
����������
�������

Citation: De Geyter, S.; Vermandere,

J.; De Winter, H.; Bassier, M.;

Vergauwen, M. Point Cloud

Validation: On the Impact of Laser

Scanning Technologies on the

Semantic Segmentation for BIM

Modeling and Evaluation. Remote

Sens. 2022, 14, 582. https://doi.org/

10.3390/rs14030582

Academic Editors: Tania Landes,

Pierre Grussenmeyer, Grazia Tucci

and Stephan Nebiker

Received: 29 November 2021

Accepted: 19 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Point Cloud Validation: On the Impact of Laser Scanning
Technologies on the Semantic Segmentation for BIM Modeling
and Evaluation

Sam De Geyter 1,2,† , Jelle Vermandere 1,† , Heinder De Winter 1,† , Maarten Bassier 1,*,†

and Maarten Vergauwen 1,†

1 KU Leuven Geomatics Research Group, Department of Civil Engineering, Technology Cluster Construction,
Faculty of Engineering Technology, 9000 Ghent, Belgium; sam.degeyter@kuleuven.be (S.D.G.);
jelle.vermandere@kuleuven.be (J.V.); heinder.dewinter@kuleuven.be (H.D.W.);
maarten.vergauwen@kuleuven.be (M.V.)

2 MEET HET BV, 9030 Ghent, Belgium
* Correspondence: maarten.bassier@kuleuven.be
† All authors contributed equally to this work.

Abstract: Building Information models created from laser scanning inputs are becoming increasingly
commonplace, but the automation of the modeling and evaluation is still a subject of ongoing research.
Current advancements mainly target the data interpretation steps, i.e., the instance and semantic
segmentation by developing advanced deep learning models. However, these steps are highly
influenced by the characteristics of the laser scanning technologies themselves, which also impact the
reconstruction/evaluation potential. In this work, the impact of different data acquisition techniques
and technologies on these procedures is studied. More specifically, we quantify the capacity of
static, trolley, backpack, and head-worn mapping solutions and their semantic segmentation results
such as for BIM modeling and analyses procedures. For the analysis, international standards and
specifications are used wherever possible. From the experiments, the suitability of each platform is
established, along with the pros and cons of each system. Overall, this work provides a much needed
update on point cloud validation that is needed to further fuel BIM automation.

Keywords: data acquisition; semantic segmentation; Lidar; BIM; point clouds

1. Introduction

The demand of Building Information Modeling (BIM) databases of existing buildings
is rapidly increasing as the BIM adaption in the construction industry is expanding [1].
BIM models are requested for early design stages for refurbishment or demolition [2], as-is
models are requested for facility management and digital twinning [3], as-built models are
requested for project delivery and quality control, and so on [4]. This fast growing industry
relies on surveyors and modelers to produce accurate and reliable Building Information
Modeling objects as well as evaluate already modeled objects with the as-built situation.

For these procedures to be successful, it is important that all the components needed
to model/evaluate the structure can be extracted. To this end, Lidar-based point cloud data
is captured of the existing structure. This point cloud data is then interpreted by experts
or automated procedures that model and evaluate all the visible BIM objects that are part
of the scope. As such, proper point cloud data is the key to successful BIM processes and
any defects to this input will have severe consequences for the quality, completeness, and
reliability of the final model/evaluation [5].

Currently, BIM modeling/evaluation methods limit their scope to idealized data and
assume that the semantic and instance segmentation have operated perfectly. However, this
is very much not the case as sensor specifications, temporal variations, object reflectivity
characteristics and so on have a massive impact on the resulting point cloud, which in turn
affect the segmentation process. In this research, we will therefore study the discrepancies
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between point cloud inputs and evaluate their processing results at key stages (Figure 1).
Concretely, we will evaluate the impact of different types of point cloud data on the
semantic segmentation step. Additionally, we will analyze which modeling/evaluation
information can be reliably extracted from the various point clouds. In summary, the works
main contributions are:

1. A detailed literature study on point cloud processing from the static and mobile Lidar
data acquisition to the semantic segmentation;

2. A capacity study of four state-of-the-art static and Lidar mobile mapping solutions;
3. An empirical study of the impact on the semantic segmentation step based on interna-

tional specifications;
4. An in-depth overview of the BIM information that can be reliably extracted from each

system for modeling/evaluation.

