
����������
�������

Citation: Hermle, D.; Gaeta, M.;

Krautblatter, M.; Mazzanti, P.;

Keuschnig, M. Performance Testing

of Optical Flow Time Series Analyses

Based on a Fast, High-Alpine

Landslide. Remote Sens. 2022, 14, 455.

https://doi.org/10.3390/rs14030455

Academic Editor: Andrea

Ciampalini

Received: 30 November 2021

Accepted: 14 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Performance Testing of Optical Flow Time Series Analyses
Based on a Fast, High-Alpine Landslide
Doris Hermle 1,* , Michele Gaeta 2, Michael Krautblatter 1, Paolo Mazzanti 2,3 and Markus Keuschnig 4

1 Landslide Research Group, TU Munich, 80333 Munich, Germany; m.krautblatter@tum.de
2 NHAZCA S.r.l., Spin-Off from La SAPIENZA University of Rome, 00185 Rome, Italy;

michele.gaeta@nhazca.com (M.G.); paolo.mazzanti@uniroma1.it (P.M.)
3 Department of Earth Sciences & CERI Research Center, “Sapienza” University of Rome, 00185 Rome, Italy
4 GEORESEARCH Forschungsgesellschaft mbH, 5412 Puch, Austria; markus.keuschnig@georesearch.ac.at
* Correspondence: doris.hermle@tum.de; Tel.: +49-(0)89-289-25896

Abstract: Accurate remote analyses of high-alpine landslides are a key requirement for future alpine
safety. In critical stages of alpine landslide evolution, UAS (unmanned aerial system) data can
be employed using image registration to derive ground motion with high temporal and spatial
resolution. However, classical area-based algorithms suffer from dynamic surface alterations and
their limited velocity range restricts detection, resulting in noise from decorrelation and hindering
their application to fast landslides. Here, to reduce these limitations we apply for the first time the
optical flow-time series to landslides for the analysis of one of the fastest and most critical debris
flow source zones in Austria. The benchmark site Sattelkar (2130–2730 m asl), a steep, high-alpine
cirque in Austria, is highly sensitive to rainfall and melt-water events, which led to a 70,000 m3 debris
slide event after two days of heavy precipitation in summer 2014. We use a UAS data set of five
acquisitions (2018–2020) over a temporal range of three years with 0.16 m spatial resolution. Our new
methodology is to employ optical flow for landslide monitoring, which, along with phase correlation,
is incorporated into the software IRIS. For performance testing, we compared the two algorithms
by applying them to the UAS image stacks to calculate time-series displacement curves and ground
motion maps. These maps allow the exact identification of compartments of the complex landslide
body and reveal different displacement patterns, with displacement curves reflecting an increased
acceleration. Visually traceable boulders in the UAS orthophotos provide independent validation of
the methodology applied. Here, we demonstrate that UAS optical flow time series analysis generates
a better signal extraction, and thus less noise and a wider observable velocity range—highlighting its
applicability for the acceleration of a fast, high-alpine landslide.

Keywords: digital image correlation; phase correlation; optical flow; time series image stack; land-
slides; ground motion identification; displacement mapping; UAS

1. Introduction

Landslides have a causal link to climate change, thus pose an increasing risk in mag-
nitude and frequency for people and their livestock [1]. In particular, investigations of
high-alpine landslide areas are often difficult and dangerous; hence, remote sensing tech-
niques have to be employed to generate sufficient spatial and temporal coverage. Here,
optical space and airborne remote sensing offers two key advantages: (i) Optical images
with their close-to-nadir viewing geometry, with the image plane orthogonal to the sensor’s
line-of-sight (LOS), allow scientists to directly monitor and interpret geomorphic processes
of steep slopes [2] without using derived products. (ii) Optical remote sensing for the calcu-
lation of ground motion by image registration is often the only feasible way to quantify
horizontal surface displacements of both shallow and complex slope instabilities [3], where
geomorphic processes are moving at rates too high for radar remote sensing techniques [4].
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Motion analysis, applied to optical satellite and UAS imagery—including (terrestrial) Li-
DAR data [5–7]—to measure horizontal surface displacement is a well-established method.
Image registration, also known as image matching and image correlation, geometrically
aligns images and allows tracking for accurate 2D change measurements in optical images.
It has been used on a local to regional scale to assess motion fields for glaciological [8–10],
earthquake [11–13], dune migration [14,15], rock glacier [16] and landslide studies [5,17–25].

Image registration is among the most widely utilised techniques in computer vision.
It is used to overlay two or more images of the same scene acquired at different times, from
various viewpoints, by the same or different sensors [26]. Another application is stereo
matching, using an image pair from the same scene taken at the same time from multiple
opposing view angles [27]. Several approaches exist to estimate the relative translative
offset, such as digital image correlation, optical flow and feature matching, which are often
applied to measure displacement and strains. Two major approaches exist to estimate
displacements to sub-pixel precision. The first is the area-based approach (also known
as the correlation-like method), which recognises uniform amplitude patterns in both the
reference and secondary image (Figure 1). Various algorithms calculate the correlation
of these patterns in order to quantify the final displacement. The second is the feature-
based method, less sensitive to illumination changes and image distortions; it depends on
the existence of well-spread, salient features—detectable in both images—which are then
extracted to estimate displacement vectors. This feature recognition approach is suitable
for multisensor analyses and is computationally less expensive. However, its success is
conditioned on surface structures, which therefore restrict its general application [28].
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Figure 1. Displacement detection of an object in the reference (I1) and secondary (I2) image for t and
t + ∆t.

