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Abstract: In China, landslides are abundant, widespread, and regular, destroying villages and agricul-
ture and sometimes posing a threat to people’s lives. The question of how to rapidly detect and attain
landslide data is a significant topic of research, yet traditional measurement using medium-resolution
remote sensing data is problematic. Object-oriented categorization is utilized in this research to
extract landside data from high-resolution GF-1 and Sentinel-2 data. Data preprocessing begins with
orthophoto correction, image matching, and data fusion, followed by band enhancement, which
comprises band synthesis, principal component analysis, and filtering, and finally landside extraction
using an object-oriented technique. The impact of geology, lithology, rainfall, and human activities
on the occurrence of landslides in the study area is explored utilizing DEM data, visualization tools,
remote sensing interpretation map, and other associated data. The studies are conducted in Shuicheng
County, Guizhou Province, China, with a segmentation scale of 25 pixels and 14 classification feature
parameters. Following that, the landslide mass is extracted and categorization findings of nearby
characteristics are acquired. Finally, the destructiveness of the landslide is determined by comparing
the results of object-oriented classification before and after the landslide. With a Kappa coefficient of
0.76 and a landslide extraction accuracy of 79.8%, the overall classification accuracy is 87%. Combined
with the geological structure, rock lithology, spatial location, landslide occurrence process, elevation
of the study area, precipitation and the impact of human activities, the causes of the landslide are dis-
cussed and analyzed. The early warning of other unknown landslides can be obtained by analyzing
the features of the aforementioned components.

Keywords: landslide; object-oriented classification; data fusion; image enhancement; cause analysis

1. Introduction

Landslide refers to the movement of rock, gravel, or soil along the slope [1]. Its
distribution is primarily influenced by geological, climatic and other variables. Landslides
are more common in geological tectonic zones such as fault zones and seismic zones,
earthquakes of magnitude 7 or above and slopes of greater than 25◦. Rock fragmentation
and fracture growth in the fault zone are extremely favorable to the creation of landslides.
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It is straightforward to slide rocks and soil about in this location (slope). Loose overburden,
loess, mudstone, shale, coal measure strata, tuff, schist, slate, phyllite, and other rocks and
soils, for example, provide a suitable material basis for landslide formation. In these places,
unusual rainfall acts as a catalyst for landslides. The overlay region of the above zones
creates a dense landslide development area. The Yunnan–Guizhou Plateau in China, for
example, is a typical location with a high landslide density and significant damage [2].

According to the 2020 national geological disasters and 2021 trend forecast report
of Guizhou Provincial Department of natural resources (DNR), 7840 geological disasters
occurred in China in 2020, including 4810 landslides, accounting for 61.35% of the total of
geological disasters. Landslides are one of the most prevalent disasters in China, accounting
for the majority of geological disasters and causing significant damage to the country’s
economic infrastructure and people’s property. A massive landslide happened around
20:40 on 23 July 2019 at Chagou Group, Pingdi Village, Jichang Town, Shuicheng County,
Guizhou Province. There were 23 households, 77 persons, and 27 houses involved, with 21
of them being buried. As of 29 July, 42 persons had killed and 9 more remained unaccounted
for [2].

In the past, thematic maps were often used for manual interpretation in landslide
extraction, a method that has low efficiency, low accuracy, is time consuming and has poor
classification accuracy. The resolution of satellite images is gradually improving as remote
sensing technology advances, and the pixel-based classification approach cannot meet the
needs of researchers for classification accuracy and effect. Given its high spatial resolution,
remote sensing images contain more texture and spectral information, and object-oriented
classification methods, such as the yuan classification method, have more advantages, as
they can fully apply the spectrum, shape and texture features of images to classification,
avoiding the salt and pepper phenomenon. As a result, object-oriented classification can
provide more accurate landslide data [3].

The object-oriented classification method based on the features of high-resolution
remote sensing images was first proposed by Baatz and Shape (1999) [4]. This method
takes into account not only the object’s spectral information, but also its size, texture and
other characteristics. The pixels that have the same characteristics are considered the
same object, and the object is then classified. The “salt and pepper” effect is effectively
eliminated [5]. Barlow et al. (2003) used an object-oriented method to detect landslides
in the Cascade Mountains region using Landsat 7 images [6]. Hu Deyong et al. (2008)
extracted the landslide data in the tropical rainforest area of Malaysia’s Kamalun Plateau
using high-resolution remote sensing images and an object-based landslide detection
method [7]. To extract Wenchuan landslide points, Wang Qiulai (2008) used Landsat
5, 7 remote sensing images and SPOT5 panchromatic band images, as well as multi-
scale segmentation and object-oriented classification technology based on fuzzy logic
classification. This method has the advantages of being quick and accurate [8]. Martha
et al. (2010) combined the spectrum, spatial information, texture, shape, context and other
feature information of the segmented objects to extract seismic damage information using
object-oriented methods. Finally, the landslides in the study area are classified as debris
flow, rockfall and other categories, with an accuracy of 69.1% [5]. Wu Jian et al. (2010)
extracted earthquake-damaged landslides and damaged buildings in Zipingpu Town,
Du Jiangyan, using QuickBird and IKONOS data of pre-disaster and post-disaster high-
resolution remote sensing images, and used homogeneity technology instead of single pixel
for processing, resulting in a total object-oriented accuracy of 90.8 percent [9]. Lahousse
et al. (2011) used object-oriented analysis technology to identify landslides caused by
typhoons in Taiwan’s Baichi Basin using images of various time and phase scales [10].
Libao Zhang et al. (2015) proposed a remote sensing image segmentation algorithm based
on a two-dimensional gradient remote sensing histogram in combination with the MMAD
model [11]. Yin and Shoulin (2018) combined fuzzy competition and a Gaussian model to
create a new large-scale image segmentation technology. This method can fit high-precision
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data with a statistical distribution, removing the negative effects of noise and resulting in
more high-precision segmentation results [12].

Based on summarizing previous studies, this study adopts the latest remote sensing
data, such as high spatial resolution GF-1 satellite images and multi band sentinel-2 satellite
images. On the basis of image enhancement and other processing of the data, the object-
oriented method is used to extract and classify the landslide mass and surrounding features.
Combined with the regional geological map, elevation data and other auxiliary data, the
destructiveness and causes of landslide are analyzed and discussed. This is an application
of remote sensing comprehensive method, which can predict landslides in similar areas.
The research contents and steps of this paper are as follows:

1. Remote sensing data preprocessing, ortho-correction was performed on the GF-1 image,
image matching and data fusion were performed with the Sentinel-2 image, and the
fusion results were cropped;

2. The image is enhanced, using three enhancement methods: band synthesis, principal
component analysis and filtering. Perform band synthesis (Band 2, 3, 4, 8, 11, 12) on
Sentinel-2 data; perform principal component analysis on Sentinel-2 data (including
landslides) and select the first three principal components for band synthesis; use
Sobel filtering and directional filtering filters the sentinel-2 data after the occurrence
of the landslide;

3. The sample-based object-oriented method is used to extract information about land-
slide disasters and classify the surrounding ground cover of the landslide body by
using Sentinel-2 data after the occurrence of the landslide. By determining the segmen-
tation scale, creating classification indicators, determining categories and selecting
samples, the feature space is optimized and the output result is finally obtained, and
the accuracy of the classification result is evaluated;

4. Combining the use of object-oriented methods to compare and analyze the classifi-
cation results before and after the landslide and evaluate the destructiveness of the
landslide based on the damaged area of houses, farmland, forest and roads. Analyze
the composition of the landslide, draw the geological interpretation map of the study
area, analyze the lithological characteristics of the landslide area and determine the
various reasons for the formation of the landslide through the above analysis, com-
bining the influence of precipitation and man-made construction. The research flow
chart is shown in Figure 1.
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It is hoped that by analyzing this landslide event, accurate morphological information
about the landslide can be obtained, the loss caused by the landslide can be assessed and
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the formation reasons for the landslide can be discussed in conjunction with relevant data,
to aid in the prevention and treatment of related disasters.

