m to 420 m above the mean sea level was chosen to model flash floodwater
depths. Figure 1 shows a true-color Sentinel-2 image of the study area, from which a land-
use map was created for use in calculating roughness values.

2.2. Rainfall Intensity Data

Cairo has a four-season hot desert climate. The study area receives the majority of its
rainfall from November through April. Daily rainfall data for the area were obtained from
the NASA Prediction of Worldwide Energy Resources (POWER) project, which delivers
global weather data with a spatial resolution of 0.5◦. Based on historical meteorological
information collected from the POWER website for 1981–2018, the average annual precipi-
tation in the watershed is 51.2 mm/y (https://power.larc.nasa.gov/data-access-viewer/
(accessed on 20 August 2021)). Figure 2 shows the hourly rain intensity during the stormy
period, which was used to simulate the water depth of the study area using the HEC-RAS
2D program.

https://power.larc.nasa.gov/data-access-viewer/


Remote Sens. 2022, 14, 440 3 of 16Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Ten-meter spatial resolution true-color image based on Sentinel-2 satellite data for the 

study area.  

2.2. Rainfall Intensity Data 

Cairo has a four-season hot desert climate. The study area receives the majority of its 

rainfall from November through April. Daily rainfall data for the area were obtained from 

the NASA Prediction of Worldwide Energy Resources (POWER) project, which delivers 

global weather data with a spatial resolution of 0.5°. Based on historical meteorological 

information collected from the POWER website for 1981–2018, the average annual precip-

itation in the watershed is 51.2 mm/y (https://power.larc.nasa.gov/data-access-viewer/) 

(accessed on 20 August 2021)). Figure 2 shows the hourly rain intensity during the stormy 

period, which was used to simulate the water depth of the study area using the HEC-RAS 

2D program. 

 

Figure 2. Rainfall intensity during a flash flood on 24 April 2018. 

Figure 1. Ten-meter spatial resolution true-color image based on Sentinel-2 satellite data for the
study area.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Ten-meter spatial resolution true-color image based on Sentinel-2 satellite data for the 

study area.  

2.2. Rainfall Intensity Data 

Cairo has a four-season hot desert climate. The study area receives the majority of its 

rainfall from November through April. Daily rainfall data for the area were obtained from 

the NASA Prediction of Worldwide Energy Resources (POWER) project, which delivers 

global weather data with a spatial resolution of 0.5°. Based on historical meteorological 

information collected from the POWER website for 1981–2018, the average annual precip-

itation in the watershed is 51.2 mm/y (https://power.larc.nasa.gov/data-access-viewer/) 

(accessed on 20 August 2021)). Figure 2 shows the hourly rain intensity during the stormy 

period, which was used to simulate the water depth of the study area using the HEC-RAS 

2D program. 

 

Figure 2. Rainfall intensity during a flash flood on 24 April 2018. Figure 2. Rainfall intensity during a flash flood on 24 April 2018.

2.3. DSM Data Preparation

A DSM is a raster map representing the above-ground elements. A DEM, without
objects such as trees and buildings, shows the shape of the bare earth. Many DSM and
DEM data sources, varying from low- to high-resolution, have been produced in the past
30 years [23,24]. In particular, the Shuttle Radar Topography Mission (SRTM)-30 m and
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-30 m are
freely available and can be used for engineering applications, such as flood mapping. Data
from the Advanced Land Observing Satellite (ALOS)-30 m DSM for the current study area
can be downloaded from the ALOS website (https://scihub.copernicus.eu/ (accessed on

https://scihub.copernicus.eu/
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10 August 2021)). The region of interest (ROI) was clipped for the study area. Figure 3
shows the DSM with Sentinel-2 true color as the background.
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2.4. Sentinel-1 Data

SAR penetrates clouds and dense vegetation, which makes it suitable for detecting
water areas in all weather conditions. Sentinel-1 data, as a SAR product of the Euro-
pean Copernicus program, are freely accessible through the Copernicus Open Access Hub
(https://step.esa.int/main/toolboxes/snap/ (accessed on 15 August 2021)), and cover the
globe with a six-day temporal resolution and 10 m spatial resolution. The level-1 Interfero-
metric Wide Swath (IW) product, acquired on 27 April 2018, was used to extract wet areas
and estimate water depths during a flash flood in the study area. The Sentinel Application
Platform (SNAP) software (https://step.esa.int/main/toolboxes/snap/ (accessed on 1 July
2021)) deals with all Sentinel-1 data products. Fundamental SAR image-processing steps
include radiometric calibration, speckle filtering, terrain correction, and sigma naught
(σ0) value calculation for vertical horizontal (VH) polarization. To improve the visualiza-
tion of water areas, the pixel values were converted to backscattering in decibels (dB) of
σ0

VH . The final SAR image was re-sampled to a 30 m ground sample distance (GSD) by
nearest-neighbor interpolation and reprojected into the WGS84/UTM coordinate system.

