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Abstract: Crevasses are formed by glacier movement and the stresses within glacier ice. Knowledge
of the crevasses’ distribution is critical for understanding the glacier and ice shelf stability. In this
study, we propose an automated crevasse extraction framework based on Sentinel-1 SAR imagery
and an improved U-Net network. The spatial distribution of crevasses on Antarctic ice shelves in 2020
was mapped with a spatial resolution of ~40 m, and the characteristics of crevasses on the Nickerson
Ice Shelf, Jelbart Ice Shelf, Amery Ice Shelf, Thwaites Glacier, and Shackleton Ice Shelf were analyzed.
The results indicated the extraction accuracy of our method was 84.2% and the F1 score was 72.5%.
Compared with previous published studies, the identification of the crevasse areas had good visual
consistency. However, in some scenes, the recall rate was relatively lower due to the quality of the
SAR image, terrain surrounding the crevasses, and observation geometry. The crevasses on different
ice shelves had different characteristics in terms of length, density, type, and spatial pattern, implying
the different stress structures of ice shelves. The Thwaites Glacier and the Nickerson Ice Shelf in the
West Antarctica Ice Sheet (WAIS) had shorter ice crevasses, whereas the lengths of ice crevasses on
the Jelbart Ice Shelf and the Amery Ice Shelf in the East Antarctica Ice Sheet (EAIS) were relatively
long. Nevertheless, there are more closely spaced crevasses on the ice shelf in WAIS compared to
that in the EAIS. For the distribution of crevasse types, the Nickerson Ice Shelf and the Shackleton
Ice Shelf had various forms of crevasses. There were mainly transverse crevasses developed on the
Jelbart Ice Shelf and the Amery Ice Shelf. This study provides a helpful reference and guidance
for automated crevasse extraction. The method proposed by this study manifests great application
potential and the efficacy of producing a time-series crevasse data set with higher spatial resolution
and larger coverage. In the future, more Sentinel-1 SAR imagery will be applied and the effect of
temporal and spatial variations in crevasses on the stability of ice shelves will be investigated, which
will contribute to project the ice shelf stability and explore the sea level rise implications of recent and
future cryosphere changes.

Keywords: crevasses; Sentinel-1 SAR; improved U-Net network; Antarctic ice shelves

1. Introduction

Crevasses have developed on almost all glaciers and ice shelves and are the direct result
of glacier movement, reflecting the characteristics of glacier development and stresses [1,2].
The crevasses contribute to the glacier mass balance through impacting the processes of
meltwater transportation on the ice surface [3-5]. Additionally, when sufficient surface
meltwater infuses into crevasses, hydrofracturing may be induced, resulting in ice shelf
instability; thus, crevasses are essential factors for assessing the stability of glaciers and
ice shelves [6]. Antarctic scientific research expeditions are also closely associated with
crevasses because the rapid appearance of crevasses may herald the disintegration of the
ice shelf and pose a serious safety hazard to field researchers [7,8]. The orientation and
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distribution of crevasses can be used to distinguish the ice flow regimes and provide
qualitative insight into trends in ice flow [9]. Therefore, crevasses are critical not only for
investigating the ice shelves’ stability as well as glacier dynamics but also for providing
important safety guidance for glaciological field campaigns.

The earliest method used to detect ice crevasses was radar, mainly ground-penetrating
radar (GPR), which has been used in Antarctica since 1975 [10,11]. As an on-site detection
method, ground-penetrating radar has high positioning accuracy and can realize accurate
detection of ice crevasses. This detection method is more dependent on the operator’s
experience and signal detection in heavily crevassed environments. Furthermore, it is
dangerous when the operator is disturbed by external conditions or is fatigued and slows
down in response [12]. With the need for investigations and the development of radar
detection systems, airborne radar systems have also been used in Antarctic scientific
expeditions. At present, remote sensing is an important means to identify ice crevasses [13].
Many satellite images, including Landsat images in low and medium resolution [14], high-
resolution SPOT images [15], MODIS images [6,16], Worldview Panchromatic images [17],
and high-quality aerial images [18,19] are used to detect and extract glacier surface features
such as ice crevasses in a great deal of current research. In addition, satellite laser altimeter
systems [13] and LIDAR altimetry [20-22] are usually used to detect the ice crevasses.

At present, most of the ice crevasse detection methods based on remote sensing im-
ages are visual interpretation [4] or threshold segmentation [23], which are limited to a
small scale. Although these methods can obtain better performance, they require a lot of
professional knowledge and operator time, because it is difficult to quickly map crevasses
continent-wide. With the rise of artificial intelligence algorithms, machine learning has
been widely used in cryosphere studies [24,25]. Methods combining geostatistics and
neural network deep learning have also been applied to the extraction of ice crevasses [6].
Williams et al. [12] developed an ice crevasse detection technology based on the Hidden
Markov-Support Vector Machine (HMM-SVM). In addition, the Deep Convolutional Neural
Network was selected as the machine learning model to identify fracture with better perfor-
mance than other sets of models, and the outputs were used to evaluate the vulnerability
of Antarctica’s ice shelves [6].

However, there are some limitations on the previous research on crevasse identification.
In terms of data sources: (1) The application of ground-penetrating radar for field detection
has a high cost and low efficiency, and there are great risks and safety hazards in the
ice crevasse fields, making it unsuitable for large-scale ice crevasse detection. (2) Optical
remote sensing images are susceptible to weather and extreme climates, and there are
certain limitations in detecting ice crevasses in the Arctic and Antarctic regions. In contrast,
Spaceborne synthetic aperture radar (SAR) cannot be affected by weather conditions and
can obtain clear images with a long time sequence and a wide range [26]. On the other
hand, the SAR system is very sensitive to the surface roughness of ground objects and
can penetrate the snow cover layer several meters deep to detect buried ice crevasses that
cannot be detected by optical sensors. In terms of detection technology: (1) The method
of visual interpretation is greatly influenced by a person’s subjectivity, and the workload
is relatively large, so it cannot be applied to the identification of large-scale crevasses.
(2) Machine learning methods based on support vector machines and random forests are
more complicated in design. Different technical routes need to be designed for different
regions. The efficiency of large-scale promotion of ice crevasse detection is low, and the
accuracy of the results needs further examination.

Therefore, we propose an automated framework based on an improved U-Net network
and Sentinel-1 SAR data for ice crevasse detection. Because of the penetration advantage of
SAR, Sentinel-1 cannot be affected by cloudy weather in Antarctica, providing sufficient
data resources for ice crevasse detection. At the same time, a higher resolution can achieve
a finer crevasse detection effect. It even penetrates the thin snow cover of the ground
surface and detects crevasses that cannot be identified by optical images. The deep learning
model based on the U-Net network can realize automatic ice crevasse detection through
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small sample training. It also provides technical support for the detection of large-scale
ice crevasses.

The remainder of this paper is structured as follows. Section 2 describes the study
area and data set. Section 3 introduces the methodology, including data processing and
the improved U-Net architecture, and Section 4 performs accuracy assessment on the ice
crevasse detection results and analyzes the spatial distribution pattern and feature of ice
crevasses on five ice shelves in the Antarctic region. Following this, Section 5 further
discusses the credibility of the crevasse detection results. Finally, Section 6 summarizes the
conclusions of the study.