Figure 1. Overview of the vital semantic segmentation step that interprets the raw point cloud data
and makes it fit for BIM reconstruction.

The remainder of this work is structured as follows. The background and related
work is presented in Section 2. In Section 3, the sensors used in this study are presented.
Following is the methodology for the capacity and semantic segmentation suitability study
in Section 4. In Section 5, the test sites are introduced, along with their corresponding
results in Section 6. The test results are discussed in Section 7. Finally, the conclusions are
presented in Section 8.

2. Background and Related Work

In this section, the related work for the key aspects of this research are discussed:
(1) the suitability of prominent indoor photogrammetric and Lidar data acquisition ap-
proaches for as-built modeling and analyses, (2) an overview of the data impact on semantic
segmentation processes, (3) the inputs for scan-to-BIM methods and (4) validation methods
and specifications.

2.1. Data Acquisition

Photogrammetry and Lidar-based geometry production are the most common in BIM
modeling/evaluation procedures. Terrestrial, oblique, and aerial photogrammetry are
among the most versatile measurement techniques. These systems are low-cost, can be
mounted on nearly any platform and produce high-quality and dense texture informa-
tion at an unparalleled rate. However, extensive processing of the imagery is required
to produce suitable point clouds or polygon meshes. While current software such as Ag-
isoft Metashape [6], Pix4Dmapper [7], and RealityCapture [8] are capable of matching
thousands of unordered images in a matter of minutes, the subsequent dense point/mesh
reconstruction can take several days for large-scale projects without guaranteed success.
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Furthermore, photogrammetric routines can underperform in indoor environments due to
extreme lighting variations and low-texture variance on smooth objects. Drift and scaling
also remain troublesome bottlenecks for photogrammetry-based routines and thus require
the use of labor-intensive control networks to achieve suitable accuracy [9].

Alternatively, static and mobile Lidar-based systems have a higher applicability as
they can operate in poorly lit environments due to their active remote sensing. These
systems also directly produce the highly accurate point cloud data without the need
for extensive post-processing. Static Terrestrial Laser Scanners (TLS) are currently the
most popular systems for any type of building documentation. These systems generate
millimeter range errors and accumulate little to no drift throughout consecutive scans due
to the high quality of the data [10]. High-end TLS are among the few systems that can
effectively operate without the need for control networks, which reduces the time on site by
an average of 39% [10]. However, significant post-processing time can halt these systems
as the registration of the consecutive scans still requires significant human interaction.

On the other hand, Indoor Mobile Mapping systems (iMMs) benefit from continu-
ous data acquisition which greatly improves the coverage while also lowering the data
acquisition time [11]. The post-processing is also significantly less labor-intensive, as the
registration is tied to the sensor localization which is mostly performed unsupervised. Most
iMMs leverage both Lidar and photogrammetric techniques to ensure robust localization
of the system [12]. However, iMMs can generate significant drift in low-texture or low
geometric variance areas and thus still rely on control networks to maintain accuracy [13].
Several researchers have compared both low-end and high-end iMMs including Matterport,
SLAMMER, NavVis, and Pegasus [14,15]. Depending on the Simultaneous Localization and
Mapping (SLAM) algorithms for the localization, high-end systems in 2021 can maintain
20 mm accurate tracking for small-scale projects [14,16]. Overall, TLS is still the most
popular technique due to its robustness and accuracy, but iMMs are rapidly closing the gap
with their faster data acquisition and increasingly more accurate localization [17].