1.1. Study Area
1.1.1. Location

Shuicheng is a county-level administrative unit of Liupanshui City, Guizhou Province,
as shown in Figure 2. The longitude span is 104◦33′00′′E–104◦15′23′′ E, and the latitude span
is 26◦02′26′′ N–26◦55′21′′ N. It has the nickname of “Plateau Pearl” in Guizhou province.
The north–south length is 97 km, the east–west width is 69 km the total jurisdiction
area is 3605 km2. Shuicheng has a pleasant climate, abundant rain and a subtropical
monsoon climate, which is mild and wet, rainy and hot at the same time, with spring
and autumn together, short sunny days, an annual average temperature of around 12 ◦C
and a frost-free season of more than 200 days [13,14]. It receives more than 1000 mm of
rain each year. Precipitation is lowest in the northwest and increases in the southeast,
with an uneven distribution of precipitation throughout the season. Winter and spring
have little precipitation, whereas summer has the most precipitation, with persistent
rainstorms. A single season’s precipitation accounts for more than half of the total annual
precipitation [14]. There are many rivers in Shuicheng, among which Sancha River and
Beipan River are the two main rivers. Because the water network is densely covered and
the flow is large, it has become an important factor for the formation of natural geological
disasters in Shuicheng [14].
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1.1.2. Geological Setting

Because the northwest region’s average elevation is more than 1000 m higher than the
southeast, most of the rivers in the northwest region flow east–west. The cutting influence
of the Beipanjiang River system and the Sancho River, respectively, affects the north and
south of the research region, and the landscape is highly undulating. The North-pan
River, which flows out of Huaga Township, is at an elevation of about 646 m, while the
summit of The Roof of Ganshan Mountain in Yingpan Township is at an elevation of
about 2852 m, providing an undulating mountain scenery. Karst, erosion–dissolution and



Remote Sens. 2022, 14, 502 5 of 30

tectonic erosion are the three types of natural geomorphology found in the studied area.
The strata of Shuicheng County are all exposed, ranging from Jurassic to Quaternary, and
may be classified into 31 groups. The geological map of the study area is shown in Figure 3.
Landslide areas of Jichang town are mainly as follows: T1-2j (the first to fourth members
of the middle and lower Triassic system Jialing river formation); T1f (the first to third
members of the Lower Triassic Feixianguan formation); P3x (the first to third members
of the Permian Xuanwei formation); P2-3em (the first and second members of the middle
upper Permian Mount Emei basalt formation); P2m (the first or second member of the
middle Permian Maokou formation); P2q2 (the second member of the middle Permian
Qixia formation); and residual or impact loose material of the Quaternary system [14,15].
The stratigraphic lithology is shown in Table 1.
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Table 1. Stratigraphic sequence table of the study area [14].

System Series Formation Code Lithology

Quaternary
System Holocene Series Q It is a small amount of loose accumulation, only distributed on the banks of the

river and local gentle slope

Triassic
System

Middle Series

Jialingjiang
Formation

T1-2j4 It is a medium thin layer of powder dolomite with gradation of gray to light gray

T1-2j3 It mainly consists of medium and thick bedded arenaceous limestone and
medium and thin bedded micrite with gradual gradation of light gray to gray

Low Series

T1-2j2
The lower part is irregular interbedded with medium and thin layers of siltstone
and mudstone, and the upper part is medium and thick layers of clastic limestone

sandwiched with thin layers of argillaceous limestone

T1-2j1
The middle and thin layers of vermicellar limestone with gray to dark gray

gradation are interdeposited with the middle and thick layers of oolitic limestone
and clastic limestone of unequal thickness

Feixianguan
Formation T1f Reddish-brown slightly wet, fully weathered sandy mudstone consisting of clay

and a small amount of silt

Permian
System

Up Series

Xuanwei
Formation P2x Strong plasticity of gray black crushed rock, in the middle of the inclusion of a

small amount of coal seam

Emeishan Basalt
Formation P2-3em A moderately weathered quartz sandstone of varying structures ranging from

granular to cataclastic in grayish to yellowish brown

Low Series

Maokou
Formation P1m It is mainly limestone with gray–white crystalline structure, with a small amount

of long gravel

Qixia Formation P1q The upper part is a gray–black or dark gray thick layer to massive calcareous
limestone, the lower part is black sheet limestone
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2. Materials and Methods
2.1. Data Sources

Remote sensing data sources as well as non-remote sensing data sources were utilized
in this study. Sentinel-2 (10 m, 27 April 2019 and 15 August 2019) and GF-1 (8 m, 6 January
2018) data were among the remote sensing data sources. County-level vector map, ASTER
GDEM, and Geological and ecological environment map of Karst rock area of 1:50,000
Puli, Yushe, Aga Jichang, Yangmei, and Houchang in Guizhou province are examples of
non-remote sensing data sources (hereinafter referred to as Ecological Environment Map).
Table 2 shows a quick overview of the remote sensing data used in this work.

Table 2. List of data.

Data Type Data Name Sensor Imaging (Graph) Time Resolution (m)

Remote sensing
data source

Sentinel-2
MSI 15 August 2019 10
MSI 27 April 2019 10

GF-1
Panchromatic
multispectral

camera
6 January 2018 8

Non-remote
sensing data source

ASTER GDEM Made by Terra - 30
Shuicheng county vector data - - -
Ecological Environment Map - March 2016 -

2.2. Related Software

Object-oriented landslide extraction is mainly realized in eCognition. It is an intel-
ligent image analysis software developed by Germany Definiens Imaging. ECognition
is the first remote sensing information extraction software based on target information
among all commercial remote sensing software. The birth of eCognition software leads the
innovation and development of image processing technology, becoming the mainstream
information extraction and image interpretation and analysis technology in the world,
providing solutions for the industry’s leading data providers, product value-added and
remote sensing experts.

eCognition Developer is a powerful object-oriented image analysis and processing soft-
ware, mainly used in the field of Geoscience remote sensing image automatic analysis and
processing, in the form of rule set development to achieve image and object interpretation.

The software features:

• A collection of object-based image analysis tools and algorithms (the earliest object-
oriented analysis software);

• Ability to analyze raster data, vector data and point cloud data;
• Provide intuitive development environment based on CNL language;
• Ability to scale from a single desktop to an enterprise-level production process;
• Software Development Kit (SDK).

As for the specific use of eCognition software, it has applications in stratigraphic
boundary, forestry and water in this paper. The object-oriented method based on ecognition
software can be applied to railway site selection, geological and lithologic classification,
water system extraction and so on.

2.3. Pretreatment

Preprocessing remote sensing data is an important step in the remote sensing data
processing process. The preprocessing in this research includes GF-1 data Orthophoto,
image registration and data fusion with Sentinel-2 data before the data is classified via
object-orientation before a landslide occurs.
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2.3.1. Orthographic Correction

The typical model cannot be used since the study region is located in a mountainous
terrain area with a considerable relative height difference. Furthermore, because the GF-1
data includes an RPC (*.rpc) file (which is used in RPC model for geometric correction), the
GF-1 image can be rectified without the use of control points. It mainly relies on its own
RPC files and aster GDEM data for positioning and geometric correction. The results show
that the accuracy of orthophoto correction is high. Figure 4 shows the results of GF-1’s
orthographic correction.
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The general steps of orthophoto correction for RPC files are as follows:

(1) Interior orientation (for aerial photos only)—interior orientation will establish the
relationship between camera parameters and aerial photos. It will use strip control
points between aerial photos, camera frame punctuation and camera focal length for
internal orientation;

(2) External orientation—external orientation will connect the ground object points on
aerial or satellite photos with the actually known ground position (geographic coordi-
nates) and elevation. By selecting ground control points and inputting corresponding
geographical coordinates, external orientation is carried out;

(3) Orthophoto correction using digital elevation model (DEM)—this step will carry out
real orthophoto correction for aerial and satellite photos. Orientation files, satellite
position parameters, and collinearity equations will be used in the correction process.
The collinear equation is created by the above two steps and using digital elevation
model (DEM).