2. Study Area and Data Set
2.1. Study Area

The Antarctic ice sheet is the largest ice sheet in the world and comprises an ice mass
equivalent to 58 m of global sea level rise [27]. Broadly, the Antarctic ice sheet is divided
into the Antarctic Peninsula (AP), the Eastern Antarctic Ice Sheet (EAIS) and the Western
Antarctic Ice Sheet (WAIS). EAIS and WAIS are bounded by trans-Antarctic Mountain
belt [28]. In this study, we focused on five classical glaciers and ice shelves: Jelbart Ice Shelf,
Thwaites Glacier, Nickerson Ice Shelf, Amery Ice Shelf, and Shackleton Ice Shelf (Figure 1).

40° W 20° W 0° 20° E 40° E
7 Jelbart
(Vs ”
o 5% — (Va)]
(@] -0
O (@]
O
Ry S 0
Nickerson
4 I
5T Ross Sea 8
140° W 160° W 180° 160° E 140° E

Figure 1. Sketch map of the Antarctic study areas.

The Jelbart Ice Shelf is located on the edge of Dronning Maud Land in eastern Antarc-
tica. It covers an area of 11,000 km? and is fed by Schytt Glacier [29]. The surface of this ice
shelf has a large number of relatively regular striped features, and similar surface structures
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can also be seen on other ice shelves, such as the Fimbul Ice Shelf [30] and Larsen C Ice
Shelf [31]. Thwaites Glacier, located on the Walgreens coast of Marybird Land in West
Antarctica, is very wide and flows continuously and quickly into Pine Island Bay in the
Amundsen Sea. Thwaites Glacier is one of the fastest melting glaciers in Antarctica, so it has
earned the title of “Doomsday Glacier”. The Nickerson Ice Shelf has the warm Amundsen
Sea to the east and the cold Ross Sea to the west. Previous simulation studies have shown
that among all the ice shelves in Antarctica, the ice shelf in the Amundsen Sea is expected to
undergo tremendous changes in the next few decades from the warming of sea water. If the
ice shelf collapses, it will affect the flow of inland ice to the ocean, along with the process
and the stability of the entire ice sheet. The Amery Ice Shelf is located in the lower reaches
of the Lambert Glacier basin in East Antarctica. It is the largest ice shelf in East Antarctica
and the third largest ice shelf in Antarctica, covering an area of about 1.4 x 10° km2. The
ice stream is discharged through a narrow exit about 200 km from the front edge of the ice
shelf. The ice current system is highly active and extremely sensitive to global climate and
sea level changes. It is one of the most active areas of glacier movement in the Antarctic
ice sheet. The Shackleton Ice Shelf is located at 90°E to 105°E, covering 33,820 km? of
eastern Antarctica and enclosing 384 km of coast. As the northernmost ice shelf in eastern
Antarctica, close to the continental shelf, Northcliffe, Denman, and Scott Glaciers all flow
into the sea through the Shackleton Ice Shelf. The study areas are evenly distributed on the
Antarctic continent (Figure 1) and are areas where ice crevasses are known to exist.

2.2. Sentinel-1 SAR Data

The synthetic aperture radar data used in this study came from the Sentinel-1 satellite.
The Sentinel-1 satellite is an earth observation satellite in the European Space Agency’s
Copernicus Project (GMES). It is composed of two satellites, Sentinel-1A and Sentinel-1B,
an observation constellation. The shortest revisit period after the double star operation is
6 days, and images can be continuously provided day and night. The Sentinel-1 satellite is
equipped with a C-band synthetic aperture radar. The center wavelength of the C-band
is about 5 cm, which can penetrate the snow cover and obtain the ice surface information
under it [32]. The data have an ultra-high radiometric resolution of 1 dB (30) and radio-
metric stability of 0.5 dB (30), which can effectively improve the accuracy of radar image
parameter inversion. The revisit frequency and coverage of Sentinel-1 are significantly
better than ERS-1 and ERS-2 and Envisat satellites.

The Sentinel-1 SAR data used in this study came from the European Space Agency
and were freely available (https://scihub.copernicus.eu/dhus/#/home, accessed:
15 January 2022), providing two orbit directions: ascending and descending; four op-
erating modes: Interferometric Wide Swath (IW), Wave (WV), Strip map (SM), Extra Wide
Swath (EW); four polarized data: HH, HV, VV, VH; and three formats: GRD, SLC, RAW. In
Antarctica, only the EW mode, HH single-polarization-type Sentinel-1 data can be used
unconditionally. EW is a wide-format mode, which is more in line with the application
goals in the Antarctic area than other modes. HH polarization image is the most suitable
for balancing the overall power of the image and the contrast between crevasses and
non-crevasses. GRD (Ground Range Detected) data refer to ground range multi-view
images, with small data volume and high data processing efficiency. In accordance with
the characteristics of the research object in this study, the EW mode and HH polarized GRD
data were used. The range resolution of the image was 20 m, the azimuth resolution 40 m,
and the width 410 km.

Figure 2 shows the spatial distribution of the training and test sites, which were evenly
distributed on the Antarctic continent. Table 1 provides information on the SAR data
used for training and testing implemented in this study. The training sites included one
region on the AP, two regions in the WAIS, and seven regions in the EAIS. In order to
test the practicality of the algorithm, the testing sites included ice crevasses with different
characteristics and crevasses that were difficult to distinguish from the single-polarization
Sentinel-1 data. In total, 10 of the independent test sites were used, including one region of
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the API, two regions on the WAIS, and seven regions on the EAIS. The training and test
sites were almost evenly spaced. In order to ensure the representativeness of the sample,
the training data should cover different forms of ice crevasses. Therefore, we selected
different time phases of ascending and descending orbit data sources and marked different
ice shelves and different types of ice crevasses.
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Figure 2. Spatial distribution of training (blue) and test (red) sites across the Antarctic continent.

Table 1. Sentinel-1 training and test regions covering the Antarctic continent.

1D PeriTol$]e)ate Orbit Study Area Region Di(r);}:)tliton
Training regions
1 20200201T082024 31,056 Wilkins Ice Shelf API Descending
2 20200103T063435 30,632 Ronne Ice Shelf EAIS Descending
3 20200109T221939 30,729 Riiser-Larsen Ice Shelf EAIS Ascending
4 20200104T203224 30,655 Fimbul Ice Shelf EAIS Ascending
5 20200104T135847 30,651 Amery Ice Shelf EAIS Ascending
6 20200101T151212 30,608 West Ice Shelf EAIS Ascending
7 20200104T121959 30,650 Totten Ice Shelf EAIS Ascending
8 20200102T091714 30,619 Aviator Ice Shelf EAIS Ascending
9 20200105T080100 30,662 Nickerson Ice Shelf WAIS Ascending
10 20200102T041954 30,616 Dotson Ice Shelf WAIS Ascending
Test regions
1 20200103T080958 30,633 Larsen Ice Shelf API Descending
2 20200111T233941 30,759 Stancombe-Wills Ice Shelf EAIS Ascending
3 20200129T193454 31,019 Borchgrevinkisen Ice Shelf EAIS Ascending
4 20200129T193558 31,019 King Baudouin Ice Shelf EAIS Ascending
5 20200130T183829 31,033 Shirase Ice Shelf EAIS Ascending
6 20200104T153739 30,652 Amery Ice Shelf EAIS Ascending
7 20200105T130231 30,665 Shackleton Ice Shelf EAIS Ascending
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Time . . Orbit
1D Period/Date Orbit Study Area Region Direction
8 20200105T112334 30,664 Holme Ice Shelf EAIS Ascending
9 20200102T091514 30,619 Ross Ice Shelf WAIS Ascending
10 20200102T024259 30,615 Venable Ice Shelf WAIS Ascending

2.3. Auxiliary Data

In order to eliminate the misclassification of ice crevasses in the post-processing
process, the Antarctic ice shelf data were used for mask trimming. The Antarctic ice shelf
vector layer is a summary of the ice shelves derived from the Antarctic mosaic from 2013 to
2014. It does not include seasonal (winter) ice that extends farther across the continent. The
source of data was from Natural Earth (https:/ /www.naturalearthdata.com/, accessed: 15
January 2022). In order to describe the distribution of ice crevasses and other characteristics,
we also performed processing operations such as attribute editing and area calculation for
the Antarctic ice shelf data.