2.2. Data Processing

Data processing steps aim to process initial geometric data so BIM objects can be mod-
eled/evaluated based on the points as unsupervised as possible. Prominent steps include
data structuration, primitive segmentation, and semantic and instance segmentation. The
key step is the semantic and instance segmentation that assigns class labels to a subset of
geometric inputs e.g., the assignment of a column class to a section of the point cloud. This
step is very impactful, but there is currently a gap in the literature regarding how different
geometry inputs affect the semantic and instance segmentation.

Deep learning currently is by far the most popular method to conduct semantic
segmentation and instance segmentation. A plethora of Convolutional Neural Network
(CNN) architectures have spawned that are fueled by increasingly larger datasets such as
ScanNet, Rio, S3DIS [18], SEMANTIC3D [19], ISPRS, etc., [20]. Several of these networks are
Open-Source which are continuously innovated and can easily be adapted for other tasks.
However, the inputs generally are fixed. The dominant geometry inputs are 2D rasters from
structured data sensors, 3D voxels structured in octrees or kd-trees that can be generated
from any point cloud, the raw point cloud, and finally also polygonal meshes [21].

Popular 2D rasterized multiview CNN (MVCNN) are SnapNet [22], MVDepthNet [23],
and 3DMV [24]. These methods closely align with image semantic segmentation networks
and thus can benefit from their advancements. However, through the reduction to 2D
rasters from the sensor’s vantage point, a significant portion of geometric features is
ignored, e.g., the coplanarity of opposite wall faces. Similarly, rasterized 2D slices from 3D
point clouds only allow for a partial interpretation of the scene with limited features [25].
This downside is compensated with an unparalleled speed, with MVCNNs performing
near real-time [26].

Popular voxel-based networks are VoxNet [27], SegCloud [28], OctNet [29], O-CNN [30],
and VV-NET [31]. These approaches are known for their speed and holistic features. However,
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voxel-based methods reduce the spatial resolution and thus can underform near edges
and details.

Popular point-based networks are PointNet [32], PointNet++ [33], PointCNN [34],
PointSIFT [26], SAN [35], and RandLA-Net [36]. These network compute individual point
features in addition to conventional global features, leading to a performant semantic
segmentation without a reduction in spatial resolution. As point-based classification best
reflects the impact of input variations, these methods are ideally suited for the input
validation. Of specific interest is RandLA-Net, which is one of the most performant recent
networks that was also trained on the Stanford 2D–3D-Semantics Dataset (S3DIS), which
closely aligns to typical indoor environments.

Polygonal meshes will be a serious contender with point cloud methods as they signif-
icantly reduce the data size (up to 99% reduction) while preserving geometric detailing.
However, the work on polygonal meshes is still very much a subject of ongoing research
and thus is not yet as performant as the above methods [37].

2.3. Reconstruction Methods and Inputs

Once the inputs are processed to a set of observations that each represent a single object
instance, the data are fed to class-specific reconstruction algorithms that attempt to retrieve
the object’s class definition and parameter values. Reconstruction algorithms vary wildly
depending on the class of the object (walls vs. ceilings or doors) and even within a single
class there are a plethora of methods such as those discussed in our previous work [38]. A
key difference between methods is the type of object geometry that is pursued. For instance,
there are the boundary-based representations such as in CityGML that solely model the
exterior of an object, typically in an explicit manner such as with polygonal meshes. In
contrast, volumetric object representations such as in BIM require knowledge about the
internal buildup of an object and are more frequently modelled in an implicit manner,
i.e., based on parametric design. For a typical class such as walls, this difference is very
pronounced. Boundary-based walls will have their wall faces reconstructed individually
and are solely linked through semantics. This makes it very easy for both 2D and 3D
reconstruction methods that have to fit the best fitting surface on each visible surface of
the wall and correctly draw the niches, protrusions, and openings in that surface [39]. In
contrast, volumetric walls will be reconstructed by accurately estimating the wall object
parameters such as the hearth line, the height and the thickness along with additional
parameters for each opening, niche, and protrusion that each also have their parameters [40].
The semantic segmentation plays a vital role in whether a reconstruction method will
achieve success as it lies at the basis of the geometry assumptions of a class. For instance,
the assignment of a column class to a section of the point cloud decides that a parameter
extraction algorithm or a modeler will fit a column to that section, regardless of whether
that is correct. If part of that column is mislabeled, it is very likely to upset any parameter
estimation of the final object’s geometry. Finally, the topology between objects will also be
severely distorted by rogue objects that are being created because of misclassifications [41].
Any interpretation error therefore directly and exponentially propagates the error in the
reconstruction and the typology configuration step and must be avoided.