2.5. Land Use

The land-use map was prepared using the ArcGIS 10.4 software by applying the
maximum likelihood (ML) supervised classification method for the Sentinel-2 image, which
entails four steps: (1) determine the number of layers; (2) select the training sample for
each class; (3) estimate the mean vector and covariance matrix for each training sample
layer; and (4) classify each pixel in the satellite image based on the covariance matrix and
mean vector. Figure 4 shows the obtained classification land-use map. Table 1 shows that
the overall classification accuracy was 87.1%, with a kappa coefficient of 0.815. The kappa
coefficient indicates how well the classification results and truth values agree. A kappa
value of 1 indicates complete agreement, whereas a value of 0 indicates no agreement.

https://step.esa.int/main/toolboxes/snap/
https://step.esa.int/main/toolboxes/snap/
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Table 1. Classification accuracy of land-use map.

Bare Soil Buildings Green Roads Water Sum User’s Accuracy

Bare soil 107 0 1 3 2 113 94.7%
Buildings 2 42 1 2 1 48 87.5%

Green 1 1 6 1 1 10 60.0%
Roads 2 1 3 28 2 36 77.8%
Water 1 0 1 2 6 10 60.0%
Sum 113 44 12 36 12 217

Producer’s accuracy 94.7% 95.5% 50.0% 77.8% 50.0%
Total Accuracy 87.1%

a 26,714
b 32,790

Kappa 81.5%

2.6. Water Depth Extraction (Dependent Variable)

There were no direct measurements of water depth during flood times, so the DSM,
land-use map, and rainfall data were used to analyze the unsteady flow using HEC-RAS
2D version 5.0.6. to estimate the water depth. The water depth from 24–27 April 2018
was generated using the modeling software. The digital map of the modeled maximum
floodwater depth over 24–27 April is shown in Figure 5.
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3. Methodology and Data Preparation
3.1. Research Methodology

An ML algorithm consists of a dependent variable (Y) and an independent variable
(X). In our study, Y represents floodwater depth, and X represents DSM, land-use map, and
SAR image information. Water depth values will be predicted from a set of predictors or
independent variables. In addition, the water depth and independent data images should
match spatially and have the same resolution. The algorithm randomly divides the data
into training and test sets before training the model. The ML algorithm updates its input
parameters and generates the water depth model throughout the training phase. The model
is validated by predicting new water depths using test data and calculating the root mean
square error (RMSE) between the predicted and test values. Figure 6 shows a full flowchart
for this procedure. I used 80% of the collected elevation data to train the algorithm, and
20% to validate the solutions.

3.2. Machine Learning Data Preparation

Any ML predictive modeling project is unique, but there are common basic processes,
such as identifying the problem, preparing the data, and assessing and finalizing mod-
els [25]. The current project, predicting the depth of floodwater, involves a continuous
output quantity rather than a discrete class label. Hence, I used ML regression modeling.
Data preparation focuses on converting the gathered raw data to a format that can be
used in modeling [26]. I selected appropriate metrics to evaluate the model and optimum
hyperparameter tuning as part of the model evaluation. Independent variables (features)
are used as the input for ML algorithms. The next two subsections describe how to obtain
and manipulate the ML data input.



Remote Sens. 2022, 14, 440 7 of 16Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 6. Flowchart of water depth estimation. 

3.2.1. Dependent Feature Extraction and Preparation (Y) 

During the training and testing of the chosen ML algorithm, the water depth map 

displayed in Figure 5 (width = 458 and height = 274 pixels) was used as a dependent var-

iable. Before data are used, they must be smoothed by a Gaussian filter to remove noise 

and outliers [27]. Figure 7 shows a histogram of water depth before and after Gaussian 

smoothing with σ = 1. Values were then reshaped from 2D (770 × 700) to a 1D Pandas 

DataFrame [28]. 

Figure 6. Flowchart of water depth estimation.