In order to distinguish regions of likely crevasses, we overlay the ice flow velocity
data. The source of the Antarctic ice shelf velocity data is MEaSUREs Annual Antarctic Ice
Velocity Maps (https:/ /nsidc.org/apps/itslive/, accessed: 15 January 2022).

3. Methodology

Aiming at the extraction and analysis of crevasses on typical Antarctic ice shelves,
the method proposed in this study mainly comprised four processes, which were data
pre-processing, deep learning model training, crevasse prediction, accuracy assessment,
and statistical analysis of ice crevasses. The processing flowchart is shown in Figure 3. In
the following, we first show the pre-processing in detail (Section 3.1). Then we introduce
the architecture of the deep neural network used in this study and the model training
(Section 3.2), as well as the accuracy assessment metrics (Section 3.3).

| Pre-processing

|

| I

Sentinel-1A,B | | Apply Orbit file |—>|Radi0meh'ic CalihrateHGeographic c01'1'ection| I
EW,GRDH.HH i ! :
I
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|| Data Normalization |<—| PPB Filter |<—| Apply mask |

L

_________ ] -———-
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e . U-Net model le—— |

classification I = : I

| 15% validation | | I |T|les without crevasses| |

confusion. ~~~~~~ l—m—————=——a—=—a=  |l—— === ——- !

matrix
/Crevasses from nther/
= - === i T T L s T T T
| Accuracy Assessment : published results | Analysis :
I Precision | I Spatial distribution | |
| isual i i I

| Recall : Visual interpretation | Length :
: F1 Score | Y, : Density |
I ¥ Surface Crevasses /L—b I
: Accuracy | | Type |

Figure 3. Flowchart for automated ice crevasse mapping using a deep learning approach from
Sentinel-1 SAR imagery over the Antarctic ice sheet.
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3.1. Pre-Processing and Data Preparation

The rough surface of the crevasse usually causes it to appear as a high backscattering
feature on the SAR image, showing a brighter linear feature [33]. However, as can be seen
in Figure 4, Antarctic crevasses do not always appear with homogeneous high backscatter
but instead with different forms of crevasses. Depending upon the reasons and types of
formation, the crevasses on the glacier surface are mostly shown as Transverse Crevasses,
Splaying Crevasses, Bergschrund, En échelon Crevasses, Icefall, and Rifts [1]. The dynamic
reasons, characteristics, and image recognition signs of different crevasses are shown in
Table 2.

(k) O] (m) (n) (0)

Figure 4. Surface feature of different shaped crevasses in single-polarized Sentinel-1 imagery
over Antarctica. (a) Disintegration caused by crevasses at the edge of the ice shelf. (b) Regular
and more closely spaced transverse crevasses. (c¢) Independent rifts on the edge of the Abbot Ice
Shelf. (d) Cracking rift on the Amery Ice Shelf. (e) Rift on the Amery Ice Shelf. (f,g) Transverse
Crevasses on the Riiser Ice Shelf. (h) Terrain shadows. (i) En échelon Crevasses on the Riiser Ice
Shelf. (j) Bergschrund on the Ronne Ice Shelf. (k) En échelon Crevasses on the Shackleton Ice Shelf.
(I) Bergschrund on the Ronne Ice Shelf. (m) Front edge of the ice shelf. (n) Landform. (o) Splaying
Crevasses on the Abbot Ice Shelf.

Table 2. Dynamic reasons and image recognition signs of different types of crevasses.

Type of
Dynamic Reasons Image Recognition Signs
Crevasses y & & &
The longitudinal tensile stress caused ft 1s.man1fes'.ted.by the appearance of
. . bright white lines (snow) or black
by the difference in the lateral : - .
. . lines (water filling), which are
Transverse velocity of the glacier surface has a .
1 relatively regular and parallel to each
crevasse large amount of longitudinal

other, perpendicular to the direction
of glacier flow, and transverse to
other features.

extension, which usually bulges on
the downstream side.
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Table 2. Cont.

Type of . - .
Crevasses Dynamic Reasons Image Recognition Signs
. Itis caused by t.h.rust faults,. ma1.n1y Commonly found near the glacier
Splaying under the condition of longitudinal - .
. termini. Extends sideways along the
crevasse compression, and secondly under the . . .
. . direction of glacier flow.
condition of lateral compression flow.
Formed at the beginning of a glacier, =~ Usually located in the upper part of
Bergschrund, the glacier pulls away from the rock the glacier, a relatively independent
wall at its head. single crevasse.
Produced by the shear force between It is usually located on the glacier
, the valley wall and the glacier. It valley wall, more closely spaced, with
En échelon . :
crevasses usually occurs at the turn of the a certain curve, forming an angle
glacier and is caused by the rotational from the valley wall to the top of
strain of the shear zone. the glacier.
When the glacll er flows on the convex Along the direction of glacier flow, it
bed, a series of crevasses are . . .
Icefall is common in accumulation areas and
produced from the rupture of near steeb slopes
laminar flow. p slopes.
The edge of the ice shelf is deformed -
- . The surface crevasses have a visible
and bent due to tidal motion or the . . .
. . - - opening, usually oriented at a right
Rift active glacier tributaries merged and angle to the direction of flow, deep

applied a strong lateral shear force in
the inactive area, resulting
in crevasses.

enough to penetrate the entire
thickness of the shelf.

Based on the above description, we intuitively selected various forms of crevasses as
a supplement to the training data set, and as a result, a total 1970 pairs of samples were
constructed. However, it is important to note that the crevasse types mentioned in this
study mainly target six surface crevasses and do not include basal crevasses. Although
basal crevasses are very important to the stability of ice shelves [34,35], the detection of
basal crevasses in the current research was mainly carried out by ground-penetrating
radar [36,37]. The limitation was that, on the one hand, the depth of the basal crevasse
development is inconsistent under the glacier, and there is no corresponding feature on
the glacier surface. On the other hand, without other prior knowledge, it is impossible to
confirm whether the surface morphology of the glacier was caused by basal crevasses only
by relying on SAR images. Therefore, we mainly discuss the surface crevasses that can be
observed and identified.

In order to minimize the geometric distortion and information errors of remote sensing
images caused by atmospheric interference and other factors, and to ensure the standard-
ization of training data, we used Sentinel Application Platform (SNAP) software for data
pre-processing prior to application. SNAP is a free and open software developed by
the Sentinel Data Mission in the Copernicus Plan, which can be downloaded for free at
https:/ /step.esa.int/main/toolboxes/snap/ (Accessed: 15 January 2022).

First, the orbit files were used to update the orbit metadata. Then, radiometric calibra-
tion and filtering was performed to reduce thermal noise. Finally, geographic correction
was applied. Additionally, ground line and coastline were used as mask files.