Classical area-based algorithms are cross-correlation, normalised cross-correlation
(NCC) and minimum distance criteria [29], utilising the intensity without any structural
analysis information to match areas or regions [26]. The Fourier shift theorem was proposed
as a method for registering translated images [30] and was used to modify the original
phase correlation (PC) algorithm (using the phase information) [31]. Thus, by introducing
the theorem, the PC works within the frequency domain, utilising rotational and transla-
tional properties to calculate the relative transformation parameters based on a translational
or similarity model [32,33]. Working with sub-pixel accuracy, PC is highly computationally
efficient, and thus can handle large matching templates. Furthermore, it overcomes inten-
sity contrasts, which are frequency-dependent noise, as well as non-uniform, temporal
variations such as disturbing illumination influences [26,31]. Nonetheless, the constraints
to applying Fast Fourier Transform (FFT) for measurements include both the picket-fence
effect and spectral leakage [32]. Computational efficiency can be further enhanced, as
can matching if an (inverse) pyramid approach (i.e., hierarchical cross-correlation) is ap-
plied [34]. Starting with a coarser image resolution on a high pyramid level, matched
patches, i.e., measured displacement, and areas with few matching errors are propagated
to a finer resolution and can be used to guide matching on finer levels down to the original
resolution [35].
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Several area-based applications for motion studies exist in the geoscience community.
One of the first tools was IMCORR (NCC), implemented in SAGA GIS, and thus freely
available [36,37]; another well-known and often-used tool is COSI-Corr (PC and NCC-
based matching) [11,12]. The add-on is free but implemented within the commercial ENVI
Classic. Other open source options are the library MicMac, which employs hierarchical
image correlation, a combination of NCC-based matching and spatial regularisation [38],
and the DIC-FFT (FFT), whose code runs in MATLAB [20]. Two other freely available tools
are CIAS, performing an NCC procedure [9,39], and EMT [40], combining cross correlation
and least square matching.

Several limitations nevertheless still exist for the abovementioned area-based methods.
Geometrical inaccuracies arise from co-registration, with additional problems resulting
from vegetation changes and dynamically significant surface processes, leading to mis-
matches [11,18]. While less sensitive to illumination differences, which are particularly
important and challenging for high-alpine environments (arising from low contrast, moving
cast shadows and cloud shadows), these factors can still result in erroneous displacement
results [11,18,25]. The most important problems for their application to fast landslides are
velocities exceeding the search window-related matching limit, which causes decorrelation
and ambiguous signals [5,41,42]. Finally, external problems influence the calculation results
from orthorectification and sensor model errors [11].

In contrast, the intensity-based approach analyses motions using the differential
matching technique of optical flow, i.e., the determination of the dense deformation field of
two dynamic images by computing motion vectors at every pixel (Figure S1). For more than
40 years, optical flow, also known as motion analysis, has been one of the classic research
problems in computer vision [43]. Following Horn’s taxonomy, a motion field is the 2D
representation of a 3D surface based on the brightness patterns of an apparent motion.
Thus, it is the dense information of a dynamic motion field between two consecutive images.
Based on the assumption of a globally smooth motion field [44], or if the dynamic motion
field is constant within a certain interrogation window [34], the brightness constancy term
is valid, so changes in illumination are resolved in motion [43,45]. As a function of space
(x, y) and time (t), the first image I1 (x, y, t) moved by ∆x, ∆y will correspond to the intensity
of the second image, with an offset I2 (x + ∆x, y + ∆y, t + ∆t), which can be expressed as the
optical flow problem: (u, v) =

(
∆x
∆t , ∆y

∆t

)
.

Fundamental works by Horn and Schunck [44], as well as Lucas and Kanade, [34] accel-
erated computation times, e.g., with the coarse-to-fine search strategy for an inverse image
pyramid approach, which decreases computational costs. Today, due to this computational
effectiveness while handling large displacements at sub-pixel resolutions, this strategy
is widely employed in medical image registration, automotive driver assistance, human
motion analysis, and has been applied in geosciences to determine glacier flow [46,47].

Nevertheless, based on the brightness consistency assumption, limitations arise due
to considerable changes in illumination induced by shadows, seasonal effects such as
non-uniform glacial crevasse patterns, surface feature changes of tumbling rocks, and large
textureless regions due to snow cover and shade [43,46]. Accordingly, optical flow was
suggested for images of low noise and brightness variance to estimate small displacements
only [42]. A recent work by Kroeger et al. [45,48] utilises the fast and noise-robust inverse
compositional image alignment approach [49,50] and proposes a fast dense inverse search
method to capture matches quickly in order to deal with large displacements, deformations,
appearance alterations such as illumination, chromaticity and blur, as well as motion
discontinuities or outliers [45,51].

In general, the application of optical image registration methods can encompass a
large velocity range as these methods are less sensitive to large displacements and long
measurement intervals, leading to decorrelation when using Differential Interferometric
Synthetic Aperture Radar (DInSAR). Its application is restricted to relatively slow motions
(≤1 m/yr), i.e., remaining below a quarter of the SAR sensors’ wavelength λ (≥λ/4), with
some exceptions of λ/2 [4]. Although active radar sensors are relatively independent
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of atmospheric constraints and of shadows, further limiting high-alpine factors include
snow cover, slope exposition, layover effects and foreshadowing [52,53]. Nevertheless,
using optical remote sensing for research on high-alpine sites is often difficult due to
meteorological constraints such as snow cover, clouds or cloud shadows and mountain
ridge topographic shadowing effects for certain seasons and times of day. Even though
satellite revisit rates have significantly increased (e.g., Sentinel-2, five days, PlanetScope,
daily), their actual net revisit rate for high-alpine sites is restricted to a few images per
month [25,54]. Therefore, UAS campaigns offer the highest temporal flexibility to overcome
these obstacles [17], but good quality data depends on GCPs (ground control points)
with reproducible flight plans [55], which requires significantly more time, and hence,
higher costs.