3.2.1. Dependent Feature Extraction and Preparation (Y)

During the training and testing of the chosen ML algorithm, the water depth map
displayed in Figure 5 (width = 458 and height = 274 pixels) was used as a dependent
variable. Before data are used, they must be smoothed by a Gaussian filter to remove noise
and outliers [27]. Figure 7 shows a histogram of water depth before and after Gaussian
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smoothing with σ = 1. Values were then reshaped from 2D (770 × 700) to a 1D Pandas
DataFrame [28].
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3.2.2. Independent Feature Extraction and Preparation (X)

The total number of independent features used to train the ML algorithms was 33, as
extracted from SAR images, DSM models, and land-use maps. By applying some edge
detection filters to the SAR image in addition to its original pixel values, 30 features were
extracted. The earth surface slope and stream order calculated based on a DSM map were
added as two more features. The land-use map (Figure 4) was used as another independent
feature. Raster images were resized to a raster size of 458 × 274 pixels and a resolution of
30 m before any computations. The total number of sample datasets used after reshaping
the 2D raster maps to a 1D vector data form was 125,492.

3.2.3. Independent Feature Extraction Algorithms and Methods

The digital filters and equations used to collect independent variables for input to ML
algorithms will be discussed.

Raster SAR images represent pixels with a 30 m ground sample distance, and each
pixel has a σ0 value for σ0

VH polarization. Gabor kernel values and those from additional
edge detection filters, such as Canny, Sobel, Roberts, and Prewitt, were estimated as
independent features based on SAR image pixel values. Gabor filters are directional filters
used for edge detection and analysis if an image has a sudden sharp increase [29,30], and
are determined as

G(x, y; λ, θ, ψ, σ, γ) = exp

[
− x′2 + γ2y′2

2σ2

]
exp

[
i
(

2π
x′

λ
+ ψ

)]
, (1)

where
x′ = x cosθ + y sinθ and y′ = −x sinθ + y cosθ

λ is the wavelength, σ is the standard deviation of the Gaussian function in the x and y
directions, θ indicates the orientation of the filter, and ψ is the phase offset. The shape of a
Gabor filter depends on the aspect ratio γ. If γ is equal to one, then the filter appears as
a circle. The shape of the filter will gradually change from an ellipsoid to a straight line
when γ is close to zero [31]. By varying the Gabor parameters λ, θ, ψ, σ, and γ, different
orientations are used to analyze the texture or obtain features from images. Figure 8 shows
the source python code used to extract the Gabor filter parameters using multi for loops.
Accordingly, 32 Gabor labels were generated using a Python code, each having the values
of its own parameters.
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The OpenCV open-source code library was used to calculate the values of the Gabor
features and other edge detection filters [32,33].

The surface slope indicates the steepness of the ground’s surface. The slope between
two points on the Earth’s surface can be calculated by dividing their elevation difference
by the horizontal distance between them. For the DSM surface, the surface slope in degrees
can be calculated as

Slope = tan−1

√( dz
dx

)2
+

(
dz
dy

)2
, (2)

where
(

dz
dx , dz

dx

)
is the perpendicular rate of change for the center cell of a moving 3 × 3

pixel window for grid-based DSM [34–36]. Figure 9 shows the pixel values of a moving
3 × 3 window, where the neighbors of the center cell e are identified by the letters a to i.
The perpendicular rate of change for the x and y directions is calculated as

dz
dx

=
(c + 2 f + i)− (a + 2d + g)

8 ∗ x_cellsize
;

dz
dy

=
(g + 2h + i)− (a + 2b + c)

8 ∗ y_cellsize
, (3)
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Figure 9. Moving 3 × 3-pixel window to calculate the surface slope.

The ArcGIS 10.7 software was used to calculate the slope for the current study. In
hydrology, the stream or waterbody order is a positive, whole number that indicates the
degree of splitting in a stream channel. Using ArcGIS software version 10.7, a raster image
representing the stream order for the current study site was delineated from the DSM [37].
Subsequently, Sentinel-2 remote sensing satellite photos were classified to obtain land-cover
features, including water, roads, green areas, buildings, and bare soil, identified by integers
1–5, respectively. Figure 10 and Table 2 show the 32 features extracted to train the ML
algorithms and predict water depths. Some features were removed because their output
values were constant at a given value and did not vary at each pixel. As a result, the overall
number of features dropped from 33 to 32.
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Table 2. Sample of the extracted feature values.