2.4. Validation Methods and Specifications

Concerning the impact of data acquisition on the data processing, few comparisons
are currently available. However, there are several researchers that formulate validation
criteria for the point cloud and the semantic segmentation with relation to BIM.

For the point cloud validation, most researchers only perform an accuracy analysis on
the point cloud data [13,16,17]. The closest related works for a more holistic validation are
those of Rebolj et al. [42] and Wang et al. [4], in which the quality criteria of point cloud
data for Scan-to-BIM and Scan-vs.-BIM are established which we translate to LOA and
LOD definitions in Table 1 and requirements in Table 2. Aside from the accuracy, they
determine parameters for the completeness and density of the point cloud that are required
to model various building elements. For the accuracy, researchers either report deviations
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on benchmark datasets directly, or refer to international specifications such as the Level
of Accuracy (LOA) [43], the Level of Development (LOD) [44], or the Level of Detail [45]
(Table 1). An interesting work is that of Bonduel et al. [46] who take into consideration the
occlusions of the objects when computing the accuracy.

Table 1. Overview of the Level of Accuracy and Level of Development specification used in Scan-to-
BIM methods and their different categories.

Level of Accuracy
LOA10 LOA20 LOA30 LOA40 LOA50

[0.05 m; −] [0.015 m; 0.05 m] [0.005 m; 0.015 m] [0.001 m; 0.005 m] [0; 0.001 m]

Level of Development

LOD100 LOD200 LOD300 LOD350 LOD400

Table 2. Overview of the BIM modeling/evaluation requirements for structure classes as reported
by Wang et al. [4] and Rebolj et al. [42]. The IoU percentual values are directly obtained from
Hu et al. [36].

Classes Level of
Accuracy

Level of
Development

Quality:
LOA (m)

Completeness:
Coverage (%)

Detailing:
Resolution (m)

Semantic
Segmentation
mIoU S3DIS

(%)

Ceilings LOA20 LOD300 <0.05 >50% <0.05 93.1
Floors LOA20 LOD300 <0.05 >50% <0.05 96.1
Walls LOA30 LOD350 <0.015 >50% <0.015 80.6

Columns LOA30 LOD350 <0.015 >50% <0.015 48.0
Beams LOA30 LOD350 <0.015 >50% <0.015 62.4

For the data processing, researchers typically report cross-validation or testing rates on
the above benchmark datasets. Popular metrics include recall and precision, F1-scores and
Intersection over Union (IoU) of the ground-truth data, and the prediction of the network.
These metrics give a good overall overview of the network’s performance. For a more
in-depth study, call-outs of specific objects are typically gathered and subjected to a visual
inspection. In this work, both methods will be used to evaluate the impact of the data
acquisition differences on the semantic segmentation.

3. Sensors

In this section, the sensors used for indoor mapping are presented. The specifications
per sensor are discussed, as well their advantages and shortcomings. Concretely, we
compare a high-end terrestrial laser scanner with two state-of-the-art iMMs and one low-
end mapping sensor. For the experiments, the TLS data and a manually created as-built
BIM model are taken as the baseline to compare the impact of the sensors on the data
capture and processing.