While experience for landslide displacement calculations on area-based image match-
ing exists [14,56], no previous research has applied intensity-based optical flow to derive
ground motion for landslide behaviour assessment. In this study, we test the performance
of the intensity-based fast optical flow method using dense inverse search and compare
the results with the widely known area-based phase correlation algorithm, both of which
are implemented into the commercial software IRIS. We employed these algorithms to
compute the deformation fields for the Sattelkar, a complex landslide in a steep high-alpine
cirque (2130–2739 m asl) exhibiting varying displacement rates from slow (few meters)
to moderate velocities (<30 m/yr) [57]. We conduct a single interval analysis, together
with a time-series approach, on five UAS orthophotos acquired during a three-year pe-
riod (2018–2020) of both high spatial accuracy and resolution (0.08 m) [58]. We evaluate
the results based on trajectories of large boulder blocks (<10 m) which are traceable in
the UAS orthophotos and stable bedrock. Accordingly, we seek to answer the following
research questions:

1. Is the dense inverse search (DIS) method applicable to the large displacements of
landslides with complex behaviours?

2. Can the method investigate both slow and moderate velocities between repeated
observation intervals?

3. Is the DIS method robust enough to cope with the changing and unfavourable illumi-
nation of a high-alpine steep study site?

4. How does the DIS method perform in comparison to the well-established phase
correlation algorithm?

2. A Complex Landslide

The Sattelkar is a ~30◦ steep high-alpine deglaciated cirque in the Obersulzbach valley,
Großvenedigergruppe, Austria (Figure 2). It is located at an altitude between 2130–2730 m
asl and is west-oriented. The cirque is surrounded by a headwall of central granitic gneiss
and is filled with an abundant volume of deposits from past and current rockfalls, glacial
and periglacial debris, moraine walls and relicts of a dissolving rock glacier [59,60]. The
cirque infill is characterised by a wide grain size distribution, with boulders up to 10 m.

Since 2003, surface alterations have taken place: the vegetation cover has degraded,
and been replaced with loose mobile rock material [59]. The deep-seated, retrogressive
movement is sensitive to rainfall and meltwater, causing high water (over)saturation and
leading to a spreading and sliding behaviour on the glacially smoothed bedrock, developing
into a flow-like behaviour while huge blocks tumble and turn—all of which can be classified
as a complex landslide [57]. These characteristics make this a challenging benchmark object
and suitable site for landslide displacement analyses using optical remote sensing.

Based on aerial orthophotos, damage documentation, and witness reports, during
the last decade a continuous intensification of mass wasting and debris flow activities
has taken place. Heavy precipitation on 30 and 31 July 2014 led to a debris flow of about
70,000 m3 from the catchment area above the cirque threshold (at ~2000 m asl), and a
further 100,000 m3 of mobilized material was entrained from within the channel [59].
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Initial investigations estimated an unstable area of 130,000 m2 where 1 mio. m3 of
debris showed high activity; displacement rates up to 10 m a−1 between 2003–2015 were
obtained from aerial orthophotos and repeated field measurements [59,60]. As the debris
consisted of boulders up to 10 m, continuous visual block tracking could be employed to
estimate the displacement within the active area based on aerial orthophotos. Recent studies
conducted with COSI–Corr confirmed this ongoing increase of mass wasting processes,
with variable displacement rates ranging from 1–14 m in only 42 days [25].

Today long-term monitoring is conducted with high-accuracy UAS; nine differen-
tial GPS-measured GCPs provide continuous stable and precise conditions. Additional
monitoring instruments provide geomorphologic insights into rockfall behaviour via one
autarkic seismograph. Thirteen near-surface temperature loggers at a 0.1 m depth also
record mean annual ground surface temperatures, indicating potential, sporadic permafrost
conditions [61]. Recent empirical statistical permafrost modelling in the Hohe Tauern Range
supports permafrost occurrence at our study site [62].
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Figure 2. (a) Sattelkar, 30 June 2019, with the debris cone of the 2014 debris flow event; overview map
of Austria in the top right corner (white) (Österreichischer Bundesverlag Schulbuch GmbH & Co. KG
and Freytag–Berndt & Artaria KG, Wien, Austria), (b) UAS orthophoto (4 September 2019) with the
landslide in transparent red and the entire cirque indicated with a dashed grey outline, (c) boulder
size of 5–10 m used for manual motion tracking and (d) view on the front of the cirque threshold.

3. Materials and Methods

There are several reasons to utilise UAS orthoimages for our study. We have a stable
set-up for the study site which guarantees a high quality, reliable data set. Due to their
time flexibility, UAS flights are conducted under best illumination conditions, with similar
time periods. Additionally, we have full control of the image acquisition format (same UAS
and flight plan, management over spatial resolution, extent, acquisition altitude and snow
coverage) [55] and the subsequent manual post-processing (georeferencing and spatial
accuracy, orthorectification) [58].

We applied two image matching algorithms to optical multi-temporal UAS orthopho-
tos to identify and quantify horizontal displacements. The first is phase correlation [33],
and the second is optical flow, where we make use of a dense inverse search method
(DIS) [48] which applies the inverse search approach [49,50] based on the fundamental
work of the coarse-to-fine Lucas–Kanade algorithm [34]. The DIS code is freely avail-
able online (OpenCV, https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html,
last access 11 October 2021; the script is based on Kroeger et al. [48]). Both algorithms
are incorporated into the commercial software IRIS, developed by NHAZCA S.r.l., in

https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
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which the displacements were calculated (https://www.photomonitoring.com/iris, last
access 12 January 2022). Furthermore, we used ArcGIS (calculations, statistics and map
creation), ArcGIS Pro (multihillshade calculations), open source QGIS (data handling and
management) and SAGA (displacement vector calculations).

