
����������
�������

Citation: Wu, X. Implementation of

Two-Stream Emission Model for

L-Band Retrievals on the Tibetan

Plateau. Remote Sens. 2022, 14, 494.

https://doi.org/10.3390/rs14030494

Academic Editor: Weimin Huang

Received: 13 December 2021

Accepted: 18 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Implementation of Two-Stream Emission Model for L-Band
Retrievals on the Tibetan Plateau
Xiaojing Wu

Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese
Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China; wuxj@igsnrr.ac.cn

Abstract: This study assesses the suitability of the two-stream microwave emission model in simulat-
ing brightness temperature (TB

p) and retrieving liquid water content (θliq) at L-band in combination
with the four-phase dielectric model for both thawed and frozen soil. Both single (SCA) and double
(DCA) channel algorithms are adopted using both ground-based ELBARA-III and spaceborne SMAP
measurements conducted in a Tibetan grassland site. The ELBARA-III measured TB

p are smaller than
the SMAP measurements in the warm season due to a lower value of average θliq presented within
the ELBARA-III footprint. The two-stream emission model configured with SMAP vegetation and
surface roughness parameterization underestimates both ELBARA-III and SMAP measured TB

p at
horizontal polarization in the cold season, and overestimates the vertical polarized measurements
(TB

V) in the warm season. Implementation of a new surface roughness and vegetation parameteriza-
tion resolves above deficiency, and the simulations capture better large-scale SMAP measurements in
comparison to these performed for the ELBARA-III footprint. The dynamics of in situ θliq are better
reproduced by retrievals using the SCA based on TB

V measurements (SCA-V), whereby the SCA-V
retrievals using the SMAP ascending overpass measurements shows the best results with an unbiased
root-mean-square error (ubRMSE) of 0.035 m3 m−3 that outperforms the SMAP mission specification.

Keywords: Soil Moisture Active Passive (SMAP); L-band microwave radiometry; thawed and frozen
soil conditions; liquid water content; grassland; Tibetan Plateau

1. Introduction

Passive microwave remote sensing at L-band (1–2 GHz) is recognized as one of the
most useful approaches for worldwide monitoring of surface soil moisture and freeze–
thaw state [1,2]. Two currently operating satellite missions, i.e., the SMOS (Soil Moisture
and Ocean Salinity) and SMAP (Soil Moisture Active Passive) launched, respectively,
in 2009 by the European Space Agency (ESA) and in 2015 by the National Aeronautic
and Space Administration (NASA), all use this technology to map global soil moisture.
In the meantime, numerous studies have been devoted over the past decade to improve
parameterizations of the commonly used τ-ω microwave emission model [3] and retrieval
of soil moisture by these two missions [2,4,5].

The τ-ω microwave emission model includes radiative components from both veg-
etation canopy and soil surface, whereby the vegetation canopy is generally treated as
a single homogeneous “soft layer” [6,7]. This model is a zero-order solution of the mi-
crowave radiative transfer equations, which generally neglects multiple reflections between
vegetation canopy and underground soil surface and does not follow the Kirchhoff’s
law [8]. In addition, the τ-ω microwave emission model also neglects the multiple scat-
tering processes in the vegetation canopy that is inadequate to represent canopy volume
scattering [9–11]. To resolve this problem, a common way is to calibrate the vegetation
parameters, i.e., the single-scattering albedo ω and vegetation optical depth τ, to match
brightness temperature (TB

p) measurements [12,13] or simulations produced by numerical
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models [11,14–16]. As such, Kurum [17] showed that the canopy volume scattering can be
accounted for by using the equivalent/effective vegetation parameters, and thus the first-
order solution of microwave radiative transfer equations can be appropriately reproduced
by the zero-order τ-ω model. However, calibration of the τ-ω model generally requires
spaceborne, aircraft- or ground-based TB

p measurements, and the calibration also needs a
network of in situ measurements across different climate and vegetation types with the
assumption that the calibrated parameters can be applied to other similar geographical
regions [9].

On the other hand, higher-order solution of the microwave radiative transfer equa-
tions has been developed to overcome the abovementioned deficiencies of zero-order τ-ω
emission model [6,9]. For instance, a two-stream emission model has recently been devel-
oped by Schwank et al. [6] according to the framework of MEMLS (Microwave Emission
Model of Layered Snowpacks) model [18,19]. It’s shown that the two-stream emission
model that considers multiple scattering and reflection is physically more correct than
the τ-ω microwave emission model, whereby the “soft layer” assumption is removed [6].
Li et al. [7] and Schwank et al. [6] have recently compared the performances of two-stream
and τ-ω emission models in simulating the TB

p and retrieving soil moisture using ground-
based and spaceborne measurements at local and global scales, respectively. The results
have demonstrated the potential of replacing the τ-ω model with the two-stream microwave
emission model in the soil moisture retrieval algorithms due to its better performance.
Specifically, the formulation of the single layer two-stream microwave emission model is
as simple as the τ-ω emission model, whereby the former is also applicable to snow con-
dition [20,21] that makes it possible to implement a single microwave emission model for
applications to different land conditions [7]. However, the performance of the two-stream
microwave emission model for its application to frozen ground is still unknown, whereby
the frozen ground is widely presented in the northern hemisphere, i.e., covers more than
50% of the land in the winter [22–24].

