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Abstract: In recent years, convolution neural networks (CNNs) have been widely used in the field of
remote sensing scene image classification. However, CNN models with good classification perfor-
mance tend to have high complexity, and CNN models with low complexity are difficult to obtain
high classification accuracy. These models hardly achieve a good trade-off between classification ac-
curacy and model complexity. To solve this problem, we made the following three improvements and
proposed a lightweight modular network model. First, we proposed a lightweight self-compensated
convolution (SCC). Although traditional convolution can effectively extract features from the input
feature map, when there are a large number of filters (such as 512 or 1024 common filters), this process
takes a long time. To speed up the network without increasing the computational load, we proposed a
self-compensated convolution. The core idea of this convolution is to perform traditional convolution
by reducing the number of filters, and then compensate the convoluted channels by input features. It
incorporates shallow features into the deep and complex features, which helps to improve the speed
and classification accuracy of the model. In addition, we proposed a self-compensating bottleneck
module (SCBM) based on the self-compensating convolution. The wider channel shortcut in this mod-
ule facilitates more shallow information to be transferred to the deeper layer and improves the feature
extraction ability of the model. Finally, we used the proposed self-compensation bottleneck module
to construct a lightweight and modular self-compensation convolution neural network (SCCNN)
for remote sensing scene image classification. The network is built by reusing bottleneck modules
with the same structure. A lot of experiments were carried out on six open and challenging remote
sensing image scene datasets. The experimental results show that the classification performance
of the proposed method is superior to some of the state-of-the-art classification methods with less
parameters.

Keywords: self-compensated convolution; bottleneck module; lightweight; remote sensing scene
image classification; convolutional neural network (CNN)

1. Introduction

Convolutional neural networks (CNNs) have achieved great success in the field of
computer vision with strong feature extraction capabilities, such as image recognition [1,2],
target detection [3,4], semantic segmentation [5], and other applications. Now, CNNs have
been widely used in remote sensing scene image classification. Since remote sensing images
are disturbed by external factors in the acquisition process, which results in large intraclass
differences and interclass similarities among remote sensing images. This property leads to
confusion in classification of convolutional neural network models. Some image samples
can be found in Figure 1. As we can see from Figure 1a, there are considerable class
differences between these images. The ‘Airplane’ scene contains scenes such as ‘Parking’,
‘Forest’, and ‘Industry’, and the ‘Airplane’ scene may be misclassified into these scenes
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when classifying. The remote sensing images in Figure 1b,c show the strong similarities
among classes. There is almost the same image content among the four scenes ‘Island’,
‘Lake’, ‘Wetland’, and ‘Beach’ shown in (b), and similar texture features among the four
scenes ’Freeway’, ’Railway’, ’Runway’, and ‘Intersection’ shown in (c). All these bring
difficulties to remote sensing scene image classification. In recent years, it has been proven
that deeper convolution neural networks can extract more abstract features from remote
sensing images, which can improve the classification accuracy of remote sensing images.
With the development of computer technology, the depth of convolution neural network
has reached several hundred layers. With the improvement of classification accuracy, the
model becomes more and more complex, which reduces the speed of convolution neural
network. Therefore, the design of efficient and lightweight neural networks is the focus of
our research.
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Figure 1. Some sample images in the NWPU45 dataset. The intraclass difference between remote
sensing images is shown in (a), and the large interclass similarity between remote sensing images is
shown in (b,c).

In order to enable convolutional neural networks to achieve high classification accuracy
and fast running time, a series of methods have been proposed to study lightweight
deep neural networks, including network parameter pruning and sharing [6], low bit
quantization [7], and knowledge distillation [8]. The method based on network parameter
pruning and sharing mainly reduces the model by removing redundant and unimportant
items. In [9], a method was proposed to delete non-significant weights in neural networks.
In [10], significant connections were identified, and insignificant connections were removed
by training the network. Finally, the network is retrained to fine tune the weights of the
remaining connections. The method based on low-bit quantization is to use matrix or tensor
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decomposition to estimate the parameters of the model. In [11], the weight was quantified
as a single bit of data to achieve a larger compression and acceleration ratio. The knowledge
distillation method reproduces the output of a larger network by learning a distillation
model and training a more lightweight neural network. Distillation of knowledge is
essentially a kind of transfer learning. In [12], knowledge distillation was introduced to
transfer knowledge from large models to small models. In [13], the knowledge in the
generative confrontation network is refined. The new network learns knowledge from
the pre-training network and completes the knowledge distillation through the repeated
comparison the generation model and the discrimination model. However, these methods
are based on pre-trained baseline models, and they are limited by the baseline model,
making it difficult to maximize their performance.

In this paper, we first constructed a lightweight self-compensated convolution. By
reducing the number of filters, it achieves faster operation than traditional convolution,
and by channel compensation of input features, it achieves the same number of output
channels as traditional convolution. Then, using self-compensating convolution, a self-
compensating bottleneck module with strong feature extraction ability was presented.
Finally, a lightweight modular convolutional neural network model for remote sensing
scene image classification was constructed by using the self-compensation bottleneck module.

The main contributions of this paper are as follows:

(1) From the perspective of filter, a self-compensated convolution (SCC) was proposed.
It includes three stages: reducing the number of filters, channel compensation using
input features, and channel reassignment. A new convolution way was provided for
remote sensing scene classification;

(2) A self-compensating bottleneck module (SCBM) based on self-compensating convolu-
tion is presented. The module enables more shallow information to be transmitted to
the deeper layer through a wider channel shortcut, which is helpful to improve the
feature extraction ability of the model;

(3) Based on the self-compensating bottleneck module, a lightweight modular self-
compensating convolution neural network (SCCNN) is constructed for remote sensing
scene image classification. Experiments show that the proposed method can classify re-
mote sensing scene images more effectively with less parameters, and the classification
accuracy is equivalent to or even better than that of some state-of-the-art classification
methods, which proves the effectiveness of the proposed lightweight network.

The rest of this paper is as follows. In Section 2, the related work is shown. In Section 3,
self-compensation convolution, self-compensation bottleneck module, and lightweight
modular self-compensation convolution neural network are introduced in detail. In
Section 4, some experiments and analysis are carried out and compared with the existing
classification methods to prove the effectiveness of the proposed method. In Section 5, the
proposed self-compensated convolution and traditional convolution are discussed. The
conclusion is given in Section 6.

2. Related Works

In this section, we introduce some classical and popular methods related to the pro-
posed methods.