2.3.2. Image Matching

Due to the difference in resolution, the spatial positions of sentinel data and high
score data are inconsistent, as shown in Figure 5. In order to prepare for further data
fusion, remote sensing image geometric correction model (RPC model) should be used
for image registration, and the registration results are shown in Figure 6. The sentinel-2
image is automatically registered with the high score data as the basic image. Relevant
parameters of the model, the matching degree threshold (minimum) of the connection point
is 0.6, the connection point error threshold (maximum) is 3.0, the number of connection
points is 121. The advantage of this matching method is that by combining many complex
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factors into a modular tool, it can register images quickly and accurately without too much
manual interaction.
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2.3.3. Data Fusion

Sentinel-2 has a lower resolution than GF-1 data, but Sentinel-2 data has more bands
than GF-1 data, so data fusion needs to be carried out to combine their advantages to
improve the accuracy of subsequent classification. Sentinel-2 and GF-1 data were merged
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using the Gram–Schmidt transform fusion method for panchromatic and multi-spectral
band fusion. The GS technique is a new data fusion method that not only solves the
problem of too much information concentration in the PCA transform method (Princi-
pal Components Analysis), but improves image detail, texture and spectral information
retention. Part of the results are shown in Figure 7.
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2.4. Image Enhancement

Image enhancement is a typical approach of digital image processing in remote sensing.
The goal of image enhancement is to make image interpretation more visually appealing.
The image was enhanced using waveband synthesis, principal component analysis and
filtering (including Sobel and directional filtering) in this paper. The goal of band synthesis
and principal component analysis was to highlight the color variations of ground objects in
different parts of the image, making stratigraphic classification more accurate. Sobel filter
can detect the edge and highlight the boundary, while directional flow wave can strengthen
the elements in a certain direction. Therefore, the landslide boundary can be highlighted
with a Sobel filter, and the fault direction and stratigraphic boundary can be highlighted
using a directional filter. It provides support for further landslide boundary extraction.

2.4.1. Band Synthesis

Band synthesis is the process of combining images from different bands into a single
image based on research requirements. Band synthesis can help to save time and money
by reducing the quantity of data. The Blue band (B2), Green band (B3), Red band (B4),
NIR band (B8) and SwIR-1,2 (B11, B12) of Sentinel-2 data before and after the landslide
were selected in this research as six bands that were advantageous to the extraction of
landslide and the classification of surrounding features. Figure 8 shows the final results as
a composite. The texture features of the first image after fusion were richer than the second,
which was more favorable to the classification of ground items, as seen in the two findings.
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2.4.2. Principal Component Analysis (PCA)

Principal component analysis was first introduced into remote sensing image process-
ing by Pearson in the early 20th century. Thirty-two years later, the principal component
analysis method was popularized by Hotelling. The principal component analysis method
is to change the original correlated random vectors into a new set of irrelevant random
vectors with the help of an orthogonal matrix. At the same time, according to the actual
needs, several principal components that can best reflect the original information can be
taken out, so as to reduce the amount of computation and remove unnecessary interference.
The calculation process is:

(1) Standardize the original data;
(2) Calculate the correlation coefficient matrix R; Correlation coefficient matrix R = (rij)m × n

rij =
∑n

k=1 x̃ki·x̃kj

n− 1
, (i, j = 1, 2, . . . , m) (1)

rii = 1, rij = rji, rij is the correlation coefficient between the i and j;
(3) Calculate eigenvalues and eigenvectors Calculate the eigenvalue of the correlation

coefficient matrix R λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0, and corresponding eigenvectors µ1, µ2,
. . . , µm;

(4) Select p (p≤m) principal components and calculate the comprehensive evaluation value;

(a) Calculate eigenvalue Information contribution rate and cumulative contribution rate
of λj (j = 1, 2, . . . , m);

(b) Calculate comprehensive score.

With the use of an orthogonal matrix, principal component analysis (PCA) transforms
the original correlated random vectors into a new collection of incoherent random vectors.
Simultaneously, numerous major components that best reflect the original data can be
removed based on the actual demands, reducing the amount of processing and removing
unwanted interference. Principal component analysis is used to remove the noise interfer-
ence in the image. In order to highlight the information related to geological strata, the
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first three principal components are synthesized in this study, and the results are shown in
Figure 9a. The principal component analysis not only shows the surface information, but
also highlights the underground information, such as water content, fragmentation and frac-
ture. This reflected information has a strong correlation with the geological interpretation
map. The color range of the second member of the middle and lower Triassic Jialingjiang
Formation (T1-2J2), for example, is nearly identical to that shown in the Figure 9b, allowing
the stratigraphic boundary to be determined more intuitively, which was useful when
drawing the geological interpretation map. So we use the results of principal component
synthesis and other auxiliary data to interpret and map the stratum.
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Figure 9. Comparison between principal composite map and stratigraphic lithology map ((a) princi-
pal component map, (b) stratigraphic lithology map).

2.4.3. Sobel Filtering

Because this paper mainly uses the object-oriented method to extract and analyze the
landslide, the edge detection is only a preliminary judgment and understanding of the
landslide, so there is no need for too complex filtering methods; the Sobel filter has the
advantages of simple principle, convenient use and good recognition effect, so the Sobel
filter is used. Sobel filter can be regarded as a kind of edge detection. Edge detection can be
regarded as a directional filtering. Sobel filtering is based on two simple 3 × 3 windows.
For the kernel of the window, the filter is defined as follows:

Vertical : K =

 1 2 1
0 0 0
−1 −2 −1

 (2)

Horizontal : K =

 1 0 −1
2 0 −2
1 0 −1

 (3)

Sobel operator is the change speed of the image in both horizontal and vertical direc-
tions, also known as gradient, if the remote sensing image is considered a two-dimensional
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function. Here, it is a two-dimensional vector, and the vector element is the first derivative
of the function in both horizontal and vertical directions:

gard(I) =
[

∂I
∂x

∂I
∂y

]T
(4)

Sobel operator calculates the difference of pixel values in the horizontal and vertical
directions to obtain the approximate value of image gradient. It operates in a small interval
near the pixel, which can reduce the interference caused by noise. Sobel filtering improves
the edge information of the landslide. The landslide’s unambiguous boundary can be
seen in Figure 10, which can help support the object-oriented classification of landslide
extraction that follows. At the same time, it draws attention to the landslide’s internal
texture, which aids in the investigation of the landslide’s causes and slide process.
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It can be seen from the figure (Figure 10) that the boundary of features has been
enlarged, especially the boundary of landslide and road. The texture features of landslide
are also enhanced. These are conducive to the extraction of landslide mass.

2.4.4. Directional Filtering

Edge enhancement filtering is referred to as directional filtering. It is roughly 30◦

north by east, according to fracture strike judgment. The image is filtered along the fracture
direction using the directional filter; 30◦ directional filters were used, with window sizes of
3 × 3 and 5 × 5, respectively.

Directional filtering improves the NE fracture, as shown in Figure 11. On the edge
protruding, the result calculated for the 3 × 3 window was less effective than the result
calculated for the 5 × 5 window, and the result of the 5 × 5 window was more apparent
and obvious on the protruding of the fracture trend, while the result of the 3 × 3 window
has white points.

2.5. Object Oriented Method Theory
2.5.1. Determination of Segmentation Scale

This study adopted the method of He Min et al. [16–18]: ”Using the standard deviation
within the object to express the heterogeneity within the object, and spatial correlation to
express the heterogeneity between the objects”.

v =
∑n

i=1 aivi

∑n
i=1 ai

(5)
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The standard deviation inside the object is used to represent the homogeneity in-
side the object. vi is the standard deviation of the object (i), ai is the area of the object
(i), and n is the total number of objects in the whole area (the total number of objects
after segmentation).
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In order to better estimate the heterogeneity between image objects, Moran’s index is
used to represent the heterogeneity between objects.

I =
n ∑n

i=1 ∑n
j=1 wij

(
yi −

=
y
)(

yj −
=
y
)

(
∑n

i=1(yi − y)2
)
(∑i 6=j ∑ wij)

(6)

In the formula, n is the total number of objects; wij represents the adjacency rela-
tionship between object Ri and object Rj. If object Ri and object Rj are adjacent, wij = 1,
otherwise wij = 0; yi is the spectral average of the object Ri; y is the spectral average of the
whole image.

F(v, I) = (I − ρ)F(v) + ρF(I) (7)

F(V) =
vmax − v

vmax − vmin
(8)

F(I) =
Imax − I

Imax − Imin
(9)

F(v) represents the homogeneity within objects, F(I) represents the heterogeneity
between objects, ρ is the weight of Moran’s index I in the objective function value, and the
range is [0, 1].