3.1. UAS Image Acquisition and Processing

Five UAS (unmanned aerial system) acquisition campaigns took place between 2018
and 2020 (Table 1). All UAS flights were conducted at approximately the same time of day
in order to have best similarity of illumination conditions regarding shadows. Additionally,
the flight campaigns were set up around the same dates to have generally equal time
intervals. Thus, for our study approach, the four time intervals of our data set allowed
us—with a sufficient number and an adequate approach—to interpret the processes of both
two one-year-long as well as two summer season intervals, with flights in mid-July and
the beginning of September (Table 1). The flights were planned with UgCS (identical flight
plans with four flights at different elevations of high overlap for front: 80% and side: 70%)
and carried out with a DJI Phantom 4. The ground sampling distance was 7 cm for the area
of ~3.4 km2 and with a flight speed of ~8 m/s, with a total flight time of ~3.5 h (Table 2).
Images were taken in RAW format, improved for contrast, highlights, shadows and clarity
using Adobe Exposer, then exported as JPGs (95% compression), and finally processed
with Pix4Dmapper to 0.08 m resolution. Based on nine permanent ground control points
on bare rock (GCPs, 30 × 30 cm), the pictures were georeferenced and orthorectified. GCPs
were repeatedly registered (1000 measurements/position) with the TRIMBLE R5 dGPS
(differential GPS). We post-processed the data using the baseline data of the Austrian
Positioning Service (APOS) provided by the Bundesamt für Eich und Vermessungswesen
(BEV). The horizontal RMSE was ~0.05 m and the vertical RMSE was ~0.10 m, and they
were used to rectify all UAS campaigns. Lastly, the data (orthophotos and DEMs) was
clipped to a consistent area of interest (AOI), projected to UTM 33N (EPSG 32633) and
downsampled to 0.16 m (bilinear interpolation) with GDAL to enhance processing time. In
addition, to better understand surface processes, hillshades (ArcGIS) and multi-hillshades
(ArcGIS Pro) were calculated and visualised as GIFs and combined with total displacement
results from PC and DIS (see online supplementary material, OSM).

Table 1. UAS acquisition dates and time interval overview for single (I–IV) and multimaster analysis
(1.-3.-2.-5., 001–004) (see Section 3.2).

Acquisition Dates Intervals Single
Analysis Intervals Multimaster Analysis

13 July 2018 (I): 376 (I): 376 (1.-3.):
418 (1.-4.):

727 (1.-5.):
791

(0001):
376 (0002):

418 (0003):
727 (0004):

791

24 July 2019 (II): 42 (2.-4.):
351 (2.-5.):

415
4 September 2019 (III): 3099 July 2020 (IV): 6411 September 2020

Table 2. UAS flight plans.

Flight Plan
Parts

Length of
Flightpath [km]

Flight
Time [min] Passes No. of

Images GSD Altitude
Startpoint [m]

Highest Flight
Position [m]

Lowest Terrain
Point [m]

Top 6.8 17 6 121 7 2630 3120 2365
Middle 7.5 19 6 135 7 2200 2682 1820
Low 1 7.3 17 6 130 7 1768 2115 1620
Low 2 5.6 14 6 81 7 1768 2110 1620

Total 27.2 67 24 467 7 3120 1620

https://www.photomonitoring.com/iris
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3.2. Displacement Calculation and Derivation of Displacement Curves

We systematically tested parameter sensitivities in order to determine the best settings
for both algorithms, PC and DIS. To do so, we conducted horizontal displacement analyses
for all possible time interval combinations on both single analyses (i.e., tn − tn+1) as well
as multimaster analyses (Table 1). Multispectral (rgb) UAS orthophotos were used as the
input, which were transformed into grayscale images.

The parameter settings of the phase correlation in IRIS are (i) step size, which is the
pixel size in x, y between the two sliding windows. This defines the final output resolution,
and thus, the final information density (the smaller the step, the denser the coverage), and
significantly affects computation time. Similarly, the size of the moving window is a critical
parameter, as it defines the physical resolution of the result and represents a compromise
between noisy or homogeneous data, hence producing stable output results. Enlarging
the window size, the correlation can be increased and homogeneity enhanced; however,
computation time will increase. For our input data, we achieved the best results (ii) using
a matching window size of 256 pixels. We set (iii) the subpixel resolution to 0.25, which
resulted in an upsampled cross-correlation by a factor of 4 and a final subpixel resolution
of 0.04 m. Although we had (iv) the option to use the coarse-to-fine pyramid approach,
working with one pyramid level was sufficient, and thus the original resolution was kept.
In the post-processing the results were (v) resampled using nearest neighbour. In order to
identify the matching limitations, i.e., decorrelations, we did (vi) not apply a correlation
coefficient threshold, thus keeping the results raw. For final total displacement visualisation,
a minimum threshold for values below 0.5 m was applied to eliminate noise.

Thereafter, a multitemporal analysis was performed and the same image matching
parameter settings (i–vi) were applied as used for the single analysis. For each reference
image we calculated every secondary image, i.e., retaining all possible image combinations
(Figure 3). Prior to each single displacement analysis, image pairs were co-registered
using the stable area around the landslide. Then, a weighted average using the correlation
coefficient was applied to all single analysis results in order to calculate the final multimaster
outcome. Each single analysis resultant map was saved to facilitate the final analysis.
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Using the OpenCV [63] algorithm, which implemented a dense inverse search optical
flow [48], we analysed the UAS data set and tested different parameter combinations for
each single time interval in order to find the most suitable one (Table A1). The matching
patch sizes employed 8 × 8 or 16 × 16 pixels. A mean normalisation for the patches was
applied, which improves the robustness of illumination changes as it calculates every
band’s mean.

Once we determined the best single-interval combinations, we used these results for
the final multimaster analysis of DIS. We used the same multimaster settings as those
applied for the PC multimaster calculation.