However, most of the currently widely used soil dielectric models, i.e., the semi-
empirical models proposed by Mironov et al. [25] and Dobson et al. [26], are only ap-
plicable to thawed soil condition. To date, there are three soil dielectric models that
can be applicable to both thawed and frozen soil conditions, i.e., modified versions of
above-mentioned Dobson [27] and Mironov [28] models and the four-phase dielectric
model [29,30]. Mironov [28] demonstrated that their model provides a better estimate of
soil permittivity in comparison to the model of Zhang et al. [27]. Recently, Zheng et al. [31]
have shown that the four-phase dielectric mixing model is more suitable for simulating the
TB

p on the Tibetan Plateau via comparing the performance of the above three soil dielectric
models. The TB

p simulations are also sensitive to the vegetation and surface roughness
parameterizations. The semi-empirical model proposed by Wang and Choudhury [32] has
often been implemented to account for the impact of surface roughness, which adopts three
parameters, namely, Q represents the impact of polarization mixing, h accounts for the
increase/decrease in reflectivity affected by the surface roughness, and N represents the
angular dependence of reflectivity. On the other hand, the extinction and scattering effects
of vegetation are usually expressed by the optical depth τ and effective scattering albedo
ωp [33]. In the baseline soil moisture retrieval algorithm of the SMAP mission, the h and
τ are, respectively, linearly correlated to the RMS height (s) and vegetation water content
(VWC), the Q is assumed to be zero, and the ω is defined for specific vegetation types [34].
Recent studies [35–37] have suggested that the Q is non-zero, and the empirical power-law
relationship developed by Wigneron et al. [13] has also been widely implemented in the
literature [35,36,38]. Recently, Zheng et al. [16,39] indicated that the SMAP algorithm
overestimates the effect of vegetation canopy and underestimates the impact of surface
roughness over the Tibetan Plateau, and a new parameterization has thus been proposed
to address these problems. Similar findings have also been reported by Chaubell et al. [40].

In this study, we expand the application of the two-stream microwave emission
model to both thawed and frozen soil conditions by incorporating the four-phase dielectric



Remote Sens. 2022, 14, 494 3 of 17

mixing model. Its performance in simulating L-band TB
p and retrieving liquid water

content (θliq) has been tested using both spaceborne SMAP and ground-based ELBARA-III
radiometry measured TB

p conducted in a Tibetan grassland site. The impact of different
surface roughness and vegetation parameterizations on the TB

p simulation is also assessed,
and the θliq is retrieved using both single (SCA) and double (DCA) channel algorithms.
In Section 2, we show the simultaneous SMAP and ELBARA-III TB

p measurements, and
Section 3 outlines the two-stream microwave emission model as well as the thereon-
based θliq retrieval algorithms. The comparative analysis of SMAP and ELBARA-III TB

p

measurements and their relationships with in situ θliq are presented in Section 4. Impacts
of surface roughness and vegetation parameterizations on the TB

p simulations and θliq
retrievals based on SMAP and ELBARA-III measured TB

p are investigated in Section 4 as
well. The findings are summarized in the Section 5.

2. Study Area and Observations
2.1. Maqu Station

The Maqu soil moisture (SM) monitoring network is located within the Yellow River
source region on the northeastern part of the Tibetan Plateau (Figure 1). The Maqu network
is configured with about 30 SM profile monitoring sites, which was chosen as one of the
calibration/validation sites by the SMAP scientific team for evaluating the SMAP soil
moisture retrievals [41]. The dominant land cover is alpine meadows, and the soil type is
generally dominated by silt loam, whereby the average sand and clay percentage are about
30% and 10%, and the average bulk density (ρb) is about 1 g cm−3 [16]. The elevations vary
from 3400 to 3800 m.

Figure 1. Locations of the Maqu in situ SM network and ELBARA-III monitoring site in the source
region of Yellow River (SRYR).
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Each monitoring site records readings of SM at different soil depths ranging from 5 to
80 cm every 15 min using the Decagon 5TM probes. In the air, the 5TM sensors integrate a
volume of 715 mL around the prong, with a maximum distance of 6 cm from the center
of the sensor. In the soil, the zone of influence ranges from 3 to 4 cm from the middle
prong of the 5TM sensors [42]. To further improve the measured accuracy of in situ soil
liquid water contents θliq derived from the 5TM capacitance measurements, Dente et al. [43]
have developed several calibration functions for specific soil types found across the Maqu
area. Detailed description of the Maqu SM network is referred to Zheng et al. [44] and
Zhang et al. [45].