A mathematical method (interpolation function) is used to find the segmentation
quality function (the optimal segmentation scale calculation model) that directly uses the
segmentation scale as a variable, and the optimal segmentation scale can be calculated
through this model.

hn(x) = a0 + a1x + a2x2 + · · ·+ anxn (10)

hn(x) is the interpolation function (the quality function of the segmentation scale x),
X represents the segmentation scale, a0a1, · · · , an are the coefficients, hn(xi) = F(vxi, Ixi).
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Through n + 1 segmentation experiments on the image to be analyzed, n + 1 F (v, I) values
will be obtained from Equations (5)–(10), and the values of coefficients a0a1, · · · , an can be
calculated by using these interpolation nodes, obtain Equation (10) such a segmentation
quality function with the segmentation scale x as the variable, so as to obtain the optimal
segmentation scale of the image.

2.5.2. Classification Characteristic

It is a very important step to select the appropriate feature to effectively distinguish the
target feature from other features. The object to be classified is the segmentation unit after
multi-scale segmentation. Different from the traditional pixel, it reflects the abstract feature.
Through the analysis of the relationship between the feature and the segmented object,
different features are identified according to the feature features, this is of great significance
in image interpretation. Various appropriate features can be selected to represent ground
objects. Therefore, the extraction of ground objects in image segmentation is actually the
analysis and recognition of various features of various representational objects. Based
on previous studies, object-oriented image classification technology can select spectrum,
texture, shape, terrain, NDVI and other attributes to define the feature space to be classified.
Table 3 shows the spectral and geometric characteristic properties of this object.

Table 3. Definition and calculation of various spectral and geometric features [12,13,19–21].

Feature Definition Formula Note

Brightness The mean of the means of each object on each band b = 1
nL

nL

∑
i=1

ci
-

Area

For an image with coordinate reference, the area of
each object is the area multiplied by the true area
of the pixel representation by the total number of

pixels of the object

- -

Length/Width The ratio of length to width r = min{r1, r2}
Take the minimum value of
the two calculations as the

aspect ratio

Length The length of the smallest enclosing rectangle of
the image object L =

√
A·r The square root of the product

of area and aspect ratio

Width The width of the smallest enclosing rectangle of
the image object W =

√
A
r

The square root of the ratio of
area to length to width

Shape index Describes the roughness of an object’s boundaries S = e
4
√

A
The ratio of the length to the

square root of the area

2.5.3. Create Classification Categories and Training Samples

The selection of training samples directly affects the overall accuracy of the final classi-
fication results. The more typical areas are selected for experiments to obtain appropriate
parameters, so that the prediction of unknown samples can be more accurate. Compared
with the types of features that can be seen with the naked eye in the image, it is obviously
more difficult to select the training samples of landslide, because only selecting the typi-
cal landslide samples can correctly reflect the characteristics of landslide. Only then can
the discrimination between landslide and other land types be further improved, and the
prediction results can be more accurate. Secondly, when selecting training samples, too
few samples will affect the final accuracy and reduce the training accuracy. If there are
too many samples, it may not improve the accuracy, but increase the time. Therefore, the
typicality and quantity of samples are extremely important.

2.5.4. Optimization of Feature Space

In practice, having too many classification indices leads to information redundancy
and mutual interference, which is counterproductive to improving classification accuracy.
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The utilization degree of different classification indexes can be calculated using the Feature
Space Optimization tool, allowing to find the best combination of spatial features, complete
the simplification and redundancy of all types of selected classification features and achieve
the best classification effect.

3. Results
3.1. Landslide Extraction Results
3.1.1. Determination of Optimal Segmentation Scale

The image’s pixel size is used to calculate the segmentation scale. The optimal scale is
chosen when a segmentation scale can accurately define the object’s border. The selection of
the best scale will be influenced by different types of characteristics, different distribution
modes of the same features and different bands. The segmentation scale was tweaked
repeatedly, the segmentation effect was determined by visual judgment and the best
segmentation scale was discovered. In order to find the appropriate segmentation scale
range, 10 is the starting segmentation scale and 10 is the segmentation interval. After
determining the approximate optimal segmentation scale, the interval is set to 5. After
many adjustments and considering the influence of various factors, the ideal segmentation
scale is found (25) [13,14,19]. The results of different segmentation scales are shown in
Figure 12.
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3.1.2. Selection of Classification Characteristic

Brightness, Area, Length/Width, Length, Width, and Shape indexes, NDVI, MNDWI,
NDBI and the spectral information of each band were used in this investigation. To dis-
tinguish between roads and buildings, the Shape Index and Length/Width were useful.
Long and narrow roads and dense buildings can be measured by Area and Length/Width.
MNDWI was used to distinguish between water and non-water, NDVI was used to distin-
guish between vegetation and non-vegetation, and NDBI was used to distinguish between
buildings and non-buildings. Table 3 shows the spectral and geometric characteristic
properties of this object.

3.1.3. Create Classification Categories and Training Samples

The study region was classified into six groups based on the data: town, water,
landslide, road, naked land, and vegetation. Visual interpretation was used to create the
sample database, and better resolution remote sensing images were used to identify the
categories that could not be defined. To increase classification accuracy, 100–150 samples
were chosen for ground cover with large proportions and 10–20 samples for ground cover
with minor proportions. Because the area of the ground features is relatively large, the
number of sampling points required is relatively large, which can improve the accuracy,
while for the ground features with a small area, there is no need for too many sampling
points, and high accuracy can be maintained.
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3.1.4. Optimization Results of Feature Space

The lowest separation distance was 1.329, while the largest dimension was 11.
Figure 13 depicts the degree of optimization of the various feature combinations. It can
be seen that before the dimension was 8, the optimization degree climbed quickly, then
progressively increased from 8 to 11, reaching a maximum when the dimension was 11,
and then gradually fell.
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When dimension = 8, the feature combination is NDBI, Shape Index, SWIR-2, Red,
Length/Width, SWIR-1, Length, NIR, Green, Brightness and Blue; this is the best
feature combination.

By analyzing Table 4, the following conclusions can be drawn. Except for the sepa-
ration degree of water body and town, which reduced by 0.208 following optimization,
the separation degree of other categories increased. Water body and bare soil were the
ones that altered the most, from 3.531 to 17.063, an increase of 13.533. Second, the distance
between the water body and the vegetation increased by 9.563; the distance between the
water body and the road increased by 5.023, but the distance between the road and the
vegetation only increased by 1.804. The difference between road and town, which grew by
0.507, was the smallest.

Table 4. Separation distance matrix before and after optimization.

Before Optimization

Class Town Road Bare soil Water Vegetation
Town 0 0.822 2.467 14.883 1.410
Road 0.822 0 0.036 3.541 0.040

Bare soil 2.467 0.036 0 3.530 0.249
Water 14.883 3.541 3.530 0 0.923

Vegetation 1.410 0.040 0.249 0.923 0

After Optimization

Class Town Road Bare soil Water Vegetation
Town 0 1.32908 6.778 14.674 5.064
Road 1.329 0 3.624 8.565 1.844

Bare soil 6.778 3.624 0 17.063 4.224
Water 14.674 8.565 17.063 0 10.486

Vegetation 5.064 1.844 4.224 10.486 0
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The table also shows that the separation degree of each surface feature is the largest,
with the greatest gap between a water body and bare soil. The road looks very similar to
the town, and it was hard to tell the difference between the road, bare soil and vegetation.
The separation degree between the water body and other surface characteristics was above
8, and the difference between them was pretty clear.

3.1.5. Landslide Result

After the above experimental process (3.11–3.14), the extraction results of landslide
were obtained. The overall landslide extraction result was better, but there was a tiny
amount of excess extraction on the boundary, and the overall form was similar to long
tongue, which is consistent with the main characteristics of landslides (Figure 14).
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The landslide also has the shape of a long tongue, with the upper sliding debris
flow being divided by the middle safety island, sliding on both sides, and spreading and
mixing in low-lying areas. The illustration shows the essential characteristics of a landslide:
landslide wall, landslide body, slide surface, landslide bed, landslide tongue and so on.