In order to calculate the time series (TS) displacement curves based on the multimaster
analysis, in QGIS we created six large rectangles (TS AOI 1–6; see Figure 8). On the basis
of preliminary results during sensitivity tests for both PC and DIS, the AOIs were placed
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beginning in the centre of the landslide process and moving uphill towards the rear (Table 3)
to prevent the AOIs from being disturbed by any noise. Afterwards, they were imported
into IRIS as *.kml. For both TS results (PC and DIS), we then derived for each TS AOI (1–6)
a displacement curve (Figure 8).

Table 3. Areas of rectangles for TS calculation of displacement curves (TS AOI 1–6) and bedrock
identification number (1–5) for the assessment of modelled bedrock displacement.

TS AOI No./Bedrock No. 1 2 3 4 5 6

Time Series AOI [m2] 337.94 457.09 988.15 974.03 969.85 893.25
Bedrock [m2] 162.095 50.31 23.95 13.79 167.50 -

3.3. Accuracy Assessment and Result Validation

We demonstrated the validity of our algorithms in two ways: by (a) checking the
displacement for stable bedrock areas and (b) using the trajectories of manually measured
boulders detectable in the orthophotos. In QGIS we selected five different stable bedrock
areas of sufficient spatial extent outside the landslide process area (Table 3). These areas
were unaffected by cast shadow and remnants of debris from past rainfall events. The
exported *.kml were used in IRIS to derive displacement curves for north–south (NS) and
east–west (EW) displacements.

As image registration is based on the matching of pixel patches, we assumed that
adjacent pixels represented a similar displacement magnitude. To estimate the accuracy of
fit resulting from the total displacement calculations (PC and DIS), we calculated a spatial
mean total displacement of the boulder trajectories with a buffer of 0.1 m to plot against
the manually measured travel distances of the boulder trajectories (Figure 4). We ran a
regression model to see if boulder motion significantly predicted data distance with and
without outliers. In order to detect outliers, we used Mahalanobis distance, a reliable outlier
detection measure, as it focuses on multivariate distributions of more than one variable, and
hence is suitable for our data [64]. Accordingly, we show regression lines without outliers.

After exporting the *.raw results of the total, NS and EW displacement into ArcGIS,
we used the former to visualise the ground motion above 0.5 m displacement for the known
process area, with no further filter applied. This threshold was selected due to the NS
and EW components of the bedrock times series calculations indicating the accuracy of
our calculations (see Section 4.1). With the SAGA tool “Gradient vectors from Directional
Components”, displacement arrows (*.raw NS and EW displacement results, mean value
with a step of 100 and range of 50–250) were calculated. As some arrows were slightly
outside the total displacement results, we filtered and cleaned up the vectors (extent of
total displacement) to avoid ambiguity (see left column, Figure 5).

3.4. Atmospheric and Hydrological Conditions

In order to interpret the calculated displacement results of this hydrologically sensitive
complex landslide, we considered precipitation data. An automatic weather station at
the Kürsinger cabin in close vicinity to the Sattelkar measures rainfall during the opening
season of the cabin (spring to autumn; Tables 4 and 5).
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Table 4. Number of days with daily amount of precipitation greater than 20, 30, 40 and 50 mm
(meteorological station Kürsinger cabin).

>20 [mm] >30 [mm] >40 [mm] >50 [mm]

2009 12 5 3 2
2010 8 4 2 1
2011 10 3 1 0
2012 16 5 2 1
2013 6 1 0 0
2014 9 5 3 2
2015 18 6 1 0
2016 10 5 0 0
2017 10 4 0 0
2018 10 5 2 1
2019 11 1 1 1
2020 16 8 6 2

Table 5. Ten highest days of total precipitation for the observation period 2009–2020 (meteorological
station Kürsinger cabin, descending order).

Date Precipitation [mm]

29 August 2020 82.9
30 July 2014 76.1

27 April 2009 70.1
3 October 2020 62.8

11 June 2014 60.4
19 August 2017 57.2

6 June 2009 52.5
17 July 2010 52.3
28 July 2019 51.2

3 August 2020 50.0

4. Results

This section outlines the results of the studies of the total displacement for the single
and the multimaster analysis; for the latter only we present displacement curves. We further
evaluate the findings based on manually measured boulder tracks and stable bedrock areas.

4.1. Accuracy Assessment: Stable Areas and Ground Truth Comparison

In order to estimate the quality of the algorithms, displacement curves of the stable
bedrock areas 1–5 (Table 3) for all intervals are presented in Figure 4. The maximum
displacement for DIS NS (c) and EW components (d) was the only outlier of −0.5 m for the
last interval IV, Bedrock 2 (Figure 8b). Apart from that, the displacements for the stable
bedrock ranged by ±0.3 m. By contrast, PC returned a smaller distribution around zero,
with lower values of ±0.2 m for NS components (a) and ±0.3 m for EW components (b).
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Figure 4. TS calculated for stable bedrock areas ‘Bedrock 1 to 5′ for NS and EW components for DIS
(a,b) and Phase Correlation (c,d). Locations of bedrock areas are displayed in the orthophoto map of
Figure 8.

We assessed the accuracy of the total displacement calculations for both algorithms by
comparing them to a mean buffer around the manually measured boulder paths for the
corresponding time interval. The Mahalanobis outlier detection [64] yielded two outliers
for both DIS and PC (marked in red Figure 5). We found a significant positional relationship
between boulder motion and the modelled DIS mean (b = 0.49, t = 2.72, p < 0.01) and PC
mean (b = 0.55, t = 2.89, p < 0.01), and determined that boulder motion accounts for 16%
and 17% of variance in the data distance, respectively. After outlier removal, the variance
in the data distance yielded 56% for DIS (R2 = 0.5564) and 65% for PC (R2 = 0.6471). The
plots present results for time interval II for PC (a) and DIS (b) with the regression line after
outlier removal (Figure 5). Figure 6 shows boulder trajectories for PC and DIS.