Compared with optical images, the C-band of the Sentinel-1 SAR data has higher
spatial resolution and excellent coverage performance and revisit performance, but it also
has a serious problem of coherent speckle noise. In order to suppress the coherent speckle
noise, this study adopted the Probabilistic Patch-Based Weights algorithm (PPB) filtering
method [38], which fully suppresses the coherent speckle noise and further enhances the
edge. The PPB filter defines a more general and statistically based similarity criterion
based on the noise distribution model. The denoising process is expressed as a weighted
maximum likelihood estimation problem, in which the weights are derived in a data-
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driven manner. These weights can be refined based on the similarity between the current
noise blocks and the noise blocks extracted from the previous iteration estimation, which
sharpens the crevasse feature on the filtered images (Figure 5).

abew T-jpunuag

PPB filter

1911} Joye abew|

Figure 5. Results of PPB filter applied to 4 Sentinel-1 SAR image. The top row is the original SAR
image, and the bottom row is the corresponding filtering results.

Subsequently, pixel value range was normalized by the maximum and minimum
standardization. The normalization process makes the data appear dimensionless, which
can prevent gradient explosion and improve the convergence speed and accuracy of the
model. Because the final outcome is a binary image, there must be a corresponding mask
image when model training. Figure 6 shows the mask images, in which white and black
represent features of the crevasses and non-sample features, respectively. To avoid possible
overfitting problems, enhancing the generalization ability and improving the accuracy of
the model, a sufficient amount of data is usually needed. Data augmentation is usually
used to increase the number of training samples in a data set. In this study, geometric trans-
formation was used to enhance the training images, which mainly performed operations
such as cropping, vertical flipping, horizontal transformation, and 90-degree clockwise

rotation (Figure 6).
« c

.«i

)i _
) " l)l I(I

(h) (k) (U]

[ =5d

Figure 6. Training set samples after data annotation and enhancement. (a) Map of sample, (b) crop-
ping, (c) vertical flipping, (d) horizontal transformation, (e) 90° counterclockwise, (f) 90° clockwise,
bottom row is the corresponding mask of top row. (g-1) is the labels corresponding to (a—f).

This study used the LabelMe tool to manually make labels and finally convert the
labels into json format. The original and mask image were one-to-one to mark a training
data set. It was necessary to ensure both positive and negative samples were stored in the
training. The training set of this study had a total of 1970 pairs, and the ratio of positive
and negative samples was 6:4.
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3.2. U-Net Architecture and Model Training

A modified U-Net network was implemented in this study for pixel-level crevasse
identification. The U-Net network was originally developed for biomedical image segmen-
tation [39]. It is the most commonly used model in machine learning for earth observation
because of the preservation of fine-grained details [40,41].

The architecture of the improved U-Net network is shown in Figure 7. It is an encoder—
decoder structure.

=== Contracting path Expanding path St
} I I |
)
Input =+ » = : : I % »p Output
b t“ : Skip Connection i r i
HW® | LR &
FF R | 'm = = E
| | | |
Bt } I e
I
I \ | [
presi g e g
. e o S I
| ' : i
| ¥ : | > :
o I [
i | T e e Sl — < e gl
] Residual Block r_'l ******** | et 1 =i Fusion layer
BN, Relu | R R | | L, } — Merge 2x2
m=mp  Conv3x3,BN, Relu U il | | Convix1, BN, Relu
= Conv3x3, Add,Rely f—i— —————————— 1- 1 wep  Convix1, Sigmoid
1 Maxpool 2x2 l 7777777 27771777} I‘ Upsample 2x2, Conv2x2

Figure 7. Improved U-net network structure diagram.

The encoder structure, also known as the contracting path, consists of multiple en-
coders. One encoder mainly comprised a residual block and a pooling layer, and the final
output was input into the next residual block through the maximum pooling [42]. Each
residual unit of the down-sampling module had two convolutional layers, which were
connected by the ReLU activation function [43]. We used two consecutive 3 x 3 convolu-
tional layers to replace one 5 x 5 convolutional layer because both have the same receptive
field [44], but the former requires fewer parameters to calculate just as much; this study
chose two smaller convolution kernels instead of one larger convolution kernel. The kernel
size of the largest pooling layer was 2 x 2.

The decoder structure is also called the expanding path. One decoder was composed
of up-sampling, fusion layer, and residual block. Up-sampling corresponded to the pooling
process, and the size was 2 x 2 [45]. The fusion layer mainly connected the feature map
from the lower layer with the feature map in the corresponding contracting path to map
the spatial location information of the crevasses to the semantic features. In the final stage
of the expanding path, the fully connected layer in the convolutional neural network was
changed to a1 x 1 convolutional layer, and the sigmoid activation layer was used for the
final classification output [46].

The modified U-Net network in this study (1) used a deconvolution layer (up-sampling
2 x 2) to replace the fully connected layer because the fully connected layer not only loses
location information but also adds additional parameters [47]. The modified deconvolution
layer greatly reduced the number of parameters and the difficulty of model learning
and sped up operation. (2) In addition, in such a deep neural network, we added the
Batch Normalization (BN) layer before the input of each layer of the network to solve
the problem of imbalanced data distribution and regularize the model. This avoided
overfitting as the number of layers deepened. (3) To improve the classification accuracy
and avoid the phenomenon of gradient disappearance or gradient explosion in the training
process [48,49], this study added skip connections after the convolutional layer. The added
skip connection guaranteed the fusion of low-level local information, spatial location
information of crevasses, and high-level semantic information. The information at each
layer was more complete, and the characteristics of learning were more critical.

The model was compiled using the “binary cross-entropy” loss function, Adaptive
Moment Estimation (Adam) optimizer, and an initial learning rate of 0.001. When the
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detection index is not improved, adjusting the learning rate can often achieve better results.
Therefore, we set the rate within 10 epochs; if the verification loss did not improve, the
learning rate would be automatically reduced by 1/e times. Finally, the model converged
after 75 epochs.

3.3. Accuracy Assessment

In order to express the accuracy of the detection results, this study used four metrics:
precision (P), recall rate (R), F1 score (F1), and accuracy rate (A) for assessment. Precision
and Recall were derived dividing the number of true positive pixels (TP) of a given class by
the total number of overall predicted class pixels or the total number of true class samples
respectively. F1 score is the harmonic average of precision and recall. When the precision
and recall rate are both high, the F1 value will also be high. The F1 value reaches its best
value at 1, and its worst value is 0. In binary classification, the F1 value is a measure of the
accuracy of the test. For the test data set, accuracy rate indicated the ratio of the number of
samples correctly classified by the classifier to the total number of samples. The formulas
of the four metrics are as follows:

TP
P_TP+FP M
TP
R_TP+FN @)
2P-R
F=7Tr ®)
- TP+ TN @
" TP+TN+FP+FN

where TP is True Positive, which predicts the positive class as a positive class number. FP
indicates False Positive, which predicts the negative class as the number of positive classes.
FN is False Negative, which predicts the positive class as a negative class number. TN
denotes True Negative, which predicts the negative class as the number of negative classes.
The TP, FN, FP, and TN are shown in Table 3.

Table 3. Confusion matrix.

Predicted
Actual o .
Positive Negative
Positive P FN
Negative FP TN

4. Results
4.1. Crevasse Detection Result

Figure 8 shows the classification results obtained by applying the automated detection
algorithm of ice crevasses in this study in the test scene. It can be seen that there were
certain differences in the length, type, and density of ice crevasses developed by different
ice shelves. Regular and more closely spaced transverse crevasses developed on the edge
of the Borchgrevinkisen Ice Shelf (Figure 8a), Jelbart Ice Shelf (Figure 8b), Getz Ice Shelf
(Figure 8c), and Shirase Ice Shelf (Figure 8d). There were relatively independent rifts on the
edge of the Fimbul Ice Shelf (Figure 8e) and Larsen C Ice Shelf (Figure 8f). Stancombe-Wills
Ice Shelf (Figure 8g), Larsen D Ice Shelf (Figure 8h), King Baudouin Ice Shelf (Figure 8i), and
Borchgrevinkisen Ice Shelf (Figure 8j) contained relatively irregular transverse crevasses,
En échelon crevasses, and rifts.
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Figure 8. Original image, the result of ice crevasse detection and manual correction. (a—j-1 is the
original SAR image, a—j-2 is the result of automatic crevasse identification, a—j-3 is the result of

manually corrected crevasses).