The following are the characteristics of remote sensing images of landslides: the
landslide and the surrounding ground items have a distinct boundary. The landslide is
usually pale yellow, while the foliage around it is green. The landslide’s distribution range
and overall shape are readily visible. The majority of the landslide walls are in the shape of
steep ridges devoid of vegetation. The cracks in the middle of the landslide are relatively
long and narrow, with the direction widening along the landslide’s sliding path. The
leading edge of the landslide is mainly damaged by spreading impact when it reaches the
gentle area.

3.2. Classification Results of Terrain Cover around the Landslide

The classification of each group is more obvious to illustrate from the overall clas-
sification effect. However, there are some situations of misclassification, such as mixed
classification and misclassification in the distinction between highways and towns, and the
classification of water body boundaries is not complete and accurate (Figure 15).
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3.3. Accuracy Evaluation
3.3.1. Accuracy Evaluation of Landslide Extraction

In this experiment, the final identified landslide area was counted, and the real land-
slide total area was 400,000 m2. A total of 319,300 m2 of landslide was extracted by
object-oriented method, and 80,700 m2 of landslide area was extracted by omission and
error extraction (Figure 16). The accuracy of landslide extraction was 79.8%.
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The lack of representativeness of the selected landslide samples could be one of the
causes of the leaking. It is likely that the separation degree between landslide, road, and
bare land is not high enough, resulting in numerous roads and bare soil objects being
classified as landslides. Through the results of object-oriented extraction and the manual
interpretation of landslide affected by higher resolution, the missing points and wrong
points are compensated and corrected.
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3.3.2. Accuracy Evaluation of Classification

The confusion matrix-based accuracy evaluation method was utilized to evaluate
classification in this paper. By creating 100 sample verification points, their distribution is
shown in Figure 17, and they are compared with high-resolution remote sensing images
to determine the ground object types corresponding to the sample points and carry out
precision evaluation calculation. The confusion matrix is shown in Table 5. In terms of
producer accuracy, landslide accuracy was the highest (1) and bare land accuracy was
the lowest (0.33). The user accuracy of landslide was 0.5, while the user accuracy of bare
land and vegetation was 1. The overall accuracy of classification was 0.87, and the Kappa
coefficient was 0.76.
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Table 5. Confusion matrix for classification of ground features around landslide mass.

Ground Truth

Class Landslide Town Road Bare
Land Water Vegetation Sum User

Accuracy

Classification

Landslide 1 0 0 1 0 0 2 0.5
Town 0 8 0 0 0 1 9 0.89
Road 0 1 12 2 0 5 20 0.6

Bare land 0 0 0 2 0 0 2 1
Water 0 0 0 0 3 0 3 1

Vegetation 0 0 1 1 0 61 63 0.97
Unclassified 0 0 0 0 1 0 1

Sum 1 9 13 6 4 67 100
Producer
accuracy 1 0.89 0.923 0.33 0.75 0.91

Overall
accuracy 0.87

Kappa 0.76

The reasons for the low analysis accuracy are as follows: due to the limitation of
spatial resolution of images, there may be some errors in sample selection; in the selection
of classification features, the differentiation degree of ground object types may be low,
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which makes it difficult to distinguish between the two types, resulting in the phenomenon
of “misclassification” and affecting the classification accuracy. From the above results and
accuracy analysis, it can be seen that the overall accuracy is good enough, but there are
also some wrong points and missing points, which are mainly caused by human factors
but also by methodological defects.

4. Analysis and Discussion on the Destructiveness and Cause of Landslide

The combination of several components causes landslides. The specific mechanism
and how the procedure works are still unknown [20]. Landslides are the most common
and destructive natural hazard. They result in the loss of life and property, as well as
harm to natural resources (for example, vegetation, land and soil) and the impediment of
construction projects such as roads, bridges and communication lines [20]. Aerial images
have helped to alleviate some of these issues. With the advent of remote sensing and GIS
technology, it is now possible to collect, alter and combine a range of spatial data from an
area, such as geology, structure, surface cover, slope characteristics and so on, in a way that
is useful for landslide characterization [21–25].

The occurrence of a landslide disaster in Shuicheng is caused by its unique terrain,
extreme climate and man-made damage. The landslide will have a significant influence on
agricultural and industrial development in the area, as well as on people’s living standards.
The destructive area of the landslide is examined using the classification findings of the
landslide before and after the occurrence. Before the landslide, the object-oriented technique
is used to categorize the data fusion image, and the classification results are presented
in Figure 18. The confusion matrix is shown in Table 6. The classification findings had a
mapping accuracy of 0.75 and a Kappa coefficient of 0.6. Because human activities and
subsequent deforestation have altered the stability of slopes, landuse/landcover exerts
an influence over landslides and is considered second only to slope in importance. Slope
modification occurs as a result of urban operations such as road widening and terrain
leveling, resulting in a steep cut.
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Table 6. Confusion matrix of ground feature classification before landslide.

Ground Truth

Class Town Water Farmland Woodland Road Bare
Land Sum User

Accuracy

Classification

Town 3 0 0 0 0 0 3 1
Water 0 1 1 0 0 0 2 0.5

Farmland 0 0 33 14 2 0 49 0.67
Woodland 0 0 4 32 0 0 36 0.89

Road 0 0 2 2 5 0 9 0.56
Bare land 0 0 0 0 0 1 1 1
Unclassified 0 0 0 0 0 0 0

Sum 3 1 40 48 7 1 100
Producer
accuracy 1 1 0.83 0.67 0.71 1

Overall
accuracy 0.75

Kappa 0.60

4.1. Landslide Destructiveness

Taking the damage range of landslide mass as the boundary, the damaged features are
extracted, as shown in Figure 19. Based on the land use before landslide, combined with the
extraction results of landslide and the land classification results after landslide, this paper
makes a comprehensive analysis. After statistical analysis, the devastation to farmland is
the most extensive, resulting in significant economic losses; the damage to the chicken farm
rural houses and roads caused significant harm to villagers’ personal safety and property,
culminating in the X244 highway being broken, obstructing residents’ travel. According to
statistics (by superposition of landslide vector map and vector file of correlation quantity,
the statistical result is obtained as shown in Figure 20), farmland damage accounted for 56%
of the overall landslide damage, while woodland damage accounted for 33%, residential
area damage accounted for 3%, rural road damage accounted for 6%, and X244 highway
damage accounted for 2%.
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4.2. Landslide Causes

Before analyzing the causes of landslide, firstly, the spatial distribution of landslide
location is studied and investigated, and then the whole sliding process of landslide is
understood and analyzed in combination with relevant research data. On the basis of
these two aspects, combined with the geological structure distribution of the landslide
area, the geological causes of the landslide are discussed and analyzed. Combined with the
precipitation data 14 days before the landslide, the driving effect of precipitation on the
cause of landslide is analyzed and, finally, so too is the influence of human activities on the
formation and occurrence of landslide.

4.2.1. Landslide Spatial Display

The basis of spatial data analysis is the expression and display of data. Three-
dimensional displays provide users with a three-dimensional sense tube, which can supply
researchers with information that two-dimensional visuals cannot, as well as boost their
understanding and analysis abilities. The ASTER GDEM 30 m resolution digital eleva-
tion data is added to the elevation layer, and the Sentinel-2 (containing landslide) remote
sensing image information is added to the texture layer. The data of each scene covers
1◦ of latitude and longitude, the horizontal and vertical accuracy of the data are 7~50 m,
and the horizontal resolution is about 30 m. This part does not require high accuracy
of DEM, and 30 m resolution DEM can achieve good results, which has been adopted.
Using the perspective of the method, superposition together, both embody the elevation
information and show the ground information, resulting in a two-dimensional image with
a three-dimensional effect [11].

The Figure 21 shows a side view of the landslide. According to the occurrence condi-
tions of landslide, first, there is a low and open sliding space in front of the slope, which
aids the landslide’s fall. Second, cutting surfaces can be found on both sides of the slope.
Slopes with weak compressive capacity, such as a fluffy broken soil layer, a broken rock
soil layer and an exposed surface eroded by weathering, are prone to landslides. When the
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compressive strength of the mountain is high, it is difficult for landslides to occur; however,
if the mountain has a sliding surface, it may lead to landslide in the face of continuous
heavy rainfall [24]. Flash floods from surrounding mountains are becoming more frequent,
bringing massive amounts of loose material with them [26,27]. The landslide in Shuicheng
County meets the geological conditions of landslide occurrence.