2.1. Convolution Methods

Convolution filters with special structures have great potential in efficient neural
network design. For example, in the structure of Inception [14], 5 × 5 was divided into
two 3 × 3; and SqueezeNet [15] proposed a structure of using 1 × 1 convolution instead
of 3 × 3 convolution. Compared with AlexNet, SqueezeNet creates a compact neural
network with comparable accuracy and a 50-fold reduction in the number of parameters.
In MobileNet [16], the deep separable convolution was introduced to replace traditional
convolution. Firstly, each channel of the input layer is convoluted individually. Following,
these feature maps are weighted and combined along the channel direction to generate a
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new feature map. GhostNet [17] proposed a ghost convolution using simple operations
to obtain more feature maps. Ghost Convolution first utilized ordinary convolution to
generate a set of feature maps, then used these feature maps to do simple linear operations
to get another set of (ghost) features, and finally connected the two sets of feature maps
through channels. HetConv [18] proposed a heterogeneous convolution kernel based on a
convolution neural network. One part of the convolution kernel is 3 × 3 and the other part
is 1 × 1. In this way, the number of parameters of the model is reduced. CondConv [19]
presented a conditional convolution. Conditional convolution can provide a specialized
convolution kernel for each input sample in each batch. By replacing the ordinary con-
volution, conditional convolution can increase the size of the model while maintaining
efficient computing speed. SCConv [20] presented a self-correcting convolution. The con-
volution divides the input data into two groups according to the channel dimension. One
group uses standard convolution to extract features of input data, and the other group
uses down-sampling to increase the receptive field of the network. Finally, each spatial
location can be self-calibrated by fusing information from two different spatial scales. The
Atrous convolution proposed by Yu et al. [21] introduces the super parameter of Atrous
rate on the basis of traditional convolution to adjust the interval number of convolution
kernels. Compared with the traditional convolution, the proposed Atrous convolution can
obtain a larger receptive field under the same convolution kernel parameters. Asymmetric
convolution [22] is summed by the output of three convolution branches with convolution
kernel sizes of n × n, n × 1 and 1 × n, respectively. The number of parameters and calcu-
lation can be reduced while maintaining accuracy. Most of these methods construct new
convolutions from the convolution kernel itself. We constructed a lightweight convolution
from the perspective of reducing the number of filters. The experimental results show that
the proposed self-compensated convolution performs better than traditional convolution.

2.2. Residual Bottleneck Blocks

The bottleneck structure first appeared in ResNet [23]. It was first reduced dimensions
by 1× 1 convolution, then extracted the spatial information of features by 3× 3 convolution,
and finally increased dimensions by 1 × 1 convolution. A residual network was formed
by stacking a series of bottleneck structures. Subsequently, many variant structures were
proposed based on bottleneck structures. Sergey et al. [24] proposed a wider bottleneck
structure by expanding the number of output channels for each convolution layer in the
bottleneck structure. Chen et al. [25] combined residual modules with dense connections to
form a two-way network structure to improve network performance. In ResNext [26], the
3 × 3 convolution used to extract spatial information in the ResNet bottleneck structure is
replaced by a group convolution, which can be used to extract richer features. Shi et al. [27]
proposed a method for image classification of remote sensing scenes based on the multi-
level feature dense fusion structure, in which residual branches were added to transmit
more shallow information to the deep layers of the network. Zhao et al. [28] proposed
a residual dense network based on spatial attention, and added spatial attention to the
residual dense structure to obtain more effective feature representation. Dong et al. [29] used
the pre training model on residual neural network-101 (ResNet 101) to extract the shallow
and deep features of remote sensing scene. However, due to the complexity of the model,
this structure is rarely used in lightweight networks. We propose a self-compensating
bottleneck module (SCBM) by using the proposed self-compensating convolution, and
construct a lightweight, modular convolution neural network using the bottleneck module.

3. Methodology
3.1. Self-Compensation Convolution

Aiming at the problem that the parameters of traditional convolution increase sharply
when the number of filters is large (the number of filters commonly used is 512 or 1024), a
self-compensated convolution was proposed from the perspective of reducing the number
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of filters. Figure 1 shows the convolution process of traditional convolution and self-
compensation convolution, respectively.

As shown in Figure 2, the output features Y ∈ Rh×w×2c of the traditional convolu-
tion are obtained by the input features X ∈ Rh×w×c. The convolution process can be
represented asL

Y = X ∗ f (1)

In Formula (1), ∗ represents the convolution operation. For the filter f ∈ Rk×k×c,
c is the number of channels and k× k is the kernel size of the convolution filter. h and w
are the height and width of the input features, respectively. The number of calculations
required for this convolution process is k× k× c × 2c, which is usually huge because the
number of channels c is large (for example, 512 or 1024). A large number of filters cause the
network to run slowly. Aimed at the problem that the network slows down due to the large
number of filters of the traditional convolution process, we proposed a self-compensation
convolution without increasing the computational effort, as shown in Figure 2. The core
idea of this convolution is to first reduce the number of filters to obtain a set of convoluted
features, then compensate the convoluted channels with the original input to obtain the
same output features as the traditional convolution, and finally reassign the feature maps.
Because the original inputs are utilized to compensate the features obtained from those
small numbers of filters, we called it self-compensating convolution. Self-compensated
convolution mainly consists of two parts. In the first convolution process, the number of
filters is half the number of input channels. In the second convolution process, the number
of filters is equal to the number of input channels. Compared with the number of filters that
directly use twice the number of input channels in traditional convolution, the twice small
convolution kernel of self-compensated convolution has great advantages. It improves the
running speed of the network without increasing the amount of calculation, and achieves
satisfactory classification accuracy.

The process of self-compensated convolution is as follows. First, the input features are
convoluted with a set of reduced convolution kernels to obtain some features Fconv1(x) ∈
Rh×w× 1

2 c. Fconv1(x) can be expressed by Formula (2):

Fconv1(x) = X ∗ f (2)

In Formula (2), f ∈ Rk×k× 1
2 c is the convolution kernel and k × k is the size of the

convolution kernel. To obtain a large receptive field, k is set to 5.
Next, the feature maps Fconv1(x) ∈ Rh×w× 1

2 c and the original input X ∈ Rh×w×c

are channel fused to obtain the fused features U ∈ Rh×w× 3
2 c. U can be represented by

Formula (3):

U =
C

∑
i=1

C
2

∑
j=1

([Fconv1, X]) = (uH×W
1 , uH×W

2 , . . . , uH×W
3C
2

) (3)

In Formula (3), Fconv1 = [ f H×W
1 , f H×W

2 , . . . , f H×W
C/2 ] ∈ RH×W× C

2 , f H×W
i represents the fea-

ture with size H ×W in the i-th channel. X = [xH×W
1 , xH×W

2 , . . . , xH×W
C ] ∈ RH×W×C, xH×W

i

represents the feature with size H ×W in the i-th channel. In Formula (3),
C
∑

i=1

C/2
∑

j=1
([Fconv1, X])

indicates that feature Fconv1 and the feature X are concatenated channel by channel. uH×W
i

represents the feature with size H ×W in the i-th channel after fusion.
Then, after channel reassignment with fused features U ∈ Rh×w× 3

2 c, the feature maps
X1 ∈ Rh×w× 3

2 c are obtained. Following, X1 is convoluted with f1 to obtain Fconv2(x) ∈
Rh×w×c, as shown in Formula (4):

Fconv2(x) = X1 ∗ f1 (4)
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In Formula (4), f1 ∈ Rk×k×c is the convolution kernel and k × k is the size of the
convolution kernel. To reduce the computational load of the model, set k = 3.