2.2. ELBARA-III Field Site

For the purpose of evaluating the SMOS and SMAP measurements over the Tibetan
Plateau, the L-band ELBARA-III radiometer [46] was setup within the Maqu in situ SM
monitoring network (Figure 1) in January, 2016 [47,48]. The ELBARA-III radiometer has
been deployed on a tower with 4.8 m height above the ground, and the beam waist of
the antenna is about 6.5 m height. Both horizontal (TB

H) and vertical (TB
V) polarized

TB
p of ground have been measured for incidence angles ranging from 40◦ to 70◦ in steps

of 5◦ every 30 min. Concurrent to the TB
p measurements, next to the radiometer tower

SM and soil temperature (SMST) profiles have been measured by the 5TM probes as
well, and micrometeorological measurements have also been performed in the field site.
An additional description of the ELBARA-III observation site and the abovementioned in
situ measurements was outlined by Zheng et al. [47,48].

2.3. SMAP Products

The SMAP satellite mission led by the NASA has been launched in January 2015,
which is configured with an L-band (1.41 GHz) radiometer and an L-band (1.26 GHz) radar.
The radar ceased operations in July 2015, while the radiometer continues to work and
provides a spatial extent of about 40 km with off-nadir incidence angle ψ ≈ 40◦ as expected.

Latest versions of Level 1C radiometer product and Level 2 radiometer SM prod-
uct are utilized in this study, which is gridded on a 36 km Equal-Area Scalable Earth-2
(EASE2) grid and is available at https://nsidc.org/data/smap/smap-data.html (accessed
on 12 December 2021). A centered validation grid pixel has been defined by the SMAP sci-
entific team for the Maqu SM monitoring network to address the uncertainties related to the
spatial mismatch between the SMAP soil moisture retrievals and the in situ references [41].
In Figure 1, it can be noted that the ELBARA-III monitoring station is placed at the upper
right part of the SMAP validation grid. The TB

p measurements of SMAP during both
ascending (6 PM) and descending (6 AM) overpasses are used in this study, and the data
during the period from August 2016 to July 2017 are extracted for the validation grid pixel.
There are about 360 SMAP measurements that are available for the presented research.

Both SMAP and ELBARA-III measured TB
p and the corresponding footprint av-

erage θliq used in this study is provided as Supplementary Material. Please find the
Supplementary Table S1 for the details.

3. Methods
3.1. Two-Stream Microwave Emission Model

The two-stream emission model developed by Schwank et al. [6] is implemented to
simulate the land surface emission in this study:

Tp
B = TG·e

p
s + Tv·ep

v + Tsky·e
p
sky, (1)

ep
s = γv(1− rp)/(1− rprv), (2)

ep
v = (1− rv − γv)(1− rprv + rpγv)/(1− rprv), (3)

ep
sky = 1− ep

s − ep
v, (4)

https://nsidc.org/data/smap/smap-data.html
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γv =
2· exp(τ

√
1−ω2/ cos ψ)·[1−ω2 +

√
1−ω2]

exp(2τ
√

1−ω2/ cos ψ)·[2−ω2 + 2
√

1−ω2]−ω2
, (5)

rv =
ω·[exp(2τ

√
1−ω2/ cos ψ)− 1]·[1 +

√
1−ω2]

exp(2τ
√

1−ω2/ cos ψ)·[2−ω2 + 2
√

1−ω2]−ω2
, (6)

where p indicates the polarization of microwave emission (p = H, horizontal; p = V, vertical),
Tv and TG are the effective vegetation and soil temperature (K), Tsky represents the sky
brightness temperature (K), es

p, ev
p and esky

p are emissivity (−) of soil, vegetation and sky,
rv represents the vegetation reflectivity (−), γv represents the transmissivity of vegetation
canopy (−), rp represents the rough soil reflectivity (−), ω represents the effective scattering
albedo (−), τ represents the vegetation optical depth (−), and ψ is the incidence (observa-
tion) angle (◦). The Tsky can be estimated by an empirical approach using air temperature
and elevation as input [49], which is ignored in this study due to the fact that its value is
very small at L-band (≈5 K) [6].

The estimation of rp is formulated as [50]:

rp =
[
(1−Q)·rp

s + Q·rq
s

]
· exp(−h· cosN ψ), (7)

where q indicates the polarization of microwave emission (q = H, horizontal; q = V, vertical),
rs

p and rs
q are the specular reflection coefficients (−), N represents the angular effect on the

reflectivity (−), h takes into account the intensity effect (−), and Q refers to the impact of
polarization mixing (−). The rs

p and rs
q are estimated by the Fresnel’s equations [33] using

the effective soil permittivity εs as input:

rH
s =

∣∣∣∣∣∣
cos ψ−

√
εs − sin2 ψ

cos ψ +
√

εs − sin2 ψ

∣∣∣∣∣∣
2

, (8)

rV
s =

∣∣∣∣∣∣
εs cos ψ−

√
εs − sin2 ψ

εs cos ψ +
√

εs − sin2 ψ

∣∣∣∣∣∣
2

, (9)

The soil permittivity εs (εs = ε’s + i·ε”s) of the thawed or frozen soil condition is
simulated by the four-phase soil dielectric model as [30,31,51]:

ε
η
s = (θs − θ)ε

η
air + θliqε

η
w + (θ − θliq)ε

η
ice + (1− θs)ε

η
matrix, (10)

where θs represents the porosity (m3 m−3), θ represents the soil total water content (m3 m−3)
that derived from the in situ θliq (m3 m−3) as in Zheng et al. [52]. The exponent η is
specified as 0.5, and the complex permittivity of ice, dry soil matrix and air are taken
from Schwank et al. [30] as εice = 3.2 + i·0.1, εmatrix = 5.5 + i·0.2 and εair = 1. The complex
permittivity of liquid water (εw) is computed using the Dobson et al. [26] model as in
Zheng et al. [47].

