Ionospheric Correction of L-Band SAR Interferometry for Accurate Ice-Motion Measurements: A Case Study in the Grove Mountains Area, East Antarctica
Abstract
:1. Introduction
2. Methodology
2.1. Ionospheric Effects on SAR Interferometry
2.2. The Reformulated Split-Spectrum Method (RSSM)
2.3. Compare Accuracy between SSM and RSSM
3. Materials and Implementation
3.1. Datasets and Study Area
3.2. Data Processing Using SSM and RSSM
4. Results
4.1. Ionospheric-Phase Estimation
4.2. Ionospheric-Phase Correction
5. Discussion
5.1. Comparison with GPS
5.2. Comparison with MEaSUREs
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Zhou, C.; Ai, S.; Liang, Q.; Zheng, L.; Liu, R.; Lei, H. Dynamics of Dalk Glacier in East Antarctica Derived from Multisource Satellite Observations Since 2000. Remote Sens. 2020, 12, 1809. [Google Scholar] [CrossRef]
- Zhong, X.; Kang, S.; Guo, W.; Chen, J. The rapidly shrinking cryopshere in the past decade: An interpretation of cryospheric changes from IPCC WGI Sixth Assessment Report. J. Glaciol. Geocryol. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; Broeke, M.V.D.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Tomar, K.S.; Kumari, S.; Luis, A.J. Seasonal Ice Flow Velocity variations of Polar Record Glacier, East Antarctica during 2016-2019 using Sentinel-1 data. Geocarto Int. 2021, 1–14. [Google Scholar] [CrossRef]
- Liang, Q.; Zhou, C.; Howat, I.M.; Jeong, S.; Liu, R.; Chen, Y. Ice flow variations at Polar Record Glacier, East Antarctica. J. Glaciol. 2019, 65, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.; Smith, B.E.; Abdalati, W. Glaciological advances made with interferometric synthetic aperture radar. J. Glaciol. 2010, 56, 1026–1042. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Wang, H.; Shum, C.K.; Jiang, L.; Hsu, H.T.; Dong, J. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Dirscherl, M.; Dietz, A.J.; Dech, S.; Kuenzer, C. Remote sensing of ice motion in Antarctica—A review. Remote Sens. Environ. 2019, 237, 111595. [Google Scholar] [CrossRef]
- Andersen, J.K.; Kusk, A.; Boncori, J.P.M.; Hvidberg, C.S.; Grinsted, A. Improved Ice Velocity Measurements with Sentinel-1 TOPS Interferometry. Remote Sens. 2020, 12, 2014. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice Flow of the Antarctic Ice Sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Gardner, A.; Agram, P. Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement. Remote Sens. 2021, 13, 749. [Google Scholar] [CrossRef]
- Lee, C.-K.; Seo, K.-W.; Han, S.-C.; Yu, J.; Scambos, T.A. Ice velocity mapping of Ross Ice Shelf, Antarctica by matching surface undulations measured by ICESat laser altimetry. Remote Sens. Environ. 2012, 124, 251–258. [Google Scholar] [CrossRef]
- Liao, H.; Meyer, F.J.; Scheuchl, B.; Mouginot, J.; Joughin, I.; Rignot, E. Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sens. Environ. 2018, 209, 166–180. [Google Scholar] [CrossRef]
- Mouginot, J.; Scheuchl, B.; Rignot, E. Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data. Remote Sens. 2012, 4, 2753–2767. [Google Scholar] [CrossRef] [Green Version]
- Chae, S.-H.; Lee, W.-J.; Jung, H.-S.; Zhang, L. Ionospheric Correction of L-Band SAR Offset Measurements for the Precise Observation of Glacier Velocity Variations on Novaya Zemlya. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3591–3603. [Google Scholar] [CrossRef]
- Zhou, C.; Deng, F.; Chen, Y.; Wang, Z. Ice-flow Features in the Grove Mountations Area Using SAR Data. Geomat. Inf. Sci. Whuhan Univ. 2015, 40, 1428–1433. [Google Scholar]
- Kimura, H.; Andoh, T. Ionospheric effects correction of ALOS PALSAR interferometry in Antarctica. Asia-Pac. Conf. Synth. Aperture Radar 2013, 1, 188–191. [Google Scholar]
- Zhu, W.; Ding, X.L.; Jung, H.S.; Zhang, Q.; Zhang, B.C.; Qu, W. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong. Adv. Space Res. 2016, 58, 564–576. [Google Scholar] [CrossRef]
- Gomba, G.; Parizzi, A.; De Zan, F.; Eineder, M.; Bamler, R. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1446–1461. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, Z.; An, J.; Zhang, B.; Geng, H.; Ma, Y.; Li, M.; Qian, Y. Ionospheric Phase Compensation for InSAR Measurements Based on the Faraday Rotation Inversion Method. Sensors 2020, 20, 6877. [Google Scholar] [CrossRef]