In order to determine the accuracy of the automated ice crevasse extraction method
proposed by this study, we visually interpreted 10 scenes from the SAR image. Within each
verification area, we verified the results by producing random points. Table 4 shows the
precision, recall, F1 score, and accuracy for the images in Figure 8. Overall, the accuracy
was 84.23%. The average precision was 81.44%, the average recall was 72.50%, and the
average F1 score was 76.02%. In some scenarios, the recall rate was low because the terrain
around the crevasses, the overlying snow layer, the observation direction of the satellite,
and the angle of incidence all affected the performance of the crevasses on the SAR image
and brought uncertainty to the identification of the crevasses.

Table 4. The results of the accuracy assessment for the crevasses.

Images Precision (%) Recall (%) F1(%) Accuracy (%)
Figure 8a (Borchgrevinkisen Ice Shelf) 87.50 56.76 68.85 81.00
Figure 8b (Jelbart Ice Shelf) 77.08 80.43 78.72 80.00
Figure 8c (Getz Ice Shelf) 64.29 45.00 52.94 68.00
Figure 8d (Shirase Ice Shelf) 79.17 86.36 82.61 83.84

Figure 8e (Fimbul Ice Shelf) 76.92 58.82 66.67 90.00
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Table 4. Cont.

Images Precision (%) Recall (%) F1(%) Accuracy (%)
Figure 8f (Larsen C Ice Shelf) 77.27 89.47 82.93 92.86
Figure 8g (Stacombe-Wills Ice Shelf) 94.44 91.89 93.15 95.00
Figure 8h (Larsen D Ice Shelf) 87.88 63.04 73.42 78.79
Figure 8i (King Baudouin Ice Shelf) 74.36 72.50 7342 78.79
Figure 8j (Borchgrevinkisen Ice Shelf) 95.45 80.77 87.50 94.00
Average 81.44 72.50 76.02 84.23

In the 10 test scenes, the crevasses on the Borchgrevinkisen Ice Shelf (Figure 8a), Jelbart
Ice Shelf (Figure 8b), Getz Ice Shelf (Figure 8c), and Shirase Ice Shelf (Figure 8d) were
relatively regular transverse crevasses at the edge of the ice shelf. Most of the crevasses
in the Borchgrevinkisen Ice Shelf (Figure 8a) and Jelbart Ice Shelf (Figure 8b) were clearly
identified, but some crevasses in the front edge of the ice shelf were not identified.

This may be because the ice on the front edge of the Borchgrevinkisen Ice Shelf and
Jelbart Ice Shelf was thinner and affected by warm sea water; the wet snow on the surface
had higher water content and higher absorption, so the backscattering coefficient was
lower and the contrast on the image was lower. Therefore, the crevasse could not be clearly
recognized. For the Getz and Shirase Ice Shelves, it may be that the surface crevasses were
more closely spaced and the absorption of solar radiation more intense, which enhanced
the surface ablation, resulting in little contrast between the crevasse area and the non-
crevasse area on the image, and the crevasse could not be identified. In addition, the edge
characteristics of a single crevasse in a more closely spaced area of crevasses were not
obvious, which posed certain challenges to the identification of crevasses.

The crevasses on the Fimbul Ice Shelf (Figure 8e) and Larsen C Ice Shelf (Figure 8f)
were relatively independent rifts with a longer length and wider width located at the edges.
In a scene where the surrounding terrain is relatively flat and the type of features is single,
this type of crevasse is easier to identify. However, for a single rift with a large scale, its
backscattering characteristics may be inconsistent across the entire rift area, which will lead
to intermittent recognition results, resulting in a low recall rate of recognition.

The accuracy of the crevasses on the Stancombe—-Wills Ice Shelf (Figure 8g) was the
best, probably because the incident angle was small in this scene. The angle of incidence
determines the penetration depth of the radar band and the degree of perspective at the
crevasse wall. The smaller the angle of incidence, the higher the contrast between the
crevasse and the non-crevasse areas, which makes the identification of the crevasses easier.

Some scenes, such as the Larsen D Ice Shelf (Figure 8h), King Baudouin Ice Shelf
(Figure 8i), and Borchgrevinkisen Ice Shelf (Figure 8j), had high precision and a low recall
rate. This was due to the complex characteristics of the crevasses in this area, including
both regular and more closely spaced transverse crevasses and large-scale single rift.

The accuracy percentages for the Fimbul Ice Shelf (Figure 8e), Larsen C Ice Shelf
(Figure 8f), Stancombe-Wills Ice Shelf (Figure 8g), and Borchgrevinkisen Ice Shelf (Figure 8j)
were high. This was because the crevasses’ direction was approximately perpendicular to
the satellite observation direction, and the radar signal was reflected from the side wall of
the crevasses, which caused the crevasses to produce high backscattering contrast relative
to the surrounding ground objects. Therefore, the crevasse features were obvious and easy
to distinguish.

4.2. Analysis of Crevasse Characteristics

Crevasse morphology is the external manifestation of glacier movement, and different
types of crevasses reflect the characteristics of different glacier movements.

Transverse crevasses generally appear in the area of extensional flow when ice blocks
slide downward from upstream. Splaying crevasses are often observed in terrestrial melting
zones when the upstream ice is pushed to the downstream ice. In addition, different forms
of crevasses provide different scales of glacier porosity. This will affect the mass balance of
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the glacier by controlling the efficiency of meltwater transportation and the hydrofracture
process and destroying the stability of the ice shelf by enhancing the dynamic process of
base sliding.

Crevasses play a dual role in the movement of the glacier. On the one hand, as an
external manifestation of glacier movement, crevasses can indicate the process of glacier
movement. For example, transverse crevasses usually develop in glacier accumulation
areas [1], but in the melting zone of a glacier, a low advection life cycle splaying crevasse
is more likely [50]. The En échelon crevasse is thought to be caused by the rotation of
the crevasse during the advection period under the glacier in the high advection period.
However, not all types of crevasses can be attributed to these two broad life cycles [9].

On the other hand, the shape of the crevasse will also affect the melting of the
glacier surface [51]. The latent heat carried by the surface meltwater affects the ice
deformation [52,53], and the resulting hydrofracture may also cause glaciers to collapse [6].
The disintegrated glacier lacks frontal barriers, and the ice flow speeds up. The develop-
ment of potential crevasses and the process of glacier deformation form a cyclic feedback
mode [1].

However, there have been no detailed products of crevasse morphology. Given the
importance of the type of crevasse, we used a visual interpretation method based on prior
knowledge to distinguish the types of crevasses. We divided the surface crevasses into six
types according to the morphological characteristics, and we calculated the length as well
as density characteristics of ice crevasses. Furthermore, we discussed the composition and
spatial distribution of ice crevasses in different ice shelves, including the Thwaites Glacier
and Nickerson Ice Shelf in WAIS, and the Jelbart Ice Shelf, Amery Ice Shelf, and Shackleton
Ice Shelf in EAIS. The spatial distribution of different types of ice crevasses is shown in
Figure 9.
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Figure 9. Distribution of ice crevasses in typical ice shelves in Antarctica.
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There are also spatial differences in the type and composition of ice crevasses (Figure 10).
The types of ice crevasses on the Amery Ice Shelf and Jelbart Ice Shelf were dominated by
the transverse crevasses, while the types of ice crevasses on the Shackleton Ice Shelf and
Nickerson Ice Shelf were more abundant.
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Figure 10. The types of ice crevasses on typical ice shelves of Antarctica.