During the SMAP overpass (6 PM or 6 AM), it’s reasonable to assume that the
near-surface, vegetation and air are in thermal equilibrium with Tv ≈ TG, which can
be represented by the effective soil temperature Teff. Here, we compute Teff according to
Choudhury et al. [53] from available in situ SMST information as:

Teff =
∫ ∞

0
Ts(z)α(z) exp

[
−
∫ z

0
α(z′ )dz′

]
dz, (11)

α(z) =
4π

λ
·Im(
√

εs), (12)

where λ is the vacuum wavelength (cm), Ts(z) is the soil temperature (K), and α(z) is the
attenuation coefficient (−) at soil depth z.
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In this study, the surface roughness parameter N in Equation (7) and vegetation
parameter ω in Equations (5) and (6) are set equal to 2 and 0.05 as the SMAP retrieval
algorithm [34] for grassland, and two parameterizations are adopted to estimate the pa-
rameters τ in Equations (5) and (6), as well as h and Q in Equation (7). One is to implement
the parameterization adopted by the SMAP retrieval algorithm [34] (hereafter “SMAP
parameterization”) as:

τ = b·VWC, (13)

VWC = 1.9134·NDVI2 − 0.3215·NDVI
+1.5·(NDVI− 0.1)/(1− 0.1)

, (14)

h = 0.01·s, (15)

Q = 0, (16)

where NDVI refers to the normalized difference vegetation index (−), VWC refers to the
vegetation water content (−), and s represents the standard deviation of surface roughness
height (mm). The parameters b and s are set equal to 0.13 (−) and 15.6 mm as the SMAP
retrieval algorithm [34] for grassland, which lead to the value of 0.156 for the h according
to Equation (15).

The other is to implement the new vegetation and surface roughness parameterization
newly developed by Zheng et al. [16,39] (hereafter “Zheng’s parameterization”) which
showed that the SMAP parameterization underestimates the impact of surface roughness
and overestimates the effect of vegetation in the Tibetan grassland and desert ecosystems:

τ = 0.025·LAI, (17)

h =

(
0.9437·s

0.8865·s + 2.2913

)6
, (18)

Q = 0.1771·h, (19)

where LAI is the leaf are index (m2 m−2), s is also set equal to 15.6 mm as the SMAP
retrieval algorithm [34] for grassland, which leads to values of 0.58 and 0.1 for the h and Q
according to Equations (18) and (19).

The needed NDVI and LAI in this study are obtained from the MODIS MOD13A2 [54]
and MOD15A2 [55] products, respectively. Figure 2 presents the time series of vegetation
optical depth τ estimated by the SMAP and Zheng’s parameterizations for the SMAP
descending overpass from August 2016 and July 2017 that is consistent with both SMAP
and ELBARA-III measurements. The τ estimates, based on the SMAP parameterization, are
considerably larger than those computed by the new parameterization of Zheng et al. [16].
On the contrary, Zheng’s parameterization tends to produce larger values of Q and h in
comparison to SMAP parameterization, i.e., 0.1 vs. 0 for the Q, and 0.58 vs. 0.156 for the h.

Figure 2. Time series of τ estimates derived from SMAP and Zheng’s parameterizations between
August 2016 and July 2017 for the SMAP descending overpass.
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To help the reader understand how the two-stream emission model is implemented
with either SMAP or Zheng’s vegetation and surface roughness parameterization to simu-
late the TB

p, a sample computation is provided as Supplementary Material. Please find the
Supplementary Table S2 for the details.

3.2. Soil Liquid Water Content Retrieval Algorithms

Both the single channel soil moisture retrieval algorithm (SCA) using either the TB
H

(SCA-H) or TB
V (SCA-V) measurements and double channel algorithm (DCA) using both

TB
V and TB

H measurements implemented by the SMAP retrieval algorithm [34] are adopted
to retrieve the θliq in this study for both thawed and frozen soil conditions. The two-
stream emission model is adopted for the forward land emission modelling with the
implementation of the four-phase soil dielectric model (see Section 3.1), whereby the better
performance of vegetation and surface roughness parameterization (SMAP or Zheng’s
parameterization) is implemented to estimate the parameters τ, h, and Q. Additional
information about the SCA and DCA retrieval approaches is referred to-O’Neill et al. [34].