By channel fusion of feature maps Fconv2(x) ∈ Rh×w×c and original input X ∈ Rh×w×c,
the new feature maps T ∈ RH×W×2C are obtained, which can be represented by Formula (5):

T =
c

∑
i=1

c

∑
j=1

([Fconv2, X]) = (tH×W
1 , tH×W

2 , . . . , tH×W
2C ) (5)

In Formula (5),
C
∑

i=1

C
∑

j=1
([Fconv2, X]) indicates that the feature Fconv2 and the feature X

are concatenated channel by channel. tH×W
i represents the feature with size H ×W in the

i-th channel after fusion. Finally, after channel reassignment with feature maps T, the final
output Y ∈ RH×W×2C is obtained.
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mapping with the same number of channels. (a) Traditional convolution. (b) Self-compensated
convolution.

To accelerate the network, the batch normalization (BN) was adopted after each
convolution. Assuming the image set input to a channel was γ = [x1 . . . xn] ∈ RN×H×W , the
mean µγ and variance σ2

γ of batch data were calculated according to Formulas (6) and (7),
respectively, and then the data range of [0, 1] was obtained by normalization processing,
as shown in Formula (8). Here, ε is a positive number with a smaller value to avoid a
denominator of zero, and finally the normalized data x̂i is scale transformed and shift
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by Equation (9). Because the data x̂i after normalization would be restricted to a normal
distribution, resulting in the reduced expression ability of the network, two parameters, λ
and β, were introduced to scale transform and shift the normalized data x̂i. Multiplying
x̂i by λ adjusts the magnitude of the value and then adding β increases the shift to obtain
yi. Here λ is the scale factor and β is the shift factor. Formulas (6)–(9) are represented
as follows:

µγ =
1
n

n

∑
i=1

xi (6)

σ2
γ =

1
n

n

∑
i=1

(xi − µγ)
2 (7)

∧
xi =

xi − µγ√
σ2

γ + ε
(8)

yi = λxi + β = BNλ,β(xi) (9)

After the fusion of shallow features and deep features, in order to ensure that the
information of different channels can be fully fused and exchanged, the features of the
compensated channel were reassigned. The reassigned process of features of each channel
is shown in Figure 3. As shown in Figure 3, channel reassignment is a process of fully
interacting with different channels, assuming a convolution layer is divided into g groups
with n channels for each group, i.e., there are g × n channels in total. The channel di-
mension was first reshaped to (g× n), then transposed to (n× g), and finally flattened to
obtain the output result after reassignment. In addition, in order to verify the impact of
channel reassignment after the fusion of shallow features and deep features on network
performance, a detailed experimental comparison is carried out in the discussion section.
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3.2. Self-Compensating Bottleneck Module

With the deepening of the network, the extracted features contain more semantic infor-
mation, which is more conducive to improve the performance of classification. However,
the deepening of the network not only brings more parameters, but also makes the network
training more difficult. In order to solve this problem, we proposed a self-compensating
bottleneck module (SCBM) based on self-compensating convolution, as shown in Figure 4.
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SCBM not only reduces the amount of parameters, but also increases the depth of the
network and further reduces the difficulty of training. X ∈ RH×W×C represents the input
feature and Y ∈ RH×W×C∗ represents the output feature. First, the dimension of the input
feature X is reduced by 1 × 1 convolution to obtain 1,P(X); 1,P represents the first 1 × 1 con-
volution in the bottleneck structure. Because the use of activation function leads to the loss
of feature information when the dimension is low, the activation function is not used after
1 × 1 convolution for dimension reduction. The reduced-dimension feature passes through
two consecutive 3 × 3 self-compensating convolution to obtain Ŷ, Ŷ =
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 

self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
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of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
these shallow features are sent to six self-compensation bottleneck modules in succession. 
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 

self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
mainly stacked orderly by self-compensation bottleneck modules with different numbers 
of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
these shallow features are sent to six self-compensation bottleneck modules in succession. 
In order to prevent over-fitting, a maximum pooling layer was added after the self-com-
pensation bottleneck module to down-sample the features, preserving the main features 
of the feature map while reducing the amount of parameters and computation of the net-

work, thus effectively avoiding over-fitting. Assuming that nxyx  represents the sample 

with coordinate ( , )x y  in rectangular area i jR , nxyf  represents the maximum pooled 

i,S represents the ith 3 × 3 self-compensation convolution. The two continuous 3 × 3
self-compensation convolutions can not only extract rich spatial information, but also
increase the width of the bottleneck structure. The wider short connection is conducive to
more information transmit from input X to output Y. Then, 1× 1 convolution is adopted to
increase the dimension of the features to obtain Ỹ, Ỹ =

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 30 
 

 

channel dimension. Using the channel dimension shortcut cannot be affected by the fea-
ture input and output size, which is more conducive to deploying the bottleneck module 
in the whole model. The whole structure can be expressed by Formulas (10) and (11): 

2, 2, 1, 1, ( )P S S PY X= ϒ ϒ ϒ ϒ  (10)

Y Y X=   (11)

Table 1 details the feature size changes of the self-compensating bottleneck module 
from input X  to output Y . / 4C  in Table 1 represents the dimension of the reduced 
channel, H , W , C , and C∗  represents the height, width, number of input and output 
channels of the feature, respectively. 

Channel-wise concatetion

3 ×
 3 

SS
C

1 ×
 1

Ba
tch

 
No

rm
ali

za
tio

n

1 ×
 1

Ba
tch

 
No

rm
ali

za
tio

n
Re

lu

3 ×
 3 

SS
C

X
Y Y

 
Figure 4. The proposed self-compensating bottleneck module (SCBM). 