On the Amery Ice Shelf, the main types of ice crevasses were transverse crevasses, in
addition to a small number of splaying crevasses and fewer rifts. On the Thwaites Glacier,
the crevasses were mainly icefall and secondly transverse crevasses, and splaying crevasses
were also widely distributed. On the Jelbart Ice Shelf, transverse crevasses were the main
crevasse type, followed by a limited number of En échelon crevasses, and the bergschrund
and rifts had developed sporadically. On the Shackleton Ice Shelf, there were rich types
of ice crevasses, and icefall in some areas was obvious. On the Nickerson Ice Shelf, the
proportions of transverse crevasses, splaying crevasses, and En échelon crevasses were
relatively balanced, and the distribution was relatively concentrated. In addition, there was
a scattered distribution of rifts.

We also counted the average length and density properties of the ice crevasses, and
we defined density as the length of crevasses in meters per square kilometer [54]. Table 5
and Figures 11 and 12 show the length and density of ice crevasses on typical ice shelves
of Antarctica.

Table 5. The average length and density of crevasses on typical ice shelves of Antarctica.

Locations Amery Thwaites Jelbart Shackleton Nickerson
Length (m) 8476 4075 11,300 3880 4922
Density (m/km?) 297 411 367 308 377

Overall, the Jelbart Ice Shelf had the longest ice crevasses. The Shackleton Ice Shelf
had the shortest ice crevasses. The spatial difference in the density of ice crevasses in
the Antarctic ice shelf was relatively small. The Thwaites Glacier and the Nickerson Ice
Shelf had the largest ice crevasse density, and the Amery Ice Shelf had the smallest ice
crevasse density. The ice crevasses on different ice shelves showed different shapes. The ice
crevasses on the Nickerson Ice Shelf and the Thwaites Glacier were short and more closely
spaced; the ice crevasses on the Jelbart Ice Shelf and Amery Ice Shelf were long and sparse.

The characteristics of crevasses are important signs of glacial movement. However, we
must admit that our current research technology and detection results can only reflect the
main characteristics of the crevasses to a certain extent, including length, density, and type.
Therefore, to carry out more quantitative research requires further optimized technical
methods and higher resolution data support. In the future, we will further explore the way
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to achieve this and conduct a more in-depth analysis and discussion on the process and
mechanism of crevasse formation.
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Figure 11. The density of ice crevasses on typical ice shelves of Antarctica.
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Figure 12. The length of ice crevasses on typical ice shelves of Antarctica.

5. Discussion

Since the brightness of the SAR image is proportional to the backscattering intensity,
bright pixels correspond to rough glacier surfaces while dark pixels indicate smooth
surfaces [55]. However, a rough glacier surface includes not only crevasses but also surface
features such as thinning of the top snow layer, formation of ridges, and steep slopes. These
features will increase the complexity of crevasse extraction and interfere with the accurate
extraction of ice crevasses to a certain extent.

Undoubtedly, the training samples and the model’s inherent configuration all con-
tributed to the error of the extraction method. Although we considered the different types
of crevasse appearances in the single-polarized Sentinel-1 SAR imagery in the training
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samples, there remained some complex situations where we could not discriminate the
crevasses from the surrounding surface. Based on the above considerations, we used a
visual interpretation method based on prior knowledge to distinguish the types of crevasses.
More models based on machine learning method that have been widely used in cryosphere
studies [45,56] would be considered in attempting to improve the accuracy of crevasses’
detection in future work.

In order to further verify the crevasse detection method proposed in this study, we
selected the typical crevasse area of the Shackleton Ice Shelf and Jelbart Ice Shelf and
compared it with results from published literature. The results showed that, regardless of
the unrecognizable crevasses caused by the image quality and the changes in the crevasses
themselves, except for the collapse of the edge of the ice shelf caused by the expansion
of the rift, the identification of the crevasses in other areas had good visual consistency
(Figure 13).

Transverse
Splaying

Bergschrund

En Echelon

Icefall

— Rifts

Transverse Splaying Bergschrund En Echelon Icefall _Rifts
s

Figure 13. Comparison of characteristics of crevasses on the typical ice shelves. (a,c) are the results of
the method proposed in this study; (b,d) are the results from the published literature [54].

The comparison results showed that the ice crevasses detected by our method were
generally consistent with the results of Christine et al. (2013), but there were still some
differences in the identification of crevasses. This was because, on the one hand, the sensors
that collected the data were different. Christine et al. (2013) used Radarsat-1 data with
better spatial resolution (25 m), so the identification of some small crevasses was more
accurate. On the other hand, data collection time was different. The data collection time
of Christine occurred before 2013, and the Sentinel-1 data we used were from 2020. The
comparison showed that the edge of the Shackleton Ice Shelf collapsed from the expansion
of the rift during 2013-2020.
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6. Conclusions

Crevasses play an important dual role in indicating glacier movement and the collapse
of ice shelves. On the one hand, they are the external manifestation of glacier movement.
Crevasses of different shapes reflect the movement characteristics of different glaciers. On
the other hand, crevasses with different shapes developed in different ice-forming zones
have different effects on the mass balance of the glacier surface and the stability of the ice
shelf. Therefore, it is important to identify the spatial pattern and features of ice crevasses.

In this study, we used the improved U-Net network for the deep learning model
training and test and realized the automated detection of Antarctic ice crevasses based
on single-polarized Sentinel-1 SAR data. According to the detection results of typical
ice shelves in Antarctica, our detection method achieved a local accuracy of 95%, which
proved the feasibility and reliability of the application of the single-polarization SAR image
and deep learning method to Antarctic ice crevasse detection. Compared with previous
studies, the identification of the crevasse areas had good visual consistency. Based on the
identification of ice crevasses, we initially calculated the length, density of ice crevasses, and
manually determined the type characteristics in various regions of Antarctica, reflecting
the regional differences in the appearance of ice crevasses.

Although we considered the morphological differences of the types of ice crevasses
when building the training samples, the current method could only identify that they
were crevasses without determining the type of crevasse. However, the proposed method
has some limitations in distinguishing complex crevasses. In the next study, we intend to
improve the detection accuracy by increasing the diversity of training samples and adjusting
the configuration of the model. More importantly, we will analyze the development
characteristics of different types of ice crevasses and the influence process on the stability
of the ice shelf using the long-time scale and high spatial resolution crevasse products, to
further reflect the response mechanism of the glacier mass balance and to provide scientific
solutions for actively responding to global climate change.

Author Contributions: Methodology, Y.D., L.L., and J.Z.; software, ].Z.; validation, J.Z.; resources,
J.Z.; writing—original draft preparation, J.Z.; writing—review and editing, S.L., ].Z., and X.L.; funding
acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China under Grant 2019YFC1509104 and the Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant XDA19070202.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data available on request.

Acknowledgments: The authors would like to thank the European Union Copernicus Program for
providing Sentinel-1 data through the Copernicus Open Access Hub and NASA’s Alaska Satellite
Facility (ASF). Moreover, we thank the North American Cartographic Information Society (NACIS)
for providing the Antarctic ice shelf data.