4. Results
4.1. Comparisons between SMAP and ELBERA-III TB

p Observations

Figure 3 presents the time series of TB
H and TB

V measurements collected by the SMAP
and ELBARA-III radiometer at the observation angle ψ of 40◦. The SMAP measurements
performed between August 2016 and July 2017 during both ascending and descending
overpasses are considered, and the ELBARA-III measurements closest to the overpasses
of SMAP are extracted for the comparison. The data gap noted for the ELBARA-III mea-
surements is caused by power supply failures. Figure 3 also presents the statistical errors
estimated between the SMAP and ELBARA-III measurements, which includes the root-
mean-square error (RMSE), bias, unbiased RMSE (ubRMSE) and Pearson product moment
correlation coefficient (R). Figure 4 further shows the spatial θliq averages at 5 cm soil depth
taken from the in situ data collected within the footprints of ELBARA-III and SMAP mea-
surements (Figure 1). The error statistics estimated between the in situ θliq representative
of the ELBARA-III and the SMAP footprints are shown in Figure 4 as well.

Figure 3. Time series of SMAP and ELBARA-III measured (a,c) TB
H and (b,d) TB

V during the SMAP
(a,b) descending and (c,d) ascending overpasses between August 2016 and July 2017.
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Figure 4. Time series of averaged θliq at a depth of 5 cm taken from in situ data collected within
ELBRA-III and SMAP footprints during the (a) descending and (b) ascending overpasses of SMAP
mission between August 2016 and July 2017.

The θliq dynamics of the ELBARA-III and SMAP footprints are comparable to each
other (Figure 4). Pearson’s correlation coefficient R between the two in situ θliq averages
is high (R ≥ 0.96) during the SMAP overpasses. In general, the soil is unfrozen and
wet from May to October (i.e., warm season), while it appears as frozen and dry between
November and April (i.e., cold season). In the warm season, the average θliq of the ELBARA-
III footprint is generally smaller than that within the SMAP footprint, which is due to
the fact that the soil porosity and water holding capacity are higher within the SMAP
footprint caused by larger organic matter contents found in the soil [43,44]. Comparison
of Figures 3 and 4 shows that both ELBARA-III and SMAP measured dynamics of TB

p

generally follow the θliq variations in the warm season, whereby the TB
p increase with

decreasing θliq (e.g., July 2017) and vice versa (e.g., September 2016). In the cold season, the
θliq sharply decreases due to soil freezing between November and February that results
in the increase in TB

p, while thawing of soil ice between February and April leads to
increase in θliq and thus a decrease in TB

p. Generally, the SMAP and ELBARA-III measured
TB

p show high correlation as indicated by R ≥ 0.87 except for the TB
H during the SMAP

descending overpass (Figure 3a). In addition, the ELBARA-III measured TB
p are generally

larger than the SMAP measurements between June and October due to the fact that θliq of
ELBARA-III footprint is smaller than that of SMAP footprint.

4.2. Relations between TB
p and θliq Observations

Figure 5 shows the relations of the TB
H (left panel), TB

V (middle panel) and polariza-
tion ratio (PR≡ (TB

V − TB
H)/(TB

V + TB
H), right panel) extracted from the ELBARA-III and

SMAP measurements at ψ = 40o versus the corresponding footprint averaged θliq. The anal-
ysis is conducted for the cold (November–April) and warm (May–October) seasons during
the SMAP descending (top panel) and ascending overpasses (bottom panel) between 2016
and 2017, respectively. The corresponding R are also shown in Figure 5. Compared to the
ELBARA-III measurements, the TB

H, TB
V and PR obtained from the SMAP measurements

show higher correlations with footprint averaged θliq for both cold and warm periods
during both SMAP descending and ascending overpasses as indicated by smaller scatters
and thus higher R values (Figure 5).

The correlations between both ELBARA-III and SMAP measured TB
V and the footprint

averaged θliq in the warm season are best explained by a linear function, with R2 values
larger than 0.81 during both SMAP descending and ascending overpasses. In contrast, the
largest scatter is found for the plot with the ELBARA-III derived PR versus the footprint
averaged θliq. In the cold season, the SMAP measurements (i.e., TB

H, TB
V and PR) are better

linked to the θliq measurements during the SMAP ascending overpass, while the ELBARA-
III measurements show better agreement with the in situ θliq during the SMAP descending
overpass. In general, higher R2 values are found between both SMAP and ELBARA-III
measured TB

H and the θliq measurements in the cold period, and the relationship between
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SMAP measured TB
V and the in situ θliq shows the highest R2 value during the SMAP

ascending overpass.

Figure 5. Scatter plots of the TB
H (a,d), TB

V (b,e) and polarization ratio (PR) (c,f) obtained from
both SMAP and ELBRA-III measurements versus θliq at a depth of 5 cm taken from in situ data
collected within the SMAP and ELBRA footprints for the SMAP descending (a–c) and ascending
(d–f) overpasses in the cold (November–April) and warm (May–October) seasons. The corresponding
correlations (R) are also shown.

4.3. Brightness Temperature Simulation

To investigate the performance of the two-stream emission model and its sensitivity
to different vegetation and surface roughness parameterizations, two simulations are
performed with the two-stream model using either the SMAP (Sim1) or Zheng’s (Sim2)
parameterization (see Section 3.1). The SMST input data are specified as the arithmetic
average of in situ data collected within either the ELBARA-III or the SMAP footprint
(Section 2) closest to the SMAP overpasses for matching the TB

p simulations with either the
SMAP or the ELBARA-III measurements.