ML Data Based On:
Features Pixel ID (Sample Number)

ID Filter 1 2 125491 125492

Independent data (X)

SAR image

1 Original Image 19.23 18.45 16.59 15.29

2 Gabor3 91.00 90.00 84.00 81.00

3 Gabor4 51.00 51.00 46.00 44.00

4 Gabor5 29.00 29.00 27.00 26.00

5 Gabor6 17.00 16.00 15.00 14.00

6 Gabor7 12.00 12.00 11.00 11.00

7 Gabor8 7.00 7.00 6.00 6.00

8 Gabor11 62.00 62.00 58.00 55.00

9 Gabor12 57.00 57.00 53.00 51.00

10 Gabor19 255.00 255.00 255.00 255.00

11 Gabor20 156.00 155.00 140.00 132.00

12 Gabor21 10.00 10.00 10.00 10.00

13 Gabor23 34.00 34.00 32.00 31.00

14 Gabor24 7.00 7.00 6.00 6.00

15 Gabor27 206.00 205.00 188.00 180.00

16 Gabor28 159.00 158.00 144.00 136.00

17 Gabor29 8.00 7.00 8.00 8.00

18 Gabor30 4.00 4.00 4.00 4.00

19 Gabor31 14.00 14.00 14.00 13.00

20 Gabor32 8.00 8.00 8.00 8.00

21 GMM 1.00 0.00 0.00 0.00

22 Canny Edge 0.00 0.00 0.00 0.00

23 Roberts 0.01 0.00 0.00 0.00

24 Sobel 0.01 0.00 0.00 0.00

25 Scharr 0.01 0.00 0.00 0.00

26 Prewitt 0.01 0.00 0.00 0.00

27 Gaussian s3 15.00 15.00 15.00 14.00

28 Gaussian s7 15.00 15.00 15.00 15.00

29 Median s3 18.00 18.00 16.00 15.00

30 Otsu 255.00 255.00 0.00 0.00

31 Slope_Per 6.25 6.09 4.48 2.98

32 Str_Ord 0.00 0.00 0.00 0.00

33 Land_Use 3.00 3.00 3.00 3.00

1 Water_depth 0.17 0.16 0.10 0.12

31 Slope_Per 6.25 6.09 4.48 2.98

DSM image 32 Str_Ord 0.00 0.00 0.00 0.00

Sentinel-2 image 33 Land_Use 3.00 3.00 3.00 3.00

Dependent data (Y) HEC-RAS results 1 Water_depth 0.17 0.16 0.10 0.12
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The collected data were randomly divided into a training dataset (80%, n = 100,393) to
generate water depths using various interpolation ML algorithms, and a validation dataset
(20%, n = 25,099) to calculate the accuracy of each model.

3.3. Quality Assessment

Of the measures for assessing derived ML models, RMSE is commonly used when
comparing predicted and actual independent values. The RMSE uses the squared error;
hence, greater errors have a stronger influence. The RMSE is calculated as

RMSE =

√
1
n ∑n

j=0
(yi − ŷ)2 (4)

where yi and ŷ are the actual and predicted water depths, respectively. The RMSE was
used to compare ML models.

4. Results

Several ML regression techniques, including support vector machine (SVR), random
forest (RF), k-nearest neighbors (KNR), and extreme gradient boosting (Xgboost), have
been suggested for the spatial interpolation of environmental variables, and several hybrid
methods have been adopted.

4.1. Machine Learning Hyperparameter Tuning

The precision and accuracy of ML algorithms are determined by the input variables.
Hyperparameter tuning is the process of finding the optimal hyperparameters to achieve
high precision and accuracy. GridSearch is a function in the Scikit-learn package that
is used to find the optimum parameters by building and evaluating multiple models
with different hyperparameter combinations. Other parameter tuning methods, such as
Random search and Bayesian optimization, can be implemented using Scikit-learn [38].
Figure 11A illustrates the influence of the number of estimators on the RF model’s accuracy,
which was steady and did not improve after using more than 15 estimators. Figure 11B
depicts the impact of using the number of nearby points on the tree model’s accuracy. The
accuracy of the KNR model was stable and did not improve after employing more than
eight neighboring points.
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The optimal results can be summarized as follows: the best number of estimators for
the RF algorithm was 12; the k-value for KNN was 7; for xgboost, the optimal number of
estimators was 60; and for SVR, the kernel was ‘C’: 1, ‘epsilon’: 0.02, ‘gamma’: 0.01, ‘kernel’:
‘rbf’. The C value was used to adjust the error or margin, gamma was used with Gaussian
rbf kernel, and epsilon was used to smooth the algorithm response.
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4.2. Accuracy of Obtained ML Algorithms

When the number of input features is large, it is preferable to use the most significant
ones during ML training to reduce processing time, enhance output accuracy, and make
model interpretation and understanding easier. Some ML algorithms, such as RFR, assess
the effectiveness of their input features [39,40]. Figure 12 shows the degree of importance
of each data feature.
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5. Discussion

As shown by the comparison results, the most effective feature was the surface slope,
followed by the SAR backscattering values. Figure 13 shows 30 sample data outputs for
the different used algorithms.
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Figure 13. Input feature importance.