Table 1. Operational description of the proposed residual module. 

Input Dimension Operator Output Dimension 
H W C× ×  1 1×  Conv ( / 4)H W C× ×  

( / 4)H W C× ×  3 3×  SSC ( / 4)H W C× ×  
( / 4)H W C× ×  3 3×  SSC ( / 4)H W C× ×  
( / 4)H W C× ×  1 1×  Conv H W C ∗× ×  
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 

self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
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of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 

self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
mainly stacked orderly by self-compensation bottleneck modules with different numbers 
of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
these shallow features are sent to six self-compensation bottleneck modules in succession. 
In order to prevent over-fitting, a maximum pooling layer was added after the self-com-
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of the feature map while reducing the amount of parameters and computation of the net-
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 

self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
mainly stacked orderly by self-compensation bottleneck modules with different numbers 
of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
these shallow features are sent to six self-compensation bottleneck modules in succession. 
In order to prevent over-fitting, a maximum pooling layer was added after the self-com-
pensation bottleneck module to down-sample the features, preserving the main features 
of the feature map while reducing the amount of parameters and computation of the net-
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3.3. Self-Compensating Convolution Neural Network 
Based on the proposed self-compensation bottleneck module, a lightweight, modular 

self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
mainly stacked orderly by self-compensation bottleneck modules with different numbers 
of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
these shallow features are sent to six self-compensation bottleneck modules in succession. 
In order to prevent over-fitting, a maximum pooling layer was added after the self-com-
pensation bottleneck module to down-sample the features, preserving the main features 
of the feature map while reducing the amount of parameters and computation of the net-

work, thus effectively avoiding over-fitting. Assuming that nxyx  represents the sample 

with coordinate ( , )x y  in rectangular area i jR , nxyf  represents the maximum pooled 

2,P represents
the second 1 × 1 convolution in the bottleneck structure. Finally, the input feature X and
the output feature Ỹ are short connected in the channel dimension to obtain Y, Y = Ỹ� X;
� represents a short connection in the channel dimension. Using the channel dimension
shortcut cannot be affected by the feature input and output size, which is more conducive to
deploying the bottleneck module in the whole model. The whole structure can be expressed
by Formulas (10) and (11):

Ỹ =
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self-compensated convolutional neural network (SCCNN) for remote sensing image clas-
sification is proposed. The network model structure is shown in Figure 5. The network is 
mainly stacked orderly by self-compensation bottleneck modules with different numbers 
of channels. The specific process is as follows. Firstly, the shallow features of the input 
feature maps are extracted by two consecutive traditional convolution operations. Then 
these shallow features are sent to six self-compensation bottleneck modules in succession. 
In order to prevent over-fitting, a maximum pooling layer was added after the self-com-
pensation bottleneck module to down-sample the features, preserving the main features 
of the feature map while reducing the amount of parameters and computation of the net-

work, thus effectively avoiding over-fitting. Assuming that nxyx  represents the sample 

with coordinate ( , )x y  in rectangular area i jR , nxyf  represents the maximum pooled 

2,P

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 30 
 

 

channel dimension. Using the channel dimension shortcut cannot be affected by the fea-
ture input and output size, which is more conducive to deploying the bottleneck module 
in the whole model. The whole structure can be expressed by Formulas (10) and (11): 

2, 2, 1, 1, ( )P S S PY X= ϒ ϒ ϒ ϒ  (10)

Y Y X=   (11)

Table 1 details the feature size changes of the self-compensating bottleneck module 
from input X  to output Y . / 4C  in Table 1 represents the dimension of the reduced 
channel, H , W , C , and C∗  represents the height, width, number of input and output 
channels of the feature, respectively. 

Channel-wise concatetion

3 ×
 3 

SS
C

1 ×
 1

Ba
tch

 
No

rm
ali

za
tio

n

1 ×
 1

Ba
tch

 
No

rm
ali

za
tio

n
Re

lu

3 ×
 3 

SS
C

X
Y Y

 
Figure 4. The proposed self-compensating bottleneck module (SCBM). 

Table 1. Operational description of the proposed residual module. 

Input Dimension Operator Output Dimension 
H W C× ×  1 1×  Conv ( / 4)H W C× ×  

( / 4)H W C× ×  3 3×  SSC ( / 4)H W C× ×  
( / 4)H W C× ×  3 3×  SSC ( / 4)H W C× ×  
( / 4)H W C× ×  1 1×  Conv H W C ∗× ×  

3.3. Self-Compensating Convolution Neural Network 
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Table 1 details the feature size changes of the self-compensating bottleneck module
from input X to output Y. C/4 in Table 1 represents the dimension of the reduced channel,
H, W, C, and C∗ represents the height, width, number of input and output channels of the
feature, respectively.

Table 1. Operational description of the proposed residual module.

Input Dimension Operator Output Dimension

H ×W × C 1× 1 Conv H ×W × (C/4)
H ×W × (C/4) 3× 3 SSC H ×W × (C/4)
H ×W × (C/4) 3× 3 SSC H ×W × (C/4)
H ×W × (C/4) 1× 1 Conv H ×W × C∗
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3.3. Self-Compensating Convolution Neural Network

Based on the proposed self-compensation bottleneck module, a lightweight, modular
self-compensated convolutional neural network (SCCNN) for remote sensing image classi-
fication is proposed. The network model structure is shown in Figure 5. The network is
mainly stacked orderly by self-compensation bottleneck modules with different numbers of
channels. The specific process is as follows. Firstly, the shallow features of the input feature
maps are extracted by two consecutive traditional convolution operations. Then these shal-
low features are sent to six self-compensation bottleneck modules in succession. In order
to prevent over-fitting, a maximum pooling layer was added after the self-compensation
bottleneck module to down-sample the features, preserving the main features of the feature
map while reducing the amount of parameters and computation of the network, thus
effectively avoiding over-fitting. Assuming that xnxy represents the sample with coordinate
(x, y) in rectangular area Rij, fnxy represents the maximum pooled value in rectangular
area Rij related to the i-th features. The expression of fnxy is shown in Formula (12):

fnxy = max
(x,y)∈Rij

xnxy (12)

Finally, the feature maps are used for classification after global average pooling.
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4. Experiment and Results

In this section, some indicators are adopted to evaluate the proposed network model.
The experiments are conducted on six more challenging datasets, and the proposed method
is compared with some state-of-the-art classification methods. In order to ensure the reliabil-
ity of the experimental results, all methods are carried out with the same super parameters
and on the same computer. The experimental results show that the proposed method can
classify remote sensing scene images more effectively and has obvious advantages in terms
of parameter quantity and running speed.