Figure 6 shows the time series of SMAP TB
p measurements and simulations produced

from both Sim1 and Sim2 performed for the SMAP footprint between August 2016 and July
2017 for the SMAP descending and ascending overpasses. The corresponding statistical
errors estimated between the measured and simulated TB

p are provided in Table 1. The
SMAP TB

H measurements are underestimated by the two-stream microwave emission
model configured with the vegetation and surface roughness parameterizations of SMAP
mission (Sim1) for the cold season (November–April), and the SMAP measured TB

V are
overestimated for the warm season (June–October). These discrepancies are strongly
reduced when using Zheng’s surface roughness and vegetation parameterizations within
the two-stream model (Sim2). Particularly, the ubRMSE are reduced by, on average, about
44% and 29% for the TB

H and TB
V. This demonstrates that the impact of surface roughness is

underestimated by the Sim1 based on the SMAP parameterizations with the implementation
of lower values of Q and h, and the vegetation effect is overestimated due to the usage of
higher τ values (Figure 2) in accordance with the findings of Zheng et al. [16]. In addition,
it can be noted that both Sim1 and Sim2 underestimate the SMAP measured TB

H and
TB

V for the transition seasons with soil thawing from March and April and soil freezing
between October and November and during the SMAP descending overpass. However,
such underestimations disappeared in the SMAP ascending overpass. The SMAP TB

V

measurements are better captured by both Sim1 and Sim2 in terms of error statistics in
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comparison to the TB
H simulation due to the higher correlation with the measured θliq as

shown in Section 4.2.

Figure 6. Time series of the SMAP (a,c) TB
H and (b,d) TB

V measurements and simulations per-
formed for the SMAP footprint during the SMAP descending (a,b) and ascending (c,d) overpasses
between August 2016 and July 2017. Sim1: two-stream emission model configured with SMAP
parameterization; Sim2: Zheng’s parameterization.

Table 1. Error statistics estimated between the SMAP measured and simulated TB
p performed for

the SMAP footprint between August 2016 and July 2017 for the SMAP ascending and descending
overpasses. Sim1: SMAP parameterization; Sim2: Zheng’s parameterization.

Simulations
TB

H TB
V

ubRMSE (K) Bias
(K) RMSE (K) R ubRMSE (K) Bias (K) RMSE (K) R

Descending
Sim1 16.88 −11.86 20.63 0.70 11.26 −2.56 11.54 0.79
Sim2 9.23 −6.29 11.17 0.90 8.05 −4.25 9.10 0.90

Ascending
Sim1 14.50 −6.60 15.93 0.78 7.41 0.43 7.42 0.89
Sim2 8.35 −0.27 8.35 0.93 5.18 −0.91 5.26 0.94

Figure 7 further shows the time series of ELBARA-III TB
p measurements and simu-

lations for the off-nadir angle ψ = 40◦ produced by both Sim1 and Sim2 performed for
the ELBARA-III footprint during the SMAP overpasses. The corresponding statistical
errors estimated between the ELBARA-III measured and simulated TB

p are given in Table 2.
Similar to the SMAP case, the Sim2 reduces the TB

H underestimation between November
and February and the TB

V overestimation between June and October noted for the Sim1.
In addition, the ELBARA-III measured TB

V are better captured in comparison to the TB
H

simulation. However, it should be noted that both TB
H and TB

V are still underestimated
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between January and February, which is most probably due to the fact that the θliq measure-
ment at 5 cm soil depth do not necessarily represent well the ELBARA-III sensing depth as
reported by Zheng et al. [47,48]. Such underestimations are not found in the simulations
performed with Sim2 for the large-scale SMAP TB

p measurements, which is consistent
with the better agreements noted between SMAP measurements and the in situ θliq (see
Section 4.2).

Figure 7. Time series of the ELBARA-III (a,c) TB
H and (b,d) TB

V measurements and simulations
performed for the ELBARA-III footprint during the SMAP descending (a,b) and ascending (c,d) over-
passes between August 2016 and July 2017. Sim1: two-stream emission model configured with SMAP
parameterization; Sim2: Zheng’s parameterization.

Table 2. Error statistics estimated between the ELBARA-III measured and simulated TB
p performed

for the ELBARA-III footprint between August 2016 and July 2017 for the SMAP ascending and
descending overpasses. Sim1: SMAP parameterization; Sim2: Zheng’s parameterization.