Displacement vectors indicate a smooth downslope flow direction. There are minor
patches of chaotic directions for a heterogeneous displacement patch in the PC results
(central north and towards the northern end) and for displacements between 0 and 0.5 m at
the landslide head flowing downslope. For the same area, DIS vectors point in different
directions as well as towards the northern rim of the landslide.
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Figure 5. The left top row represents the results from the PC (a), the left bottom row the results from
DIS (b)—both for time interval II: 24 July 2019–4 September 2019, 42 d. Arrows in black represent
a realistic downslope range between 205–285◦, while putting unrealistic directions (285–205◦) in
grey. Background: hillshade of UAS DEM, 0.16 m resolution. On the right column, displacements
of manually traced boulder trajectories (x-axis) are plotted against the mean total displacement for
the corresponding trajectory with a buffer of 0.1 m (y-axis) for PC (top right) and DIS (bottom right).
Outliers are marked in red (with block ID), and the regression line in blue after outlier detection
(Mahalanobis distance) and removal. Boulder trajectories are displayed in Figure 6.

4.2. Total Displacement for Single Analysis

This section outlines the results based on single intervals, i.e., tn− tn+1, twice covering
an approximately one-year period (I, III) and a summer season (II, IV; see Table 1).

The total displacement from PC results, for all intervals I–IV (Figure 6a–d), yielded
a clearly demarcated landslide body for values above 0.5 m, limited to values of about
20 m. Homogeneous areas (landslide’s rear body in the east to the centre) are replaced by
a patchy, inhomogeneous area for I, III and IV. The homogeneous displacement is lowest
(0.5–2 m) in II (42 d), slightly higher for I (376 d), and returns highest values (12–14 m)
for both the longer and shorter intervals III (308 d) and IV (62 d). By contrast, for I, III
and IV, the landslide head is less noise-affected for II, with more homogeneous patches.
Comparing displacements to boulder trajectories, the values are consistent apart from the
landslide’s head, with ambiguous signals as well as some 1 m trajectories not reflected in
the landslide’s rear area (Figure 6b,c).
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Total displacements (I–IV) derived from DIS (Figure 6e–g) lie within the process area,
with patches of particularly high motion (>32 m and 22–25 m) in the northern frontal half (I)
and centre (IV), respectively. Interval II reveals the lowest overall displacement, increasing
towards the front. Displacements in the rear are higher for III and IV (1–8 m) than I and II.
Boulder trajectories match well from the centre to the rear (I–IV), except for the foremost
front of the landslide’s head (I–IV).
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Comparing the two algorithms on the basis of boulder trajectories, ambiguous areas for
PC return significantly lower displacements for DIS, as indicated by trajectories (23–54 m)
in the centre for I, III and IV (a, c, d and e, f, h) and at the front, where DIS returns
particularly low motion (3–4 m)—although boulder trajectories appeared to indicate higher
displacements (6–70 m). For I, in the south of the frontal half, some minor heterogeneous
patches exist for PC (a), with similar values for DIS (b), which are confirmed by boulder
trajectories (15, 16 and 17 m). Except for the landslide’s head, both algorithms indicate
consistent displacement values for II, with larger homogeneous areas by PC (b).

4.3. Total Displacement for Multimaster Analysis and Displacement Curves

Here, the results of the multimaster approach focus on interval 002 as well as the
longest final time interval 004 for algorithms PC and DIS (Figure 7). In the previous section,
the first master interval 001 was described, as it is identical to the single analysis interval I.
An overview of the individual image combinations for the multimaster analysis is provided
in Tables 1 and A1.

The PC multimaster displacement for 002 (a) is characterised by a large ambiguous
and heterogeneous area at the landslide’s head, transitioning into a homogeneous area for
the last two-thirds. Here, values increase from 0.5 in the rear to 10 m. The accumulated
displacement for 004 returns values up to 23 m from the centre decreasing towards the
rear. The results derived for DIS 002 reveal values up to 7 m at the landslide’s head and
increase to the highest values (15–32 m) in the centre. There, for 004, both algorithms show
a similar boundary, with displacements decreasing rearwards (PC, 9–2 m, DIS 12–22 m),
with the highest values towards the front (>32 m) for DIS; similar to DIS single analysis
results, values at the foremost landslide’s head do not exceed 10 m.
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Figure 7. Results of multimaster TS analysis for total accumulated displacement calculations of UAS
orthoimages at 0.16 m resolution for top row 002 (13 July 2018–4 September 2019, 418 d) and bottom
row 004 (13 July 2018–11 September 2020, 791 d). Left column with PC algorithm (a,b) and right
column DIS (c,d). Background: hillshade of UAS DEM, 0.16 m resolution.
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Our calculations of TS displacement curves (Figure 8) for PC (a) and DIS (b) indicate a
continuous increase in displacement. PC exhibited a smooth, linear increase with similar
rates for all five AOIs, apart from AOI 6, and a clear limit at approximately 20 m. For
DIS, by contrast, the maximum accumulated displacement exceeds 42 m for the foremost
AOI 1, followed by AOI 2 with ~40 m—both of which show the strongest increase for an
additional 17–20 m (IV), with higher accumulated displacement values than PC. Generally,
all AOIs increase steadily, similar to PC for I and II, with the rear AOIs (AOI 3–6) more or
less identical for both algorithms (8–20 m).
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4.4. Meteorological Data

Precipitation measurements during the UAS observation period 2018–2020 indicate
that 2020 had the highest number of days with a daily amount of precipitation greater than
20, 30, 40 and 50 mm (Table 4). The comparison for the highest days of total precipitation
shows the highest and 10th-highest amount in 2020 at 82.0 and 50.0 mm, respectively,
although the number of days at 50.0 mm are lower than the highest records (Table 5). The
year 2020, with highest amount of total precipitation, is followed by the second-highest,
which was the 2014 debris flow event-year of 76.1 mm.