Conflicts of Interest: The authors declare no conflict of interest.

1. Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. Glacier crevasses: Observations,
models, and mass balance implications. Rev. Geophys. 2016, 54, 119-161. [CrossRef]

2. Herzfeld, U.C.; Trantow, T.; Lawson, M.; Hans, J.; Medley, G. Surface heights and crevasse morphologies of surging and fast-
moving glaciers from ICESat-2 laser altimeter data—Application of the density-dimension algorithm (DDA-ice) and evaluation
using airborne altimeter and Planet Sky Sat data. Sci. Remote Sens. 2021, 3, 100013. [CrossRef]

3.  Miles, K.E,; Hubbard, B.; Irvine-Fynn, T.; Miles, E.S.; Rowan, A.V. Hydrology of debris-covered glaciers in High Mountain Asia.
Earth-Sci. Rev. 2020, 207, 103212. [CrossRef]

4.  Gilbert, A; Sinisalo, A.; Gurung, T.R.; Fujita, K.; Maharjan, S.B.; Sherpa, T.C.; Fukuda, T. The influence of water percolation
through crevasses on the thermal regime of Himalayan Mountain glaciers. Cryosphere 2020, 14, 1273-1288. [CrossRef]


http://doi.org/10.1002/2015RG000504
http://doi.org/10.1016/j.srs.2020.100013
http://doi.org/10.1016/j.earscirev.2020.103212
http://doi.org/10.5194/tc-14-1273-2020

Remote Sens. 2022, 14, 487 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Yang, K. The Progress of Greenland Ice Sheet Surface Ablation Research. J. Glaciol. Geocryol. 2013, 35, 101-109.

Lai, C.Y.; Kingslake, ].; Wearing, M.G.; Chen, PH.C.; Gentine, P;; Li, H.; van Wessem, J.M. Vulnerability of Antarctica’s ice shelves
to meltwater-driven fracture. Nature 2019, 584, 574-578. [CrossRef]

Thompson, S.S.; Cook, S.; Kulessa, B.; Winberry, J.P.; Fraser, A.D.; Galton-Fenzi, B.K. Comparing satellite and helicopter-based
methods for observing crevasses, application in East Antarctica. Cold Reg. Sci. Technol. 2020, 178, 103128. [CrossRef]

Whillans, I.M.; Merry, C.J. Analysis of a shear zone where a tractor fell into a crevasse, western side of the Ross Ice Shelf,
Antarctica. Cold Reg. Sci. Technol. 2001, 33, 1-17. [CrossRef]

Vornberger, P.L.; Whillans, .M. Crevasse Deformation and Examples from Ice Stream B, Antarctica. J. Glaciol. 1990, 36, 3-10.
[CrossRef]

Delaney, A.J.; Arcone, S.A.; O’'Bannon, A.; Wright, J. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica.
In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, Delft, The Netherlands, 21-24 June 2004;
pp- 777-780.

Taurisano, A.; Tronstad, S.; Brandt, O.; Kohler, J. On the use of ground penetrating radar for detecting and reducing crevasse-
hazard in Dronning Maud Land, Antarctica. Cold Reg. Sci. Technol. 2006, 45, 166-177. [CrossRef]

Williams, R.M.; Ray, L.E.; Lever, ].H.; Burzynski, A.M. Crevasse Detection in Ice Sheets Using Ground Penetrating Radar and
Machine Learning. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 4836—4848. [CrossRef]

Liu, Y,; Cheng, X.; Hui, F; Wang, X.; Wang, E; Cheng, C. Detection of crevasses over polar ice shelves using Satellite Laser
Altimeter. Sci. China Earth Sci. 2014, 57, 1267-1277. [CrossRef]

Bhardwaj, A.; Joshi, PK.; Sam, L.; Singh, M.K.; Singh, S.; Kumar, R. Applicability of Landsat 8 data for characterizing glacier
facies and supraglacial debris. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 51-64. [CrossRef]

Merry, C.J.; Whillans, .M. Ice-flow features on Ice Stream B, Antarctica, revealed by SPOT HRV imagery. ]. Glaciol.
1993, 39, 515-527. [CrossRef]

Moustafa, S.E.; Rennermalm, A.K.; Roman, M.O.; Wang, Z.; Schaaf, C.B.; Smith, L.C.; Erb, A. Evaluation of satellite remote
sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens. Environ. 2017, 198, 115-125.
[CrossRef]

Colgan, W.; Steffen, K.; McLamb, W.S.; Abdalati, W.; Rajaram, H.; Motyka, R.; Anderson, R. An increase in crevasse extent, West
Greenland: Hydrologic implications. Geophys. Res. Lett. 2011, 38, 1-7. [CrossRef]

Herzfeld, U.C.; Zahner, O. A connectionist-geostatistical approach to automated image classification, applied to the analysis of
crevasse patterns in surging ice. Comput. Geoences 2001, 27, 499-512.

Ewertowski, M.W.; Evans, D.J.; Roberts, D.H.; Tomczyk, A.M.; Ewertowski, W.; Pleksot, K. Quantification of historical landscape
change on the foreland of a receding polythermal glacier, Horbyebreen, Svalbard. Geomorphology 2019, 325, 40-54. [CrossRef]
Liu, Y;; Moore, ].C.; Cheng, X.; Gladstone, R.M.; Bassis, ].N.; Liu, H.; Hui, F. Ocean-driven thinning enhances iceberg calving and
retreat of Antarctic ice shelves. Proc. Natl. Acad. Sci. USA 2015, 112, 3263-3268. [CrossRef] [PubMed]

Huang, R.; Jiang, L.; Wang, H.; Yang, B. A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR
Point Clouds. Remote Sens. 2019, 11, 2373. [CrossRef]

Enderlin, E.M.; Bartholomaus, T.C. Sharp contrasts in observed and modeled crevasse patterns at Greenland’s marine terminating
glaciers. Cryosphere 2020, 14, 4121-4133. [CrossRef]

Bhardwaj, A.; Sam, L.; Singh, S.; Kumar, R. Automated detection and temporal monitoring of crevasses using remote sensing and
their implications in glacier dynamics. Ann. Glaciol. 2015, 57, 81-91. [CrossRef]

Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave
remote sensing data. Remote Sens. Environ. 2018, 210, 48-64. [CrossRef]

Xiao, X.; Liang, S.; He, T.; Wu, D.; Pei, C.; Gong, ]J. Estimating fractional snow cover from passive microwave brightness
temperature data using MODIS snow cover product over North America. Cryosphere 2021, 15, 835-861. [CrossRef]

Gomez, R.; Arigony-Neto, J.; De Santis, A.; Vijay, S.; Jafia, R.; Rivera, A. Ice dynamics of union glacier from SAR offset tracking.
Glob. Planet Chang. 2019, 174, 1-15. [CrossRef]

Garbe, J.; Albrecht, T.; Levermann, A.; Donges, ]J.F.; Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature
2020, 585, 538-544. [CrossRef]

Pandey, M.; NCPant Arora, D.; Gupta, R. A review of Antarctic ice sheet fluctuations records during Cenozoic and its cause-and-
effect relation with the climatic conditions. Polar Sci. 2021, 30, 100720. [CrossRef]

Dow, C.E; Lee, W.S.; Greenbaum, J.S.; Greene, C.A.; Zappa, C.J. Basal channels drive active surface hydrology and transverse ice
shelf fracture. Sci. Adv. 2018, 4, 7212. [CrossRef]