Remote Sens. 2022, 14, x FOR PEER REVIEW 24 of 32 
 

 

4.2.1. Landslide Spatial Display 
The basis of spatial data analysis is the expression and display of data. Three-dimen-

sional displays provide users with a three-dimensional sense tube, which can supply re-
searchers with information that two-dimensional visuals cannot, as well as boost their 
understanding and analysis abilities. The ASTER GDEM 30 m resolution digital elevation 
data is added to the elevation layer, and the Sentinel-2 (containing landslide) remote sens-
ing image information is added to the texture layer. The data of each scene covers 1° of 
latitude and longitude, the horizontal and vertical accuracy of the data are 7~50 m, and 
the horizontal resolution is about 30 m. This part does not require high accuracy of DEM, 
and 30 m resolution DEM can achieve good results, which has been adopted. Using the 
perspective of the method, superposition together, both embody the elevation infor-
mation and show the ground information, resulting in a two-dimensional image with a 
three-dimensional effect [11]. 

The Figure 21 shows a side view of the landslide. According to the occurrence condi-
tions of landslide, first, there is a low and open sliding space in front of the slope, which 
aids the landslide’s fall. Second, cutting surfaces can be found on both sides of the slope. 
Slopes with weak compressive capacity, such as a fluffy broken soil layer, a broken rock 
soil layer and an exposed surface eroded by weathering, are prone to landslides. When 
the compressive strength of the mountain is high, it is difficult for landslides to occur; 
however, if the mountain has a sliding surface, it may lead to landslide in the face of con-
tinuous heavy rainfall [24]. Flash floods from surrounding mountains are becoming more 
frequent, bringing massive amounts of loose material with them [26,27]. The landslide in 
Shuicheng County meets the geological conditions of landslide occurrence. 

 
Figure 21. Spatial display of landslide (side (a) and front (b) view).

4.2.2. Sliding Process of Landslide

Among the classification schemes based on the specific characteristics of rock and
soil movement process and material composition, the most representative is the classical
classification system of Varnes (Varnes, 1978). Varnes divides the slope into collapse,
toppling, sliding, lateral expansion, flow and composite movement [28]. According to
DEM data, the elevation of landslide (~1200 m–~1680 m), and the relative elevation from
slope bottom to slope top is about 480 m. By querying relevant materials and reports, the
landslide is a high-speed landslide with sudden characteristics. The mountain on the upper
part of the Houshan slope in Jichang township became unstable and formed debris flow
in late July 2019, due to prolonged severe rainfall. The debris flow then accelerated down
the slope at a fast rate. It encountered a tiny ridge and split into two strands, producing a
safety island in the middle, after sliding forward for more than 700 m. Both debris flows
proceeded to slam against each other and scrape downward. Residential buildings on
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the safety island’s left side were hit and buried. Because it happened at night, it struck
when the inhabitants were sleeping and spread quickly, killing a great number of people.
Finally, at the bottom of the gentle slope, the two mud debris flows mixed and expanded in
three directions, forming a debris accumulation area [29]. Figure 22a depicts the landslide’s
progression process.
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The landslide may be separated into three sections based on its development process
and visual characteristics: sliding source area, shovel scraping accumulation mixed area,
and primary accumulation area [29] (Figure 22b).

The sliding source area is the landslide’s beginning, the debris flow’s generation area,
and the landslide’s key area, which is located at the back of the landslide. The primary
flow area of landslide debris flow, with fast flow speed and located in the middle of the
landslide, is the shovel scraping accumulation mixing area. The accumulation area is the
debris flow’s final accumulation area, which is located on the gentle slope at the landslide’s
lower section and the flat or depression at the bottom. The velocity of the mud debris
flow slows, the shoveling capacity drops dramatically, and the mud debris spreads and
accumulates around [30–33].

4.2.3. Geological and Lithologic Factors

The permeability and strength of an area’s rocks and soil, and hence the landslides,
are linked by geology and geomorphology [34]. The data source is a composite image
of the first three main components, and the research area’s remote sensing geological
interpretation map is generated in conjunction with the Ecological Environment Map.
Figure 23 depicts the landslide and associated stratum distribution.

The plane of discontinuity marks lithological boundaries, which are often weak zones.
They have an impact on the rock’s strength. The higher the density of geologic barriers, the
more vulnerable the area is to landslides [35]. Because different rock types and lithological
units react differently to changes in the geomorphic process, permeability and strength of
rocks and soils, bedrock geology plays an important role in landslide failure and distribu-
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tion [36,37]. The Jichang landslide is located on the slopes of the Middle Upper Permian
Emeishan Basalt Formation (P2-3em) and the Upper Permian Xuanwei Formation(P3x), as
shown in the Figure 23. The landslide source area’s rock strata are mostly from the Middle
Upper Permian Emeishan Basalt Formation’s first member (P2-3em1). The lithology of
the Emeishan basalt formation is grayish white to yellowish brown quartz sandstone with
different structures from loose to cataclastic. Basalt is the main rock type in the Emeishan
basalt formation, with some siliceous rock and breccia in the lower section. Basalt is a
type of magma that forms when crustal action causes volcanic eruptions [38–41]. It is a
volcanic extrusive rock with a stomata-like structure. Its main geochemical components are
SiO2, Al2O3, Fe2O3, CaO and MgO, of which SiO2 content is the most, accounting for about
45–50%. Emeishan basalt is mainly distributed in the adjacent areas of Yunnan, Sichuan
and Guizhou provinces. It is divided into upper land (facies) and lower sea (facies), with
multiple cycles central-fissure eruption-spill characteristics. The Emeishan basalt in this
area is classified into the Upper Permian on the sequence. Figure 24 shows rock specimens
from the location of the landslide in the study area. It can be seen from this figure that the
basalt is loose and porous, with a hard texture and is susceptible to weathering and erosion.
The basalt bodies here are strongly weathered. After the basalt is fully weathered, the
surface layer is clayed, and the shallow rock mass is cracked and fragmented. According to
the investigation, the basalt weathering intensity varies greatly in different sections along
X244 Highway, and some sections have a weak weathering degree and high weathering
intensity, which can form steep slopes [31]. However, the rock mass weathering zone
near the slip source area is deep and strong, and the rock mass is generally in the shape
of block cracks and open cracks, and the strength is low. Due to the repeated eruption
and condensation of basalt rock mass and the influence of long-term geological tectonic
movement, the rock mass develops structural planes such as joints, cleavages and cracks,
resulting in relatively loose mountains with low overall shear strength, coupled with strong
weathering, making the area more prone to landslide. Slope instability is influenced more
by these structural discontinuities in proportion to the slope inclination [42]. Fault lines
show tectonic breaks, which reduce the rock’s strength. Landslides are more likely in areas
closer to the faultline than in areas further away [43].
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4.2.4. Climate and Precipitation Factors

Rainfall intensity has a direct relationship with slope instability issues. As a result, the
majority of landslides [44–47] occur during the rainy season. Rainfall can cause surface
erosion as well as replenish groundwater, saturating the slope material in the process [48].
The landslide area is located in the subtropical monsoon climate zone, with a warm and
rainy climate. Precipitation in the landslide area is primarily concentrated from May to
July, with precipitation ranging from 500 to 600 mm, accounting for around 62%of the year.
The cumulative rainfall in the 30 days before the landslide reached 435 mm, according
to the changing curve of rainfall in the 30 days before the landslide (Figure 25), with the
cumulative rainfall from 18 July to 23 July nearing 111 mm, and the rainfall reaching 47 mm
the day before the landslide. The landslide occurred at 21:20 on 23 July as a result of the
persistent heavy rain. Excessive rainfall can promote soil saturation, which can result in
debris flow on these slopes [49]. Rainwater infiltration into slope materials may recharge
groundwater, affecting slope stability indirectly [50]. Following the landslide, severe rains
continued, exacerbating the severity of the disaster. As a result, it is clear that the landslide
is exacerbated by the ongoing severe rainfall.
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4.2.5. Human Activities

One of the most prominent triggering mechanisms is anthropogenic activities along
the natural slope [42]. By examining geomorphic responses to anthropogenic land cover
changes, the study examined the impact of land use on triggering landslides. Settlement
in hilly places resulted in changes in land use and pattern, which had unanticipated
consequences in terms of causing landslides. Landslides pose a significant physical and
environmental risk to communities in landslide-prone locations [51]. Road construction,
which can have a wide-ranging influence [52–54] is one of the most common man-made
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activities that destabilize slopes in mountainous terrain. Slope cutting by mechanical
methods or blasting, which is usually done in an unexpected manner, may be used in road
construction [55].