Although the RMSE is heavily influenced by the distribution of validation points,
it is nevertheless a useful metric for assessing the accuracy of predicted water depths.
The RMSEs of multiple water depth ranges are shown in Table 3. The GBR and XGBRFR
approaches had the best accuracy for the overall test data, and MLPR and KNR had the
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worst accuracy. The SVR and XGBR algorithms had the most accurate models, with RMSE
of 0.20 m at water depths of 0–1 m, contributing to 96% of the test data. Figure 14 shows
the RMSE values for all conducted regression algorithms at different water depths.

Table 3. Comparison of RMSE and regression techniques at various water depths.

Water Depth
Number
of Points Percentages (%)

RMSE (m)
ML Algorithm

GBR RFR LR XGBR MLPR KNR SVR

>6 m 4 0.02 7.20 6.95 7.43 6.94 7.47 6.77 6.98

3–6 m 56 0.22 3.42 3.46 3.62 3.43 3.81 3.44 3.57

2–3 m 157 0.63 2.14 2.19 2.17 2.19 2.27 2.18 2.22

1–2 m 718 2.86 1.12 1.13 1.18 1.12 1.26 1.17 1.21

0–1 m 24,164 96.27 0.19 0.19 0.19 0.18 0.19 0.22 0.18

Overall 25,099 100 0.36 0.37 0.38 0.36 0.39 0.39 0.37
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Figure 14 shows the RMSE values for all conducted regression algorithms at different
water depths. Previous methods depended on DEM and SAR data and could only be used
for flat or gently sloping terrain [41]. The technique I propose is straightforward because it
works on any terrain and simply requires SAR and DEM data.

6. Conclusions

In this study, water depth estimation after a flash flood event in New Cairo City,
Egypt, was investigated using multiple ML algorithms. Several training datasets and ML
techniques were combined. The backscattering spectral band of the SAR data was used
to extract features to be used as independent inputs for ML algorithms. The water depth
(dependent input) was extracted by hydrodynamic HEC-RAS 2D software to obtain 250,099
data samples and 33 features to train and validate the used algorithms; 80% of the input
data were used for training and 20% for testing. I compared the accuracy of the obtained
models. The water depths were classified into five groups, and 96.27% of total water depths
fell between 0 and 1 m. All ML methods produced RMSE values of 0.18–0.22 m over this
water depth range. The XGBR and SVR models had the best accuracy, and the KNR model
had the worst. For deep water depths (more than 6 m), four sample datasets were found.
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Therefore, the accuracy of all approaches was reduced, as the RMSE values ranged from
7.20 to 6.77 m. Moreover, for all water depths, the prediction results were more consistent,
and the GBR and XGBR models achieved the best accuracy. For effective forecasting of
water depth from satellite data to build an emergency plan in case of floods, I recommend
integrating various training datasets and machine learning algorithms.

Funding: The project was funded by the Deanship of Scientific Research at Najran University, project
number (NU/SERC/10/550).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
author upon reasonable request.

Acknowledgments: The authors are thankful to the Deanship of Scientific Research at Najran Univer-
sity for funding this work under the General Research Funding program grant code (NU/SERC/10/550).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Townsend, P.A.; Walsh, S.J. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing.

Geomorphology 1998, 21, 295–312. [CrossRef]
2. Vishnu, C.L.; Sajinkumar, K.S.; Oommen, T.; Coffman, R.A.; Thrivikramji, K.P.; Rani, V.R.; Keerthy, S. Satellite-based assessment

of the August 2018 flood in parts of Kerala, India. Geomat. Nat. Hazards Risk 2019, 10, 758–767. [CrossRef]
3. Irwin, K.; Beaulne, D.; Braun, A.; Fotopoulos, G. Fusion of SAR, optical imagery and airborne LiDAR for surface water detection.