4.1. Datasets

Some experiments were performed on six commonly used datasets. The datasets were
UCM21 [30], RSSCN7 [31], AID [32], NWPU-RESISC45 [33], WHU-RS19 [34], and SIRI-
WHU [35], respectively. In Table 2, the number of images, the number of scene categories,
the total number of images, the spatial resolution of images, and the image size of six
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datasets are compared. Some sample images of datasets UCM21, RSSCN7, SIRI-WHU,
WHU-RS19, AID, and NWPU45 are shown in Figures A1–A6 in Appendix A, respectively.

Table 2. Comparison of six datasets.

Datasets
Number of
Images in

Each Category

Number of
Categories

Total Number
of Images

Spatial
Resolution (m) Image Size

UCM21 100 21 2100 0.3 256 × 256
RSSCN7 400 7 2800 - 400 × 400

AID 200~400 30 10,000 0.5~0.8 600 × 600
NWPU45 700 45 31,500 ~30–0.2 256 × 256

WHU-RS19 ~50 19 1005 0.5 600 × 600
SIRI-WHU 200 12 2400 2 200 × 200

4.2. Setting of the Experiments

A stratified sampling method was adopted to partition the dataset to avoid the risk
of sampling bias. In addition, random seeds were set during the stratified sampling to
ensure that the same images were chosen for each experiment. To increase the reliabil-
ity of the experimental results, we used the average value as the final evaluation result
after 10 experiments at each training proportion. For the UCM21 dataset, the training
proportion was set to 80%, for RSSCN7 dataset to 50%, for AID dataset to 20% and 50%,
and for NWPU45 dataset to 10% and 20%, respectively. For the WHU-RS19 dataset, the
training proportion was set to 40% and 60%, respectively. The SIRI-WHU dataset training
proportions were set to 50% and 80%, respectively. The initial learning rate was set to
0.01. In addition, an automatic attenuation mechanism of learning rate was adopted. The
momentum during training was 0.9, the batch size was set to 16. The experiments were
conducted on a computer with an AMD Ryzen 7-4800H CPU, and RTX2060 GPU, and
16 GB of RAM.

4.3. Visual Analysis of the Model

To evaluate the validity of the proposed method, some experiments were performed
on two datasets, RSSCN7 and UCM21, evaluated by the T-distributed stochastic neighbor
embedding visualization method (T-SNE). By mapping high-dimensional data to two-
dimensional space and visualizing the classification results with scattering distribution, the
classification performance of the proposed model was evaluated very well. The results of
T-SNE visualization analysis on different datasets are shown in Figure 6. As can be seen in
Figure 6, the proposed method can effectively overcome the problems of large intra-class
differences and inter-class similarities of remote sensing scene images, distinguish each
class well, and can provide excellent classification performance.

In addition, on UCM21 dataset with train: test = 8:2, some random classification
experiments were performed with the proposed method. The results of the experiment are
shown in Figure 7. From Figure 7, it can be seen that the predicted scenario and the real
scenario are basically the same, with all of them reaching more than 99% confidence, and
some of them reaching 100%.

4.4. Comparison with Advanced Methods

In the experiments, the proposed method was compared with some of the most
recently proposed remote sensing scene classification methods under the same experimental
conditions. The overall accuracy (OA), confusion matrix, and number of parameters were
used as the evaluation indicators for quantitative analysis. Firstly, some experiments
were performed on the UCM21 dataset with training: test = 8:2. The experimental results
are listed in Table 3. It can be seen that the OA accuracy of the proposed model was
99.76%, 5.47% higher than that of Siamese CNN method [36], and 5% higher than that
of Siamese ResNet50 with R.D method [37]. It is worth noting that our method had only
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0.49 M parameters. Here, M refers to MByte, which was used to measure the amount of
model parameters. In other words, the proposed method achieved the best classification
performance on UCM21 datasets with the least number of parameters.
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Table 3. Performance comparison of the proposed model with some advanced methods on the
UCM21 dataset.

The Network Model OA (%) Number of
Parameters

Siamese CNN [36] 94.29 -
Siamese ResNet50 with R.D method [37] 94.76 -

Bidirectional adaptive feature fusion method [38] 95.48 130 M
Multiscale CNN [39] 96.66 ± 0.90 60 M

VGG_VD16 with SAFF method [40] 97.02 ± 0.78 15 M
Variable-weighted multi-fusion method [41] 98.56 ± 0.23 15 M

ResNet + WSPM-CRC method [42] 97.95 23 M
Skip-connected CNN [43] 97.98 ± 0.56 6 M
VGG16 with MSCP [44] 98.36 ± 0.58 -

Gated bidirectiona + global feature method [45] 98.57 ± 0.48 138 M
Feature aggregation CNN [46] 98.81 ± 0.24 130 M

Aggregated deep fisher feature method [47] 98.81 ± 0.51 23 M
Discriminative CNN [48] 98.93 ± 0.10 130 M
VGG16-DF method [49] 98.97 130 M

Scale-Free CNN [50] 99.05 ± 0.27 130 M
Inceptionv3 + CapsNet method [51] 99.05 ± 0.24 22 M

Positional context aggregation method [52] 99.21 ± 0.18 28 M
LCNN-BFF method [53] 99.29 ± 0.24 6.2 M
DDRL-AM method [54] 99.05 ± 0.08 -

Coutourlet CNN [55] 99.25 ± 0.49 12.6 M
SE-MDPMNet [56] 99.09 ± 0.78 5.17 M

ResNet50 [57] 98.76 ± 0.15 25.61 M
Multiple resolution BlockFeature method [58] 94.19 ± 1.5 -

LPCNN [59] 99.56 ± 0.58 5.6 M
SICNN [60] 98.67 ± 0.82 23 M

Pre-trained-AlexNet-SPP-SS [61] 98.99 ± 0.48 38 M
SRSCNN [62] 97.62 ± 0.28 -

DCA by addition [63] 99.46 ± 0.37 45 M
Two-stream deep fusion Framework [64] 99.35 ± 0.3 6 M

Semi-supervised representation learning method [65] 94.05 ± 1.2 210 M
Proposed 99.76 ± 0.05 0.49 M
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Next, some experiments were performed on the RSSCN7 dataset with training: test = 5:5,
and the proposed method was compared with some advanced methods. The experimental
results are shown in Table 4. As can be seen from Table 4, the proposed method achieved
97.21% classification accuracy with 0.49 M parameters, which had the highest classification
accuracy and the fewest parameters among all the comparison methods. The classification
accuracy of the proposed method was 2% higher than the aggregated deep fisher feature
method [48] and 2.57% higher than the LCNN-BFF method [53].