5. Discussion

We have calculated time series displacements for complementary image-matching
algorithms PC and DIS for a three-year long set of UAS orthophotos. We derived dis-
placements for single time intervals (Figure 6) as well as a combined reference-secondary
image approach (Figure 7), aka multimaster analysis, in order to investigate the complex
behaviour of the Sattelkar, with its heterogeneous motion fields with low to medium veloci-
ties [57,59,60]. In so doing, we were able to derive displacement curves (Figure 8), interpret
our observations in relation to meteorological data (Tables 4 and 5) and confirm the results
in our accuracy assessment on the basis of traceable boulder trajectories (Figures 5 and 6),
as well as stable bedrock displacement curves (Tables 4 and 5).

In answer to research question (1) we determined that, for the most part, the displace-
ment results show that DIS is an applicable method to capture large displacements—even
for a landslide with complex behaviour.

For research question (2), given a very heterogeneous landslide behaviour, the method
allows us to investigate both slow and moderate velocities, which we can in large part
support by manually measuring boulder trajectories and statistical observations (Figure 6).
For a single interval II, apart from two outliers, DIS returns valid ground motion values
(Figure 5). Though derived displacements for the process area from the centre to the
rear are well represented and confirmed by the boulder trajectories, the foremost area
of the landslide’s head is significantly underestimated by a factor of four (I, 18–24 m
boulder trajectories) and a factor of five to ten (III, IV). This area leads directly over the
cirque threshold into the steep channel, and from field observations we know that surface
processes are particularly dynamic and complex, including tumbling boulders changing
their surface appearance by turning. Nevertheless, DIS shows its capability to reveal the
ongoing process of the dissolving rock glacier, visible in IV (Figure 6h), and less pronounced
in III (g) due to the sharp difference in ground motion. For optical flow to work reliably,
the brightness consistency has to be valid, with illumination changes resulting in motion.
Until now, the use of optical flow has been restricted to ground motion observations of
small displacements, little noise and difference in illumination [47].

However, our results confirm research question (3) that optical flow, using the im-
proved approach of DIS [48] is robust enough for the orthophoto dataset of our high-alpine
steep study site to cope with changing and unfavourable illumination conditions. This is
supported by displacement vectors calculated from NS and EW displacements, which to a
large degree reveal a correct flow direction.

With regards to research question (4), comparing the results of DIS to those of PC,
DIS has been shown to overcome the correlation limits of the PC algorithm. Ambiguous
signals of PC results come from noise resulting from decorrelation as the detection limit;
hence, the maximum possible correlation for the amount of displacement and/or number
of surface changes is reached. The results show that for our high resolution in the UAS
dataset of 0.16 m with temporal baselines the limitation is reached (I, III, IV) [14,16]. In
essence, matching failed due to massive changes in pixel values. Our field observations
provide evidence of the deformation of rock masses with strong surface alterations due to
rotational block behaviour and the high mobility of rock material, which are thus likely to
be responsible for this decorrelation. Similar observations on the matching limitations and
other reasons leading to decorrelation have been confirmed by others [14,42,52]. We decided
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to keep these noise-affected areas to be able to differentiate the results. Consequently,
while towards the front PC decorrelates and DIS seems to be underrepresented, from the
distinctive boundary in the landslide’s centre towards the rear, both algorithms return
similar displacement values, as confirmed by the boulder paths (I, III and IV).

These boulder trajectories are reliable and support the correctly derived high dis-
placement values for interval III (308 d), and in particular, the higher ones for interval
IV—although shorter in duration covering the summer period (62 d). This displacement
increase can be explained as a sensitive reaction of the debris due to the heavy precipitation
events in 2020. The year 2020 had by far the highest number of days with daily precip-
itation, followed by the 2014 debris flow event-year. In the summer interval IV (8 July
2020–8 September 2020), the two highest days of total precipitation were measured (see
Tables 4 and 5: highest, 82.9 mm, 29 August 2020; 10th, 50.0 mm, 3 August 2020). We
assume that this heavy rainfall event at the end of August indicates how the debris reacts
to hydrological influences with a massive acceleration [65,66]. It seems unlikely that the
50.0 mm event significantly contributed to this acceleration, as in the previous year the
ninth-highest measure was recorded and showed no signs of acceleration.

Apart from single interval calculations, we further performed a multimaster approach
and compared the results of both PC and DIS algorithms for intervals 002 and 004 (Figure 7).
The previously discussed total displacement distribution for the single intervals is more
pronounced due to the summing up of all possible image interval combinations. While
002 reveals a very similar pattern for the rear of the landslide mass, the front is again
partitioned beginning at the centre, leading to decorrelation for PC (Figure 7a) and high
displacements between 20 and 32 m for DIS. However, these values becomes unrealistically
low towards the landslide’s head (Figure 7). Displacement values reach their maximum
for PC of 20 m (c), whereas DIS exceeds 32 m (d), in these areas. Single analysis interval
I (Figure 6b) and multimaster interval 002 (Figure 7b) reveal an area of particularly high
motion at the northern rim towards the landslide’s head. This high motion can be confirmed
by field observations of severe, high dynamic surface changes—a behaviour visible in the
GIFs (Figures S2–S4).

The limitations of ground motion are confirmed by calculated displacement curves
for PC and DIS (Figure 8). Where PC has a definite limit of 20 m for total displacement
detection (a), there is no upper limit for DIS. Generally, displacement curves for both PC
and DIS indicate a clear acceleration behaviour—in particular for the heavy rainfall season
2020. The explanatory power of DIS to derive ground motion and displacement curves
is high.