Langley, K.; Von Deschwanden, A.; Kohler, J.; Sinisalo, A.; Matsuoka, K.; Hattermann, T.; Isaksson, E. Complex network of
channels beneath an Antarctic ice shelf. Geophys. Res. Lett. 2014, 41, 1209-1215. [CrossRef]

Luckman, A.; Jansen, D.; Kulessa, B.; King, E.C.; Sammonds, P.; Benn, D.I. Basal crevasses in Larsen C Ice Shelf and implications
for their global abundance. Cryosphere 2012, 6, 113-123. [CrossRef]

Pivot, F. C-Band SAR Imagery for Snow-Cover Monitoring at Tree line, Churchill, Manitoba, Canada. Remote Sens.
2012, 4, 2133-2155. [CrossRef]

Marsh, O.].; Price, D.; Courville, Z.R.; Floricioiu, D. Crevasse and rift detection in Antarctica from TerraSAR-X satellite imagery.
Cold Reg. Sci. Technol. 2021, 187, 103284. [CrossRef]


http://doi.org/10.1038/s41586-020-2627-8
http://doi.org/10.1016/j.coldregions.2020.103128
http://doi.org/10.1016/S0165-232X(01)00024-6
http://doi.org/10.1017/S0022143000005487
http://doi.org/10.1016/j.coldregions.2006.03.005
http://doi.org/10.1109/JSTARS.2014.2332872
http://doi.org/10.1007/s11430-013-4796-x
http://doi.org/10.1016/j.jag.2014.12.011
http://doi.org/10.1017/S0022143000016415
http://doi.org/10.1016/j.rse.2017.05.030
http://doi.org/10.1029/2011GL048491
http://doi.org/10.1016/j.geomorph.2018.09.027
http://doi.org/10.1073/pnas.1415137112
http://www.ncbi.nlm.nih.gov/pubmed/25733856
http://doi.org/10.3390/rs11202373
http://doi.org/10.5194/tc-14-4121-2020
http://doi.org/10.3189/2016AoG71A496
http://doi.org/10.1016/j.rse.2018.03.008
http://doi.org/10.5194/tc-15-835-2021
http://doi.org/10.1016/j.gloplacha.2018.12.012
http://doi.org/10.1038/s41586-020-2727-5
http://doi.org/10.1016/j.polar.2021.100720
http://doi.org/10.1126/sciadv.aao7212
http://doi.org/10.1002/2013GL058947
http://doi.org/10.5194/tc-6-113-2012
http://doi.org/10.3390/rs4072133
http://doi.org/10.1016/j.coldregions.2021.103284

Remote Sens. 2022, 14, 487 20 of 20

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.
47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

Benn, D.; Astrom, ]. Calving glaciers and ice shelves. Adv. Phys. X 2018, 3, 1513819. [CrossRef]

Cook, S.; Astrbm, J.; Zwinger, T.; Galton-Fenzi, B.K.; Greenbaum, J.S.; Coleman, R. Modelled fracture and calving on the Totten
Ice Shelf. Cryosphere 2018, 12, 2401-2411. [CrossRef]

Jacobel, R.W.; Christianson, K.; Wood, A.C.; Dallasanta, K.J.; Gobel, R.M. Morphology of basal crevasses at the grounding zone of
Whillans Ice Stream, West Antarctica. Ann. Glaciol. 2014, 55, 57-63. [CrossRef]

McGrath, D,; Steffen, K.; Scambos, T.; Rajaram, H.; Casassa, G.; Lagos, ].L.R. Basal crevasses and associated surface crevassing on
the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability. Ann. Glaciol. 2012, 53, 10-18. [CrossRef]

Deledalle, C.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.
IEEE Trans. Image Process. 2009, 18, 2661-2672. [CrossRef]

Li, R; Liu, W,; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-Level
Sea-Land Segmentation. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954-3962. [CrossRef]

Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data:
A Review—Part II: Applications. Remote Sens. 2020, 12, 1667. [CrossRef]

Dirscherl, M.; Dietz, A ].; Kneisel, C.; Kuenzer, C. A Novel Method for Automated Supraglacial Lake Mapping in Antarctica
Using Sentinel-1 SAR Imagery and Deep Learning. Remote Sens. 2021, 13, 197. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11-13 April 2011.

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
Baumhoer, C.A.; Dietz, A.].; Kneisel, C.; Kuenzer, C. Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from
Sentinel-1 Imagery Using Deep Learning. Remote Sens. 2019, 11, 2529. [CrossRef]

Li, QJ.; Zhao, Y.Q.; Gu, Z. Design of loss function for cost-sensitive learning. Control Theory Appl. 2015, 32, 689—-694.
Ronneberger, O.; Fischer, P; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Springer International Publishing: Cham, Switzerland, 2015.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 2818-2826.
Nielsen, M. A. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015; Volume 25.

Mottram, R.; Benn, D. Testing crevasse-depth models: A field study at Breidamerkurjokull, Iceland. J. Glaciol. 2009, 55, 746-752.
[CrossRef]

Cathles, L.M.; Abbot, D.S.; Bassis, ].N.; MacAyeal, D. Modeling surface-roughness/solar-ablation feedback: Application to
small-scale surface channels and crevasses of the Greenland ice sheet. Ann. Glaciol. 2011, 52, 99-108. [CrossRef]

Phillips, T.; Rajaram, H.; Steffen, K. Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheets.
Geophys. Res. Lett. 2010, 37, L20503. [CrossRef]

Poinar, K.; Joughin, I; Lilien, D.; Brucker, L.; Kehrl, L.; Nowicki, S. Drainage of Southeast Greenland Firn Aquifer Water through
Crevasses to the Bed. Front. Earth Sci. 2017, 5, 5. [CrossRef]

Wesche, C.; Jansen, D.; Dierking, W. Calving Fronts of Antarctica: Mapping and Classification. Remote Sens. 2013, 5, 6305-6322.
[CrossRef]

Koike, K.; Yoshida, H.; Omura, M.; Shibuya, K.; Doi, K. Temporal changes in crevasses in the middle Slessor Glacier, Coats Land,
East Antarctica through SAR data analysis. Earth Planets Space 2012, 64, 257-267. [CrossRef]

Xiao, X.; He, T.; Liang, S.; Zhao, T. Improving fractional snow cover retrieval from passive microwave data using a radiative
transfer model and machine learning method. IEEE Trans. Geosci. Remote Sens. 2021, 1. [CrossRef]


http://doi.org/10.1080/23746149.2018.1513819
http://doi.org/10.5194/tc-12-2401-2018
http://doi.org/10.3189/2014AoG67A004
http://doi.org/10.3189/2012AoG60A005
http://doi.org/10.1109/TIP.2009.2029593
http://doi.org/10.1109/JSTARS.2018.2833382
http://doi.org/10.3390/rs12101667
http://doi.org/10.3390/rs13020197
http://doi.org/10.3390/rs11212529
http://doi.org/10.3189/002214309789470905
http://doi.org/10.3189/172756411799096268
http://doi.org/10.1029/2010GL044397
http://doi.org/10.3389/feart.2017.00005
http://doi.org/10.3390/rs5126305
http://doi.org/10.5047/eps.2011.10.003
http://doi.org/10.1109/TGRS.2021.3128524

	Introduction 
	Study Area and Data Set 
	Study Area 
	Sentinel-1 SAR Data 
	Auxiliary Data 

	Methodology 
	Pre-Processing and Data Preparation 
	U-Net Architecture and Model Training 
	Accuracy Assessment 

	Results 
	Crevasse Detection Result 
	Analysis of Crevasse Characteristics 

	Discussion 
	Conclusions 
	References