Table 4. Performance comparison of the proposed model with some advanced methods on the
RSSCN7 dataset.

The Network Model OA (%) Number of Parameters

VGG16 + SVM method [32] 87.18 130 M
Variable-weighted multi-fusion method [41] 89.1 53 M

ResNet + SPM-CRC method [42] 93.86 23 M
Aggregated deep fisher feature Method [48] 95.21 ± 0.50 23 M

LCNN-BFF method [53] 94.64 ± 0.21 6.2 M
Coutourlet CNN [55] 95.54 ± 0.17 12.6 M

SE-MDPMNet [56] 92.64 ± 0.66 5.17 M
Proposed 97.21 ± 0.32 0.49 M

Table 5 lists the experimental results on AID datasets with training: test = 2:8 and train-
ing: test = 5:5, respectively. It can be seen that our method achieved the best classification
performance when the training ratio was 20%. The proposed model achieved a classifica-
tion accuracy of 93.15%, 0.76% higher than that of ResNet50 [57], and 0.95% higher than that
of gated bidirectiona + global feature method [45]. When the training proportion was 50%,
our method also achieved the best classification accuracy. The classification accuracy of
the proposed method was 1.83% higher than that of the gated bidirectiona + global feature
method [45]. This further proves that our method has stronger feature representation ability
and can learn more discriminatory features under the same conditions.

Table 5. Performance comparison of the proposed model with some advanced methods on the
AID30 dataset.

The Network Model OA (20/80%) OA (50/50%) Number of
Parameters

Bidirectional adaptive feature fusion
method [38] - 93.56 130 M

VGG_VD16 with SAFF method [40] 90.25 ± 0.29 93.83 ± 0.28 15 M
Skip-connected CNN [43] 91.10 ± 0.15 93.30 ± 0.13 6 M

Gated bidirectiona method [45] 90.16 ± 0.24 93.72 ± 0.34 18 M
Gated bidirectiona + global feature

method [45] 92.20 ± 0.23 95.48 ± 0.12 138 M

Feature aggregation CNN [46] - 95.45 ± 0.11 130 M
Discriminative CNN [48] 85.62 ± 0.10 94.47 ± 0.12 60 M
LCNN-BFF method [53] 91.66 ± 0.48 94.64 ± 0.16 6.2 M

ResNet50 [57] 92.39 ± 0.15 94.69 ± 0.19 25.61 M
Fine-tuning method [32] 86.59 ± 0.29 89.64 ± 0.36 130 M

Proposed 93.15 ± 0.25 97.31 ± 0.10 0.49 M

Table 6 lists the experimental results on SIRI-WHU dataset with training: test = 5:5 and
training: test = 8:2. It can be seen that the proposed method was superior to all comparison
methods. When the training proportions were 50% and 80%, the average classification
accuracies of the proposed method were 98.08% and 99.37%, which were 1.12% and 0.6%
higher than that of SE-MDPMNET method, and 2.31% and 3.16% higher than that of the
fine-tune MobileNetV2 method with similar parameters. This proves that the proposed
method is effective for the classification of remote sensing scene images.
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Table 6. Performance comparison of the proposed model with some advanced methods on the
SIRI-WHU dataset.

The Network Model OA (50/50%) OA (80/20%) Number of
Parameters

DMTM [35] 91.52 - -
Siamese ResNet_50 [36] 95.75 97.50 -

Siamese AlexNet [36] 83.25 88.96 -
Siamese VGG-16 [36] 94.50 97.30 -

Fine-tune MobileNetV2 [56] 95.77 ± 0.16 96.21 ± 0.31 3.5 M
SE-MDPMNet [56] 96.96 ± 0.19 98.77 ± 0.19 5.17 M

LPCNN [59] - 89.88 -
SICNN [60] - 93.00 -

Pre-trained-AlexNet-SPP-SS [61] - 95.07 ± 1.09 -
SRSCNN [62] 93.44 94.76 -

Proposed 98.08 ± 0.45 99.37 ± 0.26 0.49 M

Some experiments were carried out on WHU-RS19 dataset with training: test = 4:6,
and training: test = 6:4. The results are shown in Table 7. For different numbers of training
samples, the proposed method performed better than all the methods used for comparison.
When the training proportion was 40%, the classification accuracy of the proposed method
was 98.65%, 0.17% higher than that of TEX-Net-LF [45], and 0.19% higher than that of
SE-MDPMNET [56]. When the training proportion was 60%, the classification accuracy of
the proposed method was 99.51%, 0.59% higher than that of the two-stream deep fusion
framework [64], and 0.54% higher than that of SE-MDPMNET [56]. When the training
proportions were 40% and 60%, compared with fine-tune MobileNetV2 [56] method with
the least parameters, the proposed method had 1.83% and 1.73% higher classification
accuracies, respectively.

Table 7. Performance comparison of the proposed model with some advanced methods on the
WHU-RS19 dataset.

The Network Model OA (40/60%) OA (60/40%) Number of
Parameters

CaffeNet [32] 95.11 ± 1.20 96.24 ± 0.56 60.97 M
VGG-VD-16 [32] 95.44 ± 0.60 96.05 ± 0.91 138.36 M
GoogLeNet [32] 93.12 ± 0.82 94.71 ± 1.33 7 M

Fine-tune MobileNetV2 [56] 96.82 ± 0.35 98.14 ± 0.33 3.5 M
SE-MDPMNet [56] 98.46 ± 0.21 98.97 ± 0.24 5.17 M

DCA by addition [63] - 98.70 ± 0.22 -
Two-stream deep fusion Framework [64] 98.23 ± 0.56 98.92 ± 0.52 -

TEX-Net-LF [45] 98.48 ± 0.37 98.88 ± 0.49 -
Proposed 98.65 ± 0.45 99.51 ± 0.15 0.49 M

Finally, the performance of the method was further evaluated on the NWPU45 dataset.
The dataset was divided into training: test = 1:9 and training: test = 2:8. The experiments
were carried out and the results are shown in Table 8. When the proportion of training was
10% and 20%, the accuracy of our proposed method was 92.02% and 94.39%, respectively,
which was 2.8% and 2.5% higher than that of the discriminative with VGG16 [48] method
which achieved the highest accuracy. When training: test = 1:9, our method had a 7.69%
higher classification accuracy than the lightweight skip-connected CNN [43]. When train-
ing: test = 2:8, our method had a 7.09% higher classification accuracy than the lightweight
skip-connected CNN [43]. This shows that for images with high interclass similarity and
high intraclass difference, the proposed method can extract more discriminative features
with lower parameters.
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Table 8. Performance comparison of the proposed model with some advanced methods on the
NWPU45 dataset.