We applied the approach of displacement curve calculations to areas outside of the
landslide process in order to estimate the quality of the algorithm, as there should be zero
to limited displacement. The NS and EW components for PC show values very close to
zero (±0.2 and ±0.3 m), and DIS never exceeds ± 0.5 m, indicating the high accuracy and
reliability of our results.

Our results demonstrated the possibilities and limitations of the optical flow dense
inverse search algorithm. Backed by the comparison to the well-known and robust phase
correlation algorithm, we find that DIS is a more sensitive, less rigid and more flexible
algorithm. While computationally very efficient, both small and large displacements
can be detected without upper limitations. We can confirm the results from the DIS
algorithm and for the first time, image registration methods reflect motions we know
through our field observations (area of high motion at the northern rim towards the front,
see Figures 6e, 7c and S3; and at the front of the dissolving rock glacier, see Figure 6g,h).

However, the results must be interpreted with caution as there is a clear underrepresen-
tation for the landslide’s head. Areas of too-high surface dynamics and/or displacements
lead to a drastic change in pixel values. Therefore, PC with an upper detection limit of 20 m
fails, returning areas of decorrelated noise, whereas DIS still returns some displacement
values, but they are too low. These returned values imply a correct signal, but based on
the comparison to PC we know that DIS could lead to underrepresented displacements,
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which is why the results have to be carefully interpreted. Thus, areas of decorrelation can
be interpreted as a valid limit of PC with no over- or underestimation, as with DIS, and a
higher robustness towards illumination changes.

6. Conclusions

This study evaluated the potential of the dense inverse search (DIS) algorithm to
derive ground motions to assess a high-alpine, complex landslide. Our research has made
a substantial contribution, as for the first-time, optical flow was applied to study landslide
behaviour. We tested the algorithm on time interval combinations of single intervals as
well as multimaster pairs of reference-secondary images based on five high accuracy UAS
orthophotos of 0.16 m acquired between 2018 and 2020.

We compared total displacement results of DIS to those of the well-known phase
correlation algorithm (PC), both of which are implemented in the software IRIS, with
regard to trajectories of traceable boulders. These results were contrasted to trajectories
and confirm a high goodness of fit. In an accuracy assessment we evaluated our results
by deriving NS and EW displacements for five stable bedrock areas, ranging between
±0.2 and ±0.3 m. Our findings show that DIS is applicable to determine ground motions
of both slow and moderate velocities, as it detected displacements from 0.5 to 42 m for
our observation intervals. This was supported by boulder trajectories and correlated,
heterogeneous displacements derived from PC. DIS further overcame the correlation limits
of PC, which occurred at about 20 m, and we obtained decorrelation even with a larger
template. It is likely that for both severe surface changes and very high displacements,
DIS underestimated values at the landslide’s head, while PC decorrelated due to excessive
surface changes. The findings are based on our experiments and are confirmed by our own
field observations, as well as published descriptions of geomorphological processes [59–61].
In addition, we calculated displacement curves, which indicated acceleration and high
ground motions—thus confirming the displacement increase in summer 2020, which can
be explained by a high rainfall event.

Apart from the complex, high-alpine study site investigated here, DIS could be prof-
itably employed for landslide types from pre-alpine to alpine sites. DIS could also be
of high value for earthquake and glacier studies, as it is able capture displacement rates
exceeding the detection capability of DInSAR. Nevertheless, future studies should focus on
the applicability of complementary optical data from other sensors, improving the accuracy
as well as the robustness for real world illumination conditions to confirm the detection
capability of DIS for landslide displacement. Further research is also needed to exploit
the potential of image-matching techniques for an improved understanding of landslide
kinematics ranging from single block sliding to complex flow-like behaviour, as well as
early warnings for landslides.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14030455/s1, Figure S1: An example of optical flow for estimating
mouth motion. Two consecutive images show regions of a mouth in motion (a,b) and the estimated
flow field using dense optical flow method (c) adapted from reference [67]. Figure S2: GIF showing
UAS multi-hillshades [0.16 m] of 13 July 2018; 24 July 2019; 4 September 2019; 8 July 2020; 8 September
2020. Figure S3: GIF showing DIS derived total displacement (transparent) superimposed on UAS
multi-hillshades [0.16 m] for the corresponding time interval (I: 13 July 2018–24 July 2019, 376 d;
II: 24 July 2019–4 September 2019, 42 d; III: 4 September 2019–8 July 2020, 308 d; IV: 8 July 2020–
8 September 2020, 62 d). Figure S4: GIF showing PC derived total displacement (transparent)
superimposed on UAS multi-hillshades [0.16 m] for the corresponding time interval (I: 13 July 2018–
24 July 2019, 376 d; II: 24 July 2019–4 September 2019, 42 d; III: 4 September 2019–8 July 2020, 308 d;
IV: 8 July 2020–8 September 2020, 62 d).
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Appendix A

In order to test IRIS, please visit https://www.photomonitoring.com/iris/ to request
a free trial of the software via the contact form. Last access 12 January 2022.

Table A1. Settings for DIS single analysis.

Finest
Scale

Patch
Size

Patch
Stride

Gradient
Descending

Iterations

Use Mean
Normalisa-

tion

Use Spatial
Propaga-

tion

Var. Re-
finement

Alpha

Var. Re-
finement

Delta

Var. Re-
finement
Gamma

Var. Re-
finement
Iterations

Interval I 0 8 3 25 x x 20 5 10 5
Interval II 0 8 3 25 x x 20 5 10 5
Interval III 0 16 2 30 x x 15 5 10 10
Interval IV 0 8 3 25 x x 15 5 10 10
Interval 1–3 0 8 3 25 x x 15 5 10 10
Interval 1–4 0 8 3 25 x x 20 5 10 5
Interval 2–4 0 8 3 25 x x 20 5 10 5
Interval 2–5 0 8 3 25 x x 20 5 10 5
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