- Gomba, G.; Gonzalez, F.R.; De Zan, F. Ionospheric Phase Screen Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR Modes. IEEE Trans. Geosci. Remote Sens. 2016, 55, 223–235. [Google Scholar] [CrossRef]
- Liang, C.; Agram, P.; Simons, M.; Fielding, E.J. Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6755–6773. [Google Scholar] [CrossRef] [Green Version]
- Milczarek, W.; Kopeć, A.; Głąbicki, D. Estimation of Tropospheric and Ionospheric Delay in DInSAR Calculations: Case Study of Areas Showing (Natural and Induced) Seismic Activity. Remote Sens. 2019, 11, 621. [Google Scholar] [CrossRef] [Green Version]
- Brcic, R.; Parizzi, A.; Eineder, M.; Bamler, R.; Meyer, F. Estimation and compensation of ionospheric delay for SAR interferometry. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2908–2911. [Google Scholar]
- Mao, W.; Liu, G.; Wang, X.; Zhang, R.; Xiang, W.; Wu, S.; Zhang, B.; Bao, J.; Cai, J.; Pirasteh, S. An InSAR Ionospheric Correction Method Based on Variance Component Estimation With Integration of MAI and RSS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1423–1433. [Google Scholar] [CrossRef]
- Hasni, K.; Chen, J.; Zhuo, L. A Refined Split-Spectrum Algorithm for Correcting Ionospheric Effects on Interferograms of Spaceborne D-InSAR at Longer Wavelength. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Fattahi, H.; Simons, M.; Agram, P. InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5984–5996. [Google Scholar] [CrossRef]
- Liao, H.; Meyer, F.J. A combined estimator for Interferometric SAR ionosphere correction. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 1–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6499–6501. [Google Scholar]
- Wegmüller, U.; Werner, C.; Frey, O.; Magnard, C.; Strozzi, T. Reformulating the Split-Spectrum Method to Facilitate the Estimation and Compensation of the Ionospheric Phase in SAR Interferograms. Procedia Comput. Sci. 2018, 138, 318–325. [Google Scholar] [CrossRef]
- Dou, F.; Lv, X.; Chen, Q.; Sun, G.; Yun, Y.; Zhou, X. The Impact of SAR Parameter Errors on the Ionospheric Correction Based on the Range-Doppler Model and the Split-Spectrum Method. Remote Sens. 2020, 12, 1607. [Google Scholar] [CrossRef]
- Raucoules, D.; De Michele, M. Assessing Ionospheric Influence on L-Band SAR Data: Implications on Coseismic Displacement Measurements of the 2008 Sichuan Earthquake. IEEE Geosci. Remote Sens. Lett. 2009, 7, 286–290. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Papathanassiou, K.P.; Scheiber, R.; Quegan, S. Correcting Distortion of Polarimetric SAR Data Induced by Ionospheric Scintillation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6319–6335. [Google Scholar]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Jung, H.-S.; Lu, Z. Joint Correction of Ionosphere Noise and Orbital Error in L-Band SAR Interferometry of Interseismic Deformation in Southern California. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3421–3427. [Google Scholar] [CrossRef]
- Zhang, B.; Ding, X.; Zhu, W. An Asymmetric Split-Spectrum Method for Estimating the Ionospheric Artifacts in Insar Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Setiawan, N.; Furuya, M. Tropospheric dispersive phase anomalies during heavy rain detected by L-band InSAR and their interpretation. Earth Planets Space 2021, 73, 1–14. [Google Scholar] [CrossRef]
- Kim, J.S.; Danklmayer, A.; Papathanassiou, K. Correction of ionospheric distortions in low frequency interferometric SAR data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar] [CrossRef] [Green Version]
- Gomba, G.; De Zan, F. Bayesian Data Combination for the Estimation of Ionospheric Effects in SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6582–6593. [Google Scholar] [CrossRef]
- Ning, J.; Wang, R.; Wang, J.; Zhang, B.; Zhao, S. Ionospheric correction of ALOS-2 full-aperture ScanSAR interferometric data for surface deformation measurement in Beijing. J. Eng. 2019, 2019, 5685–5688. [Google Scholar] [CrossRef]
- Wang, N.; Fu, H.; Li, S.; Xu, F. Retrieving ionospheric TEC based on the split-spectrum method. J. Terahertz Sci. Electron. Inf. Technol. 2017, 15, 198–205. [Google Scholar] [CrossRef]
- Bamler, R.; Eineder, M. Accuracy of Differential Shift Estimation by Correlation and Split-Bandwidth Interferometry for Wideband and Delta-k SAR Systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 151–155. [Google Scholar] [CrossRef]