Road construction is the most common human activity in the chicken farm town. The
“Jichang to Yingpan Highway Project,” on the other hand, has a clear link to landslide
generation. The project entails the construction of the X244 county road, which runs from
Jichang to Yingpan and passes through the landslide source area, as depicted in Figure 26.
In order to improve traffic flow, the highway’s landslide stretch was straightened, and the
ridge was lowered by 10 m in 2019, as depicted in Figure 27. The slope cutting of the X244
highway causes the increase of the dangerous area of the sliding surface, and also causes
the position of the shear outlet of the sliding surface to move upward to the slope toe of the
highway slope, but the change range is small. It reduces the safety factor of slope land from
1.032, which is basically stable, to 0.997, which is unstable [29]. This is one of the major
inducements for the landslide to occur.
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5. Conclusions

A detailed assessment of landslides in the Shuicheng county of Liupanshui city,
Guizhou province, China was carried out in this study. These landslides were triggered
by a combination of geological, lithological, rainfall and anthropogenic events. This study
suggests that landslide characterization is mostly determined by a mix of geoenvironmental
circumstances, such as geology, geomorphology, as well as land cover, climatic factors,



Remote Sens. 2022, 14, 502 28 of 30

human disturbances and other factors. The Sentinel-2 remote sensing image and the GF-1
remote sensing image were used in this paper to extract the landslide, classify the terrain
cover around the landslide and assess the landslide’s destruction, and were combined with
the analysis of various factors to investigate the causes of the landslide.

Three image enhancement approaches were utilized to give data support for the devel-
opment of geological interpretation maps, provide reference for object-oriented landslide
extraction, and help to extract fault lines more clearly, including band synthesis, principal
component analysis and filtering. Remote sensing images with different satellites, different
resolutions and different bands were used for fusion, resulting in fusion images with multi-
ple bands and high resolution, which increased the operability of classification. This paper
attempted to interpret the geological situation by combining the principal component
analysis method with the geological thematic map. Through object-oriented landslide
extraction and surrounding area classification, combined with local geological and climatic
conditions, the causes and damage of landslide were analyzed.

Through object-oriented classification and extraction of remote sensing images before
and after the occurrence of a landslide, the shape (tree root type), constituent elements
(composed of landslide mass, sliding surface and sliding bed) and the damage degree
of the landslide (remote sensing area estimation) were analyzed and studied, so as to
provide data support and a theoretical basis for further analysis of landslide causes. There
are still many improvements in the process of object-oriented landslide extraction, in the
process of selecting the optimal segmentation scale, including further refining the details
of the process by, for example, reducing the test scale, so as to obtain a more accurate
segmentation scale. In the selection of features, more new features can be considered.

Combined with the spatial distribution and sliding process of landslide, the causes
of landslide were analyzed. There are three reasons for the formation of landslides in
Shuicheng County, according to the findings. First, the landslide area’s geological lithology
is basalt, with joint, cleavage and fissure development, and low overall shear strength.
Second, torrential rain fell continuously in Jichang town prior to the landslide, acting as an
external influence that aided the landslide. Third, the construction of the X244 highway
diminishes the slope’s skid resistance and accelerates the landslide tendency.

Due to the limitation of my own specialty, I have insufficient understanding of geo-
logical genesis and geological structure. In the process of analysis, the geological genesis
analysis of landslide is not sufficient and accurate. I hope to improve these aspects in
future research.

In the current research, it has been focused to improve each step of treatment, optimize
the test process, improve the accuracy of classification, and explore the causes of landslide
more deeply. It provides a reference for other landslide extraction and analysis. At the same
time, it also provides a basis for extracting geological hazards such as karst depression
and collapse.

Author Contributions: Conceptualization, C.X. and M.Y.; Data curation, C.X. and M.S.H.; Formal
analysis, C.X. and S.N.; Investigation, Y.H. and M.Y.; Methodology, P.W. and Y.Z.; Software, Y.H. and
M.Y.; Supervision, P.W. and Y.Z.; Validation, S.U. and S.K.; Visualization, Y.Z. and S.U.; Writing—
original draft, Y.H. and M.S.H.; Writing—review & editing, P.W. and Y.Z.; Project Administration,
Y.Z.; Funding Acquisition, P.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by Excellent Teaching Team Construction Plan of Shandong
University of Science and Technology under grand (JXTD20160506).

Data Availability Statement: The data was freely downloaded from the given website (http://www.
gscloud.cn/sources), (https://geocloud.cgs.gov.cn/#/home) and (https://scihub.copernicus.eu/),
all accessed on 24 November 2021.

Conflicts of Interest: The authors proclaim no conflict of interest concerning this paper.

http://www.gscloud.cn/sources
http://www.gscloud.cn/sources
https://geocloud.cgs.gov.cn/#/home
https://scihub.copernicus.eu/


Remote Sens. 2022, 14, 502 29 of 30

References
1. Sang, K. Statistics and analysis of landslide disaster data in China in recent 60 years. Sci. Technol. Commun. 2013, 10, 124–129.
2. Lei, G.; He, H. Research progress of landslide geological hazard prevention and control. Earth Sci. Front. 2021, 11, 786–795.
3. Lichao, W. “7·23” large landslide in Shuicheng, Guizhou province. Chin. J. Geol. Hazards Prev. 2019, 30, 8.
4. Battz, M.; Shape, A. Object-Oriented and multi-scale image analysis in semantic networks. In Proceedings of the 2nd International

Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16–20 August 1999.
5. Matha, T.R.; Kerle, N.; Jetten, V.; Westen, C.J.V.; Kumar, K.V. Characterizing spectral, spatial and morphometric properties of

landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [CrossRef]
6. Barlow, J.; Martin, Y.; Franklin, S.E. Detecting Translational Landslide Scars Using Segmentation of Landsat ETM+ and DEM Data

in the Northern Cascade Mountains, British Columbia. Can. J. Remote Sens. 2003, 29, 510–517. [CrossRef]
7. Hu, D.; Li, J.; Zhao, W. Object-oriented Landslide Detection from Remote Sensing Imageries with High Resolution. J. Nat. Disasters

2008, 17, 42–46.
8. Wang, Q.L. Object-Oriented Remote Sensing Image Classification and Its Application: A Case Study of Vegetation Extraction in Futian

District, Shenzhen; Nanjing Forestry University: Nanjing, China, 2008.
9. Wu, J. Seismic Damage Information Extraction and Evaluation Method Based on Object Oriented Technology; Wuhan University: Wuhan,

China, 2010.
10. Lahousse, T.; Chang, K.T.; Lin, Y.H. Landslide mapping with multi-scale object-base image analysis: A case study in the Baichi

Watershed, Taiwan. Nat. Hazards Earth Syst. Sci. 2011, 11, 2715–2726. [CrossRef]
11. Zhang, L.; Li, A.; Zhang, Z.; Yang, K. Global and Local Saliency Analysis for the Extraction of Residential Areas in High-Spatial-

Resolution Remote Sensing Image. Geosci. Remote Sens. IEEE Trans. 2016, 54, 3750–3763. [CrossRef]
12. Yin, S.; Zhang, Y.; Karim, S. Large Scale Remote Sensing Image Segmentation Based on Fuzzy Region Competition and Gaussian

Mixture Model. IEEE Access 2018, 6, 26069–26080. [CrossRef]
13. Zhu, J. Study on Landslide Information Extraction in Baoxing County Based on GF-1 Image; Chengdu University of Technology:

Chengdu, China, 2015.
14. Jia, J. Automatic Landslide Recognition Based on GF-1 Image; Southwest University of Science and Technology: Mianyang, China, 2020.
15. Gao, H.; Gao, Y.; He, K. Impact shoveling effect analysis of “7.23” high-level long-range landslide in Shuicheng, Guizhou. China

Karst 2020, 39, 535–546.
16. He, M.; Zhang, W.; Wang, W. Object oriented optimal segmentation scale calculation model. Geodesy Geodynam. 2009, 29, 106–109.
17. Mathieu, R.; Freemanand, C.; Aryal, J. Mapping private gardensin urban areas using object-oriented techniquesand very

high-resolution satelliteimagery. Landsc. Urban Plan. 2007, 81, 179–192. [CrossRef]
18. Wulder, M.; Boots, B. Local spatial autocorrelation charac-teristics of remotely sensed magery assessed with the Getis statistic. Int.