The Network Model OA (10/90%) OA (20/80%) Number of
Parameters

VGG_VD16 with SAFF method [40] 84.38 ± 0.19 87.86 ± 0.14 15 M
Skip-connected CNN [43] 84.33 ± 0.19 87.30 ± 0.23 6 M

Discriminative with AlexNet [48] 85.56 ± 0.20 87.24 ± 0.12 130 M
Discriminative with VGG16 [48] 89.22 ± 0.50 91.89 ± 0.22 130 M

VGG16 + CapsNet [51] 85.05 ± 0.13 89.18 ± 0.14 130 M
LCNN-BFF method [53] 86.53 ± 0.15 91.73 ± 0.17 6.2 M

Contourlet CNN [55] 85.93 ± 0.51 89.57 ± 0.45 12.6 M
ResNet50 [57] 86.23 ± 0.41 88.93 ± 0.12 25.61 M

InceptionV3 [57] 85.46 ± 0.33 87.75 ± 0.43 45.37 M
Fine-tuning method [32] 87.15 ± 0.45 90.36 ± 0.18 130 M

Proposed 92.02 ± 0.50 94.39 ± 0.16 0.49 M

4.5. Performance Evaluation of the Proposed SCCNN Method

In this section, the performance of the proposed method was evaluated by using
the confusion matrix evaluation index. Figure 8 is the confusion matrix for the proposed
method on the UCM21 dataset. From the confusion matrix, we can see that the proposed
method achieved 100% correct classification for almost all scenes. This further demonstrates
that the proposed method performs well on UCM21 datasets.
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A confusion matrix derived from the proposed method on the RSSCN7 dataset is
shown in Figure 9. As shown in Figure 9, the ‘Forest’ scene achieved an optimal classifi-
cation accuracy of 100%, which meant that there were large intraclass differences in this
scene. On the other hand, the ‘Grass’ scene had a poor classification accuracy of 92%. This
was due to the large class similarity between ‘Grass’ and ‘Field’, which resulted in some
grass being misclassified into the field category. Nevertheless, the proposed method still
provides a good classification of grasslands and fields.
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Figure 9. Confusion matrix of the proposed SCCNN method on RSSCN7.

Figure 10 is a confusion matrix obtained by the proposed method on the AID datasets.
From Figure 10, it can be seen that, except for the ‘School’ scene, the classification accuracy of
all the scenarios reached more than 90%, of which the classification accuracy of ‘Meadow’,
‘Sparse Residential’, and ‘Viaduct’ was 100%. For the ‘School’ scene, the classification
accuracy was at least 86%. The three scenarios of ‘School’, ‘Commercial’, and ‘Industrial’
are the most confusing because they have similar structures, such as buildings, plants, and
ponds. Nevertheless, compared with other advanced classification methods, the proposed
method still provides higher classification accuracy.
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Figure 11 is a confusion matrix obtained by the proposed method on a SIRI-WHU
dataset with a training proportion of 80%. It can be seen that ten scenes were correctly
classified, and the incorrectly classified scenes included ‘Commercial’ and ‘Residential’,
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with classification accuracy of 98% for both scenarios. Some ‘Residential’ scenes were
incorrectly classified as ‘Industrial’ because they include some buildings and grasslands,
resulting in very high class similarities. Nevertheless, the proposed method still shows
good classification performance.
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Figure 12 shows the confusion matrix of the proposed method with training: test = 6:4
on the WHU-RS19 dataset. Except for the ‘Port’ and ‘Pond’, the other scenarios were fully
recognized. The most confusing scenarios were those of ‘Port’ and ‘Pond’. Because both
scenarios contain the water, ‘Pond’ can easily be misclassified as ‘Port’. Nevertheless, the
proposed method still achieves good classification results for these scenarios.
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Figure 12. Confusion matrix of SCCNN method on WHU-RS19 (60/40).

The confusion matrix when the training ratio was 20% is shown in Figure 13. As can
be seen from Figure 13, on the NWPU45 dataset with training: test = 2:8, the classification
accuracy of all scenarios except the ‘Palace’ scenario reached more than 90%. In addition,
the classification accuracy of ‘Palace’ and ‘Church’ scenes with high degree of confusion
also reached 89% and 90%, respectively. This further verifies that our method also performs
well on more challenging datasets.
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4.6. Comparison of Model Running Time

To further evaluate the advantage of our method in terms of speed, the proposed
method was tested on UCM21 datasets using the ATT (average training time) evaluation
index and then comparing it with the advanced methods. ATT refers to the average training
time required by a model to process an image. Because the value of ATT is closely related
to the configuration of the computer, all methods used for comparison were run on the
same computer as the proposed method. The experimental comparison results are shown
in Table 9.

Table 9. ATT comparison of the proposed model with some advanced methods on UC datasets.

The Network Model Time Required to Process Each Image (s)

Siamese ResNet_50 [36] 0.053
Siamese AlexNet [36] 0.028
Siamese VGG-16 [36] 0.039

LCNN-BFF [53] 0.029
GBNet + global feature [45] 0.052

GBNet [45] 0.048
Proposed 0.014

As can be seen from Table 9, in the same case, it took the least time for the proposed
method to process one image. It was 0.014 s faster than that of the Siamese AlexNet [36]
method and 0.015 s faster than that of the LCNN-BFF [53] method. Compared with Siamese
ResNet_50 [36], Siamese VGG-16 [36], GBNet + global feature [45], and GBNet [45], the
running time was reduced by 0.039, 0.025, 0.038, and 0.034 s, respectively. It is worth
noting that the ATT value is smaller if the experiments are performed with a higher-
configuration device.

4.7. Comparison of Computational Complexity of Models

In this section, we used the floating-point operations (FLOPs) value to compare
model performance on RSSCN datasets. Floating-point operations (FLOPs) represent the
complexity of the model, and a smaller value indicates that the proposed model is lighter.
The comparison results are shown in Table 10.
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Table 10. Evaluation of some models’ complexity.