Simulations
TB

H TB
V

ubRMSE (K) Bias
(K) RMSE (K) R ubRMSE (K) Bias (K) RMSE (K) R

Descending
Sim1 12.72 −6.82 14.43 0.81 9.03 1.19 9.11 0.80
Sim2 12.29 −1.76 12.41 0.83 7.08 −0.43 7.09 0.88

Ascending
Sim1 18.34 0.97 18.36 0.76 10.56 3.76 11.21 0.80
Sim2 18.70 6.74 19.88 0.78 9.67 2.51 9.99 0.85

4.4. Soil Liquid Water Content Retrieval

The two-stream emission model configured with the four-phase soil dielectric model
(see Section 3.1) is adopted by the SCA-V, SCA-H and DCA algorithms (see Section 3.2)
to retrieve the θliq, whereby Zheng’s vegetation and surface roughness parameterization
is implemented to estimate the parameters τ, h, and Q due to its better performance (see
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Section 4.3). Both ELBARA-III and SMAP measured TB
H and TB

V during both ascending
and descending overpasses are used to retrieve the θliq for both cold and warm periods,
and the in situ θliq representative of both ELBARA-III and SMAP footprints measured at
5 cm depth are utilized to identify the optimum retrievals.

Figure 8a,b show the time series of in situ θliq representative of SMAP footprint (black
line) and the retrieved θliq obtained by the SCA-V, SCA-H and DCA algorithms (colored lines)
based on the SMAP TB

p measurements during the period between August 2016 and July
2017 for the descending and ascending overpasses, respectively. Corresponding statistical
errors estimated between the θliq measurements and retrievals are given in Table 3. For
the comparison purpose, the θliq retrieval derived from the SMAP radiometer soil moisture
product (see Section 2.3) is also presented in Figure 8 (orange line). It can be found that the
SMAP θliq retrieval is only available for the warm season since the adopted soil dielectric
mixing model developed by Mironov et al. [25] is only suitable for thawed soil condition.
On the contrary, the SCA-V, SCA-H and DCA approaches configured with the four-phase
soil dielectric mixing model are able to retrieve θliq for both cold and warm periods in this
study. In general, the retrieved θliq obtained by the SCA-V, SCA-H and DCA approaches
based on the SMAP TB

p measurements are comparable to each other, which capture well
both magnitudes and dynamics of in situ θliq representative of SMAP footprint for both
warm and cold seasons during both descending and ascending overpasses. In addition, all
the θliq retrievals produced in this study are better than the SMAP θliq product, and the
latter tends to underestimate the θliq measurements due to poorer performance of SMAP
default vegetation and surface roughness parameterizations (Section 4.3). It can be noted
that all the θliq retrievals including SMAP product underestimate the θliq measurements for
the transition seasons with soil thawing from March and April and soil freezing between
October and November during the descending overpass due to underestimations of both
TB

H and TB
V simulations (see Figure 6). Such underestimations, however, disappeared in the

SMAP ascending overpass for the θliq retrievals produced in this study. The reason can be
that the spatial heterogeneity of soil freezing is not fully represented by the measured θliq
representative of SMAP footprint as also given in Zheng et al. [16]. The error statistics shown
in Table 3 reflect the better performance of θliq retrievals obtained with the SCA-V than with
SCA-H or DCA especially during the ascending overpass as indicated by lower RMSE and
ubRMSE values. This finding supports the use of the SCA-V approach as the baseline soil
moisture retrieval algorithm of the SMAP mission [56] for the Tibetan environments. Notably,
the SCA-V gives the best θliq retrievals that match the average θliq measurements of the SMAP
footprint, especially when the SMAP TB

V measured during the ascending overpass are used.
For these circumstances, an ubRMSE = 0.035 m3 m−3 is produced, which outperforms the
mission goal of SMAP with an expected ubRMSE of 0.04 m3 m−3 [4]. This indicates that the
SMAP TB

V measurements during the ascending overpass can be the better choice to retrieve
the θliq for both warm and cold periods using the SCA-V approach.

Figure 8. Time series of average θliq measurements of SMAP footprint and retrievals obtained by the
SCA-V, SCA-H and DCA algorithms based on the SMAP measured TB

p for the (a) descending and
(b) ascending overpasses between August 2016 and July 2017. The θliq retrieval derived from the
SMAP SM product is also shown.
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Table 3. Statistical errors estimated between the in situ average θliq and retrievals obtained by the
SCA-V, SCA-H and DCA algorithms using either the ELBARA-III or SMAP measured TB

p during the
ascending and descending overpasses between August 2016 and July 2017.

Retrievals

SMAP Footprint ELBARA Footprint

ubRMSE
(m3 m−3)

Bias
(m3 m−3)

RMSE
(m3 m−3) R ubRMSE

(m3 m−3)
Bias

(m3 m−3)
RMSE

(m3 m−3) R

Descending
SCA-V 0.053 −0.025 0.059 0.91 0.045 −0.003 0.045 0.90
SCA-H 0.055 −0.032 0.064 0.90 0.070 −0.011 0.070 0.76
DCA 0.051 −0.027 0.057 0.92 0.053 −0.009 0.054 0.85

Ascending
SCA-V 0.035 −0.005 0.035 0.95 0.063 0.021 0.067 0.84
SCA-H 0.048 0.007 0.049 0.94 0.103 0.052 0.115 0.73
DCA 0.040 −0.004 0.041 0.94 0.085 0.037 0.092 0.78