- Meyer, F.J. Performance Requirements for Ionospheric Correction of Low-Frequency SAR Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3694–3702. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y. Detecting Ice Motion with Repeat-pass ENVISAT ASAR Interferometry over Nunataks Region in Grove Mountain, East Antarctic-The Preliminary Result. J. Remote Sens. 2006, 10, 5186–5189. [Google Scholar]
- Zeng, Z.; Wang, Z.; Ding, M.; Zheng, X.; Sun, X.; Zhu, W.; Zhu, K.; An, J.; Zang, L.; Guo, J.; et al. Estimation and Long-term Trend Analysis of Surface Solar Radiation in Antarctica: A Case Study of Zhongshan Station. Adv. Atmos. Sci. 2021, 38, 1497–1509. [Google Scholar] [CrossRef]
- Chunxia, Z.; Dongchen, E.; Mingsheng, L. Feasibility of InSAR Application to Antatctic Mapping. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 619–623. [Google Scholar]
- Joughin, I. Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach. Ann. Glaciol. 2002, 34, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Hu, J.; Liu, J.; Sun, Q.; Li, Z.; Zhu, J.; Wu, L. Mapping Complete Three-Dimensional Ice Velocities by Integrating Multi-Baseline and Multi-Aperture InSAR Measurements: A Case Study of the Grove Mountains Area, East Antarctic. Remote Sens. 2021, 13, 643. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote Sens. 2017, 9, 364. [Google Scholar] [CrossRef] [Green Version]
Experiment Area | Track No. | Frame | Reference | Secondary | SLC Numbers | Temporal Baseline |
---|---|---|---|---|---|---|
Grove Mountains | 583 | 5590–5650 | 16 September 2007 | 1 November 2007 | 7 | 46 days |
Grove Mountains | 583 | 5590–5650 | 1 November 2007 | 17 December 2007 | 7 | 46 days |
Grove Mountains | 583 | 5590–5650 | 3 November 2008 | 19 December 2008 | 7 | 46 days |
Grove Mountains | 583 | 5590–5650 | 24 September 2010 | 9 November 2010 | 7 | 46 days |
Grove Mountains | 583 | 5590–5650 | 9 November 2010 | 25 December 2010 | 7 | 46 days |
Methods | The Mean of the Ionospheric Phase Screen (Rad) | The Standard Deviation of the Ionospheric-Phase Screen (Rad) |
---|---|---|
SSM | −23.5 | 30.8 |
RSSM | −21.1 | 28.2 |
Ice Velocity (m/yr) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Points | Latitude | Longitude | GPS | InSAR without Ionospheric Correction | Difference between GPS and InSAR | Ionospheric Correction InSAR Using SSM | Difference between GPS and SSM | Ionospheric Correction InSAR Using RSSM | Difference between GPS and RSSM |
PLE1 | 72°51′02″ | 75°11′29″ | 3.54 | 6.51 | −2.97 | 2.78 | 0.76 | 1.88 | 1.66 |
PLE2 | 72°52′41″ | 75°12′45″ | 1.11 | 5.01 | −3.90 | 2.48 | −1.37 | 1.57 | −0.46 |
PLE3 | 72°51′10″ | 75°12′08″ | 0.62 | 4.85 | −4.23 | 1.52 | −0.90 | 1.09 | −0.47 |
PLE4 | 72°50′10″ | 75°13′14″ | 5.98 | 8.99 | −3.01 | 6.85 | −0.87 | 5.45 | 0.53 |
PLE5 | 72°50′43″ | 75°14′31″ | 7.32 | 12.67 | −5.35 | 9.72 | −2.40 | 7.83 | −0.51 |
PLE6 | 72°50′28″ | 75°11′05″ | 5.4 | 9.70 | −4.30 | 7.69 | −2.29 | 6.84 | −1.44 |
PLE7 | 72°51′16″ | 75°15′02″ | 12.34 | 14.32 | −1.98 | 10.08 | 2.26 | 10.04 | 2.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, Z.; Li, F.; Liu, S.; An, J.; Li, B.; Ma, W. Ionospheric Correction of L-Band SAR Interferometry for Accurate Ice-Motion Measurements: A Case Study in the Grove Mountains Area, East Antarctica. Remote Sens. 2022, 14, 556. https://doi.org/10.3390/rs14030556
Ma Y, Wang Z, Li F, Liu S, An J, Li B, Ma W. Ionospheric Correction of L-Band SAR Interferometry for Accurate Ice-Motion Measurements: A Case Study in the Grove Mountains Area, East Antarctica. Remote Sensing. 2022; 14(3):556. https://doi.org/10.3390/rs14030556
Chicago/Turabian StyleMa, Yuanyuan, Zemin Wang, Fei Li, Shunlun Liu, Jiachun An, Bing Li, and Weifeng Ma. 2022. "Ionospheric Correction of L-Band SAR Interferometry for Accurate Ice-Motion Measurements: A Case Study in the Grove Mountains Area, East Antarctica" Remote Sensing 14, no. 3: 556. https://doi.org/10.3390/rs14030556
APA StyleMa, Y., Wang, Z., Li, F., Liu, S., An, J., Li, B., & Ma, W. (2022). Ionospheric Correction of L-Band SAR Interferometry for Accurate Ice-Motion Measurements: A Case Study in the Grove Mountains Area, East Antarctica. Remote Sensing, 14(3), 556. https://doi.org/10.3390/rs14030556