The Network Model OA (%) Number of
Parameters FLOPs

LCNN-BFF [53] 94.64 6.1 M 24.6 M
GoogLeNet [32] 85.84 7 M 1.5 G

CaffeNet [32] 88.25 60.97 M 715 M
VGG-VD-16 [32] 87.18 138 M 15.5 G

Fine-tune MobileNetV2 [56] 94.71 3.5 M 334 M
SE-MDPMNet [56] 92.64 5.17 M 3.27 G

Contourlet CNN [55] 95.54 12.6 M 2.1 G
Proposed 97.21 0.49 M 1.9 M

From Table 10, we can see that our proposed method achieved the highest classi-
fication accuracy compared with all the comparison methods with 0.49 M parameters.
In addition, the FLOPs value of the proposed method was the smallest and the compu-
tational complexity was the lowest. Compared with the lightweight network fine-tune
MobileNetV2 [56], the accuracy was improved by 2.5%, the FLOPs value was decreased by
332 M, the accuracy was improved by 2.57%, and the FLOPs value was decreased by 23 M
compared with the lightweight network LCNN-BFF [53]. This proves that the proposed
method is a lightweight convolution network with good performance.

5. Discussion

In this section, the following two parts are discussed. Firstly, we compared the perfor-
mance of the proposed self-compensated convolution (SCC) with that of the traditional
convolution. Secondly, the impact of channel reassignment after the fusion of shallow
and deep features on the performance of the model is discussed. Some experiments were
performed on NWPU and AID datasets under the same experimental conditions, where,
training: test = 2:8 for the NWPU dataset and training: test = 5:5 for the AID dataset. The
number of parameters, overall accuracy (OA), floating-point operations (FLOPs), Kappa
coefficient, and average training time (ATT) were used for various comparisons.

We replaced the two consecutive self-compensating convolutions of the self-compensating
bottleneck module (SCBM) in Figure 4 with the traditional convolution bottleneck module
(CBM), which is shown in Figure 14. The comparison of experimental results is listed in
Table 11. As can be seen from Table 11, the proposed self-compensation convolution had
great advantages in classification performance compared with the traditional convolution.
In terms of evaluation index, with ‘FLOPs’ measuring the computational complexity of the
model and the evaluation index ‘number of parameters’ measuring the size of the model,
both the proposed SCBM method and CBM can realize lightweight networks. However,
the FLOPs and the number of parameters of the proposed SCBM method were 2.4 and
0.36 M lower than that of CBM, respectively. The SCBM method had advantages in model
complexity. This is because the self-compensation convolution in the self-compensation
bottleneck module can reduce the complexity of the model without increasing the number of
parameters. Self-compensation convolution integrates shallow features into deep complex
features by reducing the number of filters and using input features to compensate the
features after reduced dimension convolution, which helps to improve the speed and
classification accuracy of the model. For the AID dataset with training: test = 5:5, the OA
value of the proposed SCBM method reached 97.31%, which is 1.75% higher than that
of CBM. The Kappa coefficient of SCBM was 97.05%, which is 2.41% higher than that of
CBM. In addition, in terms of model speed, the ATT of the proposed SCBM method was
0.09 s shorter than that of the CBM method. When the experiment was carried out on the
NWPU45 dataset with training: test = 2:8, the classification accuracy of the proposed SCBM
method was 94.39%, and the Kappa value was 93.68%, which is 1.94% and 2.19% higher
than that of CBM method, respectively. These experimental results prove that the proposed
SCBM method is a lightweight method and can provide high classification accuracy.
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In order to intuitively show the feature extraction ability of SCBM and CBM, the grad
cam visualization method was adopted to evaluate the two methods. In this experiment,
some remote sensing scene images—‘Airplane’, ‘Dense residential’, ‘Buildings’, ‘Chaparral’,
‘Forests’, ‘Beach’, ‘Baseball diamond’, and ‘Agricultural’—in the UC dataset were randomly
selected. The visualization results of the two methods are shown in Figure 15.

From the visualization results in Figure 15, it can be seen that the proposed SCBM
method can extract feature information more effectively. For two scenarios, ‘Airplane’ and
‘Baseball diamond’, the proposed SCBM method extracted the key features of the scenario,
while the feature information extracted by the CBM method was offset. For other scenarios
such as ‘Dense residential’ and ‘Buildings’, the proposed method also extracted a larger
area of interest for the target, which is conducive to the improvement of classification
accuracy. This is because the wider residual connection between input and output in the
self-compensation bottleneck module helps to transmit more shallow location information
to the deep layer of the network, so that the output features not only contain rich semantic
features, but also increase more location information, which can have a greater coverage of
the target region.

Next, the impact of channel reassignment on the performance of the network model is
verified by some experiments. The network without the channel reassignment operation
in self-compensation convolution is called convolution network (CN). The results under
the same experimental conditions are shown in Table 12. It can be seen from Table 12
that the classification accuracy can be improved by about 1% by using the channel re-
distribution operation after channel fusion, because the channel redistribution operation
can exchange information of the features among different groups and improve the rep-
resentation ability of the features. In addition, it can be seen from Table 12 that the use
of channel redistribution operation has no impact on the running time of the network
model. It is worth noting that, compared with the traditional CBM method in Table 11, the
classification accuracy of self-compensated convolution without channel reassignment was
even higher than that of traditional convolution, which further verifies the superiority of
self-compensation convolution.
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The Network
Model
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ParametersAID NWPU AID NWPU AID NWPU AID NWPU

SCBM 97.31 94.39 97.05 93.68 0.045 s 0.093 s 1.9 M 2.0 M 0.49 M
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Table 12. Influence of channel reassignment on network model performance after channel fusion.

The Network
Model

OA (%) Kappa (%) ATT FLOPs Number of
ParametersAID NWPU AID NWPU AID NWPU AID NWPU

SCCNN 97.31 94.39 97.05 93.68 0.045 s 0.093 s 1.99 M 2.03 M 0.49 M

CN 96.41 93.29 96.35 93.08 0.045 s 0.093 s 1.99 M 2.03 M 0.49 M
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6. Conclusions

In this paper, in order to solve the problem that the network running speed slows
down when the number of traditional convolution filters is large, a self-compensation
convolution (SCC) was proposed. The self-compensation convolution can achieve better
performance than the traditional convolution while reducing the number of parameters.
Then, in order to solve the problem of training difficulty caused by network deepening, a
self-compensation bottleneck module (SCBM) was proposed based on self-compensation
convolution. The self-compensation bottleneck module can deepen the network and reduce
the difficulty of network training. Finally, a lightweight and modular self-compensation
convolution neural network (SCCNN) was built through the self-compensation bottleneck
module. A large number of experiments were carried out on six datasets with different
training ratios, and the experimental results show the effectiveness of the proposed method.
The next step of work is to find a more effective method for feature extraction and further
improve the classification accuracy of remote sensing scene images.
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