Remote Sens. 2017, 9, 890. [CrossRef]
4. Musa, Z.N.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water

modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. 2015, 19, 3755–3769. [CrossRef]
5. Bovenga, F.; Bovenga, F.; Belmonte, A.; Refice, A.; Pasquariello, G.; Nutricato, R.; Nitti, D.O.; Chiaradia, M.T. Performance

analysis of satellite missions for multi-temporal SAR interferometry. Sensors 2018, 18, 1359. [CrossRef] [PubMed]
6. Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. A method for automatic and rapid mapping of water surfaces from Sentinel-1

imagery. Remote Sens. 2018, 10, 217. [CrossRef]
7. Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45. [CrossRef]
8. Yalcin, E. Two-dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: A

case study of Kirsehir, Turkey. J. Flood Risk Manag. 2019, 12, e12499. [CrossRef]
9. Costabile, P.; Costanzo, C.; Ferraro, D.; Barca, P. Is HEC-RAS 2D accurate enough for storm-event hazard assessment? Lessons

learnt from a benchmarking study based on rain-on-grid modelling. J. Hydrol. 2021, 603, 126962. [CrossRef]
10. El Afandi, G.; Morsy, M. Developing an Early Warning System for Flash Flood in Egypt: Case Study Sinai Peninsula. In Advances

in Science, Technology and Innovation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 45–60.
11. Abdeldayem, O.M.; Eldaghar, O.; KMostafa, M.; MHabashy, M.; Hassan, A.A.; Mahmoud, H.; Morsy, K.M.; Abdelrady, A.;

Peters, R.W. Mitigation plan and water harvesting of flashflood in arid rural communities using modelling approach: A case
study in Afouna village, Egypt. Water 2020, 12, 2565. [CrossRef]

12. Sadek, M.; Li, X.; Mostafa, E.; Dossou, J.F. Monitoring flash flood hazard using modeling-based techniques and multi-source
remotely sensed data: The case study of Ras Ghareb City, Egypt. Arab. J. Geosci. 2021, 14, 2030. [CrossRef]

13. Elkhrachy, I.; Pham, Q.B.; Costache, R.; Mohajane, M.; Rahman, K.U.; Shahabi, H.; Linh, N.T.T.; Anh, N.T. Sentinel-1 remote
sensing data and Hydrologic Engineering Centres River Analysis System two-dimensional integration for flash flood detection
and modelling in New Cairo City, Egypt. J. Flood Risk Manag. 2021, 14, e12692. [CrossRef]

14. El-Haddad, B.A.; Youssef, A.M.; Pourghasemi, H.R.; Pradhan, B.; El-Shater, A.H.; El-Khashab, M.H. Flood susceptibility prediction
using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Nat. Hazards 2021, 105,
83–114. [CrossRef]

15. El-Magd, S.A.A.; Pradhan, B.; Alamri, A. Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and
surroundings, Central Eastern Desert, Egypt. Arab. J. Geosci. 2021, 14, 323. [CrossRef]

16. Mudashiru, R.B.; Sabtu, N.; Abustan, I. Quantitative and semi-quantitative methods in flood hazard/susceptibility mapping: A
review. Arab. J. Geosci. 2021, 14, 941. [CrossRef]

17. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer series in statistics; Springer: New York, NY,
USA, 2001; Volume 1, No. 10.

18. Ghorpade, P.; Gadge, A.; Lende, A.; Chordiya, H.; Gosavi, G.; Mishra, A.; Hooli, B.; Ingle, Y.S.; Shaikh, N. Flood Forecasting Using
Machine Learning: A Review. In Proceedings of the 2021 8th International Conference on Smart Computing and Communications:

http://doi.org/10.1016/S0169-555X(97)00069-X
http://doi.org/10.1080/19475705.2018.1543212
http://doi.org/10.3390/rs9090890
http://doi.org/10.5194/hess-19-3755-2015
http://doi.org/10.3390/s18051359
http://www.ncbi.nlm.nih.gov/pubmed/29702588
http://doi.org/10.3390/rs10020217
http://doi.org/10.1029/2006RG000197
http://doi.org/10.1111/jfr3.12499
http://doi.org/10.1016/j.jhydrol.2021.126962
http://doi.org/10.3390/w12092565
http://doi.org/10.1007/s12517-021-08341-3
http://doi.org/10.1111/jfr3.12692
http://doi.org/10.1007/s11069-020-04296-y
http://doi.org/10.1007/s12517-021-06466-z
http://doi.org/10.1007/s12517-021-07263-4


Remote Sens. 2022, 14, 440 16 of 16

Artificial Intelligence, AI Driven Applications for a Smart World, ICSCC, Kochi, Kerala, India, 1–3 July 2021; Volume 2021,
pp. 32–36. [CrossRef]

19. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
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