Figure 9 further shows the time series of measured θliq representative of ELBARA-
III footprint (black line) and retrieved θliq obtained by the three SM retrieval algorithms
(colored lines) using the ELBARA-III measured TB

p at the observation angle of 40◦. Corre-
sponding statistical errors estimated between the measured θliq and associated retrievals
are also provided in Table 3. As in the case for the retrievals using the SMAP TB

p mea-
surements, the SCA-V algorithm also outperforms the two other methods (i.e., DCA and
SCA-H) in retrieving the θliq using the ELBARA-III measurements for both warm and
cold seasons during both descending and ascending overpasses as indicated by lower
values of bias, RMSE and ubRMSE and higher R values. In comparison to the θliq retrievals
produced based on the SMAP measured TB

p, the retrievals produced using the ELBARA-III
measurements show poorer performance during the transition seasons with soil thawing
(e.g., March and April) and freezing (e.g., October and November). Particularly, the θliq
retrievals tend to largely overestimate the in situ θliq representative of ELBARA-III footprint
between March and April, which can be related to the thawing of the snowpack that would
affect the ELBARA-III measurements.

Figure 9. Time series of average θliq measurements of ELBARA-III footprint and retrievals obtained
by the SCA-V, SCA-H and DCA algorithms based on the ELBARA-III measured TB

p measurements
for the (a) descending and (b) ascending overpasses between August 2016 and July 2017.

5. Conclusions

This study investigates the performance of the two-stream microwave emission model
in simulating L-band TB

p and retrieving θliq in combination with the four-phase dielectric
model for both thawed and frozen soils on the Tibetan Plateau. Both single (SCA) and
double (DCA) channel algorithms are adopted using both ground-based ELBARA-III and
spaceborne SMAP measurements conducted in a Tibetan grassland site. Intercomparison
between the time variations of ELBARA-III and SMAP TB

p measurements demonstrates
that high correlations (R ≥ 0.87) are found between both measurements, though the foot-
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prints are obviously distinct for the spaceborne SMAP and ground-based ELBARA-III
measurements. The SMAP measured TB

p are generally lower than the ELBARA-III mea-
surements between June and October, which are associated with the distinct variations of in
situ average θliq found across the ELBARA-III and SMAP footprints. In addition, the analy-
sis of relations between the TB

p measurements and in situ average θliq reveals that (i) SMAP
TB

p measurements are better responding to the in situ θliq compared to the ELBARA-III
measured TB

p, and (ii) the in situ θliq explains better the TB
V measurements during the

warm period from May to October, while TB
H measurements are more consistently varying

with the in situ θliq in the cold period between November and April.
It is found that the two-stream microwave emission model configured with the default

vegetation and surface roughness parameterization of SMAP mission underestimates
both ELBARA-III and SMAP measured TB

H in the cold season and overestimates the TB
V

measurements in the warm season. The above deficiencies are largely reduced by adopting
the new parameterization proposed by Zheng et al. [16], which employs higher values
for the roughness parameters (Q and h) and lower values for the vegetation parameter
τ. It can also be found that the SMAP measured TB

p are better reproduced with the new
parameterization in comparison to the simulations performed for the ELBARA-III footprint,
and the simulation of TB

V outperforms that of TB
H.

In addition, it is found that all the θliq retrievals produced using the SMAP measured
TB

p in this study capture well the in situ θliq representative of SMAP footprint and are
consistently better than the SMAP product. The θliq retrievals produced using the ELBARA-
III measurements show poorer performance in comparison to those generated based on the
SMAP measurements. The SCA-V algorithm outperforms both DCA and SCA-H methods
in retrieving the θliq, which supports implementing the SCA-V method as the baseline
soil moisture retrieval algorithm for the SMAP mission. Notably, the θliq retrievals using
the SCA-V based on the SMAP TB

V measured during the ascending overpass gives the
best results (ubRMSE = 0.035 m3 m−3), which is also better than the specified goal of
ubRMSE = 0.04 m3 m−3 for the SMAP mission.

This study shows the potential of using a two-stream model configured with the
four-phase soil dielectric model for simulating L-band TB

p and retrieving θliq for both
thawed and frozen soil conditions. It’s also noted that the SCA-V algorithm configured
with the SMAP measured TB

V during the ascending overpass is able to produce reliable
θliq retrievals in a Tibetan meadow ecosystem. These findings are crucial for improving
emission simulation and θliq retrievals at the L-band in cold regions such as the Tibetan
Plateau. However, additional work is still needed to investigate and test the performance
of the proposed method for its application in other areas. Recently, Li et al. [7] have
implemented the two-stream model to simulate the TB

p and retrieve soil moisture using
SMOS measurements at a global scale, which provides an excellent reference to extend the
application of the method proposed in this study. For example, the soil dielectric model,
and the adopted vegetation and surface roughness parameterization for grassland used
by Li et al. [7] can be directly replaced by the four-phase soil dielectric model and new
parameterization proposed in this study to improve its performance in a cold region such
as the Tibetan Plateau. The needed SMST data can be taken from the reanalysis data such
as the ECMWF model simulations carried out by Li et al. [7].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14030494/s1, Supplementary Table S1: Measurements of brightness temperature and
liquid soil water content; Supplementary Table S2: Sample computation for implementing the
two-stream model with SMAP or Zheng’s parameterization.
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