J. Remote Sens. 1998, 19, 223–2231. [CrossRef]
19. Chen, J.; Wen, X.; Li, G. Comparative study on rapid extraction of typical elements of surface coverage based on object-oriented

high score images. Remote Sens. Inf. 2014, 29, 37–40.
20. Saha, A.K.; Gupta, R.P.; Arora, M.K. GIS-based Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int. J.

Remote Sens. 2002, 23, 357–369. [CrossRef]
21. Van Westen, C.J. GIS in landslide hazard zonation: A review, with examples from the Andes of Colombia. In Mountain

Environments and Geographic Information System; Price, M., Heywood, I., Eds.; Taylor and Francis: London, UK, 1994; pp. 135–165.
22. Gupta, R.P.; Joshi, B.C. Landslide Hazard Zonation using the GIS approach—A case study from the Ramganga Catchment,

Himalayas. Eng. Geol. 1990, 28, 119–131. [CrossRef]
23. Gupta, R.P. Remote Sensing Geology; Springer: Berlin, Germany, 1991.
24. Nagarajan, R.; Mukherjee, A.; Roy, A.; Khire, M.V. Temporal remote sensing data and GIS application in landslide hazard zonation

of part of Western Ghat, India. Int. J. Remote Sens. 1998, 19, 573–585. [CrossRef]
25. Sabins, F.F., Jr. Remote Sensing: Principles, Interpretation; Freeman: San Francisco, CA, USA, 1999.
26. Nie, C. Analysis and Early Warning of Landslide Disaster; Liaoning University of Engineering and Technology: Jinzhou, China, 2017.
27. Hossain, M.S.; Yasir, M.; Wang, P.; Ullah, S.; Jahan, M.; Hui, S.; Zhao, Z. Automatic shoreline extraction and change detection: A

study on the southeast coast of Bangladesh. Mar. Geol. 2021, 441, 106628. [CrossRef]
28. Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [CrossRef]
29. Li, H.; Shi, W.; Zhu, Y.; Peng, X. Study on the formation mechanism of “7.23” catastrophic landslide in Shuicheng County,

Guizhou Province. J. Nat. Disasters 2020, 29, 188–198.
30. Zheng, G.; Xu, Q.; Liu, X. Study on characteristics and genetic mechanism of landslide debris flow in Jichang Town, Shuicheng

County, Guizhou on July 23, 2019. J. Eng. Geol. 2020, 28, 541–556.
31. Jiang, D.; Chen, S.; Ding, F. Classification of Remote Sensing Image based on Object-oriented Method: A Cass Study of Baixiang

County. Remote Sens. Technol. Appl. 2018, 33, 143–150.
32. Mao, X.; Yao, Y.; Chen, S.; Liu, J.; Du, Z.; Wei, J. Stand type recognition of QuickBird Remote Sensing Image Based on Yikang

software-Taking Jiangle forest farm in Fujian Province as an example. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 43, 127–134.
33. Zhang, Y. Research on Landslide Disaster Information Extraction from Object-Oriented High-Resolution Remote Sensing Data; Lanzhou

University: Lanzhou, China, 2015.

http://doi.org/10.1016/j.geomorph.2009.10.004
http://doi.org/10.5589/m03-018
http://doi.org/10.5194/nhess-11-2715-2011
http://doi.org/10.1109/TGRS.2016.2527044
http://doi.org/10.1109/ACCESS.2018.2834960
http://doi.org/10.1016/j.landurbplan.2006.11.009
http://doi.org/10.1080/014311698214983
http://doi.org/10.1080/01431160010014260
http://doi.org/10.1016/0013-7952(90)90037-2
http://doi.org/10.1080/014311698215865
http://doi.org/10.1016/j.margeo.2021.106628
http://doi.org/10.1007/s10346-013-0436-y


Remote Sens. 2022, 14, 502 30 of 30

34. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-
Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

35. Dou, J.; Yunus, A.P.; Bui, D.T.; Sahana, M.; Chen, C.W.; Zhu, Z.; Wang, W.; Pham, B.T. Evaluating GIS-Based Multiple Statistical
Models and Data Mining for Earthquake and Rainfall Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sens.
2019, 11, 638. [CrossRef]

36. Dou, J.; Oguchi, T.; Hayakawa, Y.S.; Uchiyama, S.; Saito, H.; Paudel, U. GIS-based landslide susceptibility mapping using a
certainty factor model and its validation in the Chuetsu area, central Japan. In Landslide Science for a Safer Geoenvironment; Springer
International Publishing: Cham, Switzerland, 2014; Volume 2, pp. 419–424.

37. Yamagishi, H.; Marui, H.; Ayalew, L.; Sekiguchi, T.; Horimatsu, T.; Hatamoto, M. Estimation of the sequence and size of the
Tozawagawa landslide, Niigata, Japan, using aerial photographs. Landslides 2004, 1, 299–303. [CrossRef]

38. Liu, Y.; Fu, Y.; Zhou, Z.; Ge, Z.; Chen, R.; Long, Z.; Wang, T. Preliminary study on the accumulation mechanism of Niobium in the
weathering crust of upper Permian Emeishan basalt in northwestern Guizhou province. Miner. Depos. 2001, 40, 776–792.

39. Shen, T. Study on Formation Mechanism of Large and High Remote Basalt Landslide in Emei Mountain; Chengdu University of
Technology: Chengdu, China, 2019.

40. Ren, B. Study on the Formation Mechanism of Clay Minerals in Residual Soil of Basalt Slope in Emei Mountain; Kunming University of
Science and Technology: Kunming, China, 2014.

41. Wei, Y.; Chu, H.; Zhuang, M.; Wang, C.; Bai, Y. Study on the genetic mechanism of Wangshan zhuakousi landslide in Emeishan
City, Sichuan Province. J. Eng. Geol. 2016, 24, 477–483.

42. Anbazhagan, S.; Ramesh, V. Landslide hazard zonation mapping in Ghat road section of Kolli Hills, India. J. Mt. Sci. 2014, 11,
1308–1325. [CrossRef]

43. Netra, R.R.; Giardino, J.R.; Vitek, J. Characteristics of landslides in western Colorado, USA. Landslides 2014, 11, 589–603.
44. Ayalew, L.; Yamagishi, H. Slope failures in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology 2004,

57, 95–116. [CrossRef]
45. Collison, A.; Wade, S.; Griffiths, J.; Dehn, M. Modelling the impact of predicted climate change on landslide frequency and

magnitude in SE England. Eng. Geol. 2000, 55, 205–218. [CrossRef]
46. Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology

2002, 42, 213–228. [CrossRef]
47. Dahal, R.K.; Hasegawa, S.; Masuda, T.; Yamanaka, M. Roadside Slope Failures in Nepal during Torrential Rainfall and their

Mitigation. In Disaster Mitigation of Debris Flows, Slope Failures and Landslides; Landslides Universal Academy Press, Inc.: Tokyo,
Japan, 2006; pp. 503–514.

48. Raghuvanshi, T.K.; Negassa, L.; Kala, P.M. GIS based Grid Overlay Method versus Modeling Approach—A Comparative Study
for Landslide Hazard Zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia. Egypt. J. Remote Sens. Space Sci.
2015, 18, 235–250. [CrossRef]

49. Chen, W.C.; Chen, H.; We, L.W.; Lin, G.W.; Lida, T.; Yamada, R. Evaluating the susceptibility of landslide landforms in Japan
using slope stability analysis: A case study of the 2016 Kumamoto earthquake. Landslides 2017, 14, 1793–1801. [CrossRef]

50. Arora, K.R. Soil Mechanics and Foundation Engineering; Standard Publishers Distributers: Delhi, India, 1997; p. 475.
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