3.1. Leica Scanstation P30

Static Terrestrial Laser Scanning (TLS) (Figure 2a) is the most conventional and accurate
Lidar-based data acquisition solution on the market. Current direct and indirect Time-of-
Flight sensors can capture full-done scams in only a couple of minutes with scanrates up to
1–2 MHz. Furthermore, the images takes by the sensor can now also be used in structure-
from-motion pipelines to automatically register consecutive point clouds. The raw outcome
for indoor environments typical is a structured point grid of 10 to 40 Mp, similar to a
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spherical depth map and with a transformation matrix for each setup. The typical single
point accuracy is <5 mm/50 m which corresponds to LOA40 [43]. Additionally, less than
1 mm of error propagation can be expected throughout consecutive setups [47].

(a) Leica Scanstation P30 (b) NavVis M6
Scanrate: 1MHz Scanrate: 0.43MHz

Range:100m Range: 100m
Cam: 175x4MP Cam: 6x16MP

σr: 1.2mm + 10ppm σr: 5mm

(c) NavVis VLX (d) Microsoft Hololens 2
Scanrate: 0.6MHz Scanrate: 30Hz

Range: 100m Range: 3.1m
Cam: 4x20MP Cam: 1MP

σr: 6mm/500m2 σr: 11mm + 1000ppm

Figure 2. Overview of the theoretical sensor characteristics.

3.2. NavVis M6

Cart-based indoor Mobile Mapping systems (Figure 2b) are the most stable of the
indoor mobile solutions. Theoretically, these are also the most accurate mobile solutions
as they can pack more high-end (and heavier) Lidar sensors and only require 4 Degree-of-
Freedom (DoF) SLAM in most cases. These iMMs’ Lidar sensors yield unordered point
clouds with uneven point distributions and thus are ideally suited for voxel-based semantic
segmentation, although other representations are also possible. Overall, iMMs point clouds
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are less dense than static scans but have better coverage and are captured up to three
times faster [17]. The typical global accuracy in 2021 is <2 cm (LOA20–LOA30) along the
trajectory of the system and local point accuracy is similar to TLS (LOA40). The stable
localization is mainly due to the camera-based SLAM that, together with the Lidar and the
motion sensor, provides a well-rounded tracking mechanism.

3.3. NavVis VLX

Backpack-based indoor Mobile Mapping systems (Figure 2c) are a more dynamic iMMs
variant that still pack high-end Lidar sensors but have increased accessibility. Their random
trajectory is typically tracked through 6 DoF SLAM, which theoretically is more error prone
in low-texture or low geometric variance areas depending on localization sensors. However,
4 DoF SLAM is also affected for these zones, and thus iMMs performances are more tied
to the environment and sensors than the concrete setup. As such, similar accuracies of
LOA20–LOA30 for the global point accuracy and LOA40 for the local point accuracy are
reported for these systems. Analogue to the M6, the combination of Lidar-and camera-
based SLAM yields superior results. An important feature, however, is the software that
ships with each system. With NavVis, the software inherently allows for the inclusion
of ground control points in an automated manner which is not the case with low-end
sensors. These control points are actively used during post-processing and function as
fixed constraints in the bundle adjustment of the scan network.

3.4. Microsoft Hololens 2

A recent addition to capturing devices are Mixed Reality systems (Figure 2d). These
portable data acquisition solutions can be considered iMMs but do not have the same
large-scale mapping capabilities. They are part of this study’s scope, as these systems
will play a major role in digital built environment interaction which inherently includes
mapping. They operate with 6 DoF SLAM but can only be deployed for smaller scenes due
to poor field-of-view, range, and low-end sensor specifications. Single-point accuracies of
1 cm/m for the Lidar sensors are not unusual with a high error propagation, restricting
them to close-range applications (LOA10–LOA20). Specifically for the Hololens 2, the
spacial mapping is designed to run as a background task, using minimal resources to keep
the device performant. Being a head-mounted device, the mobility leaves no restrictions
for the user. The capabilities are focused on real-time mapping and less on accuracy. This
results in on-device-computed meshes that can be used directly in the processing. These
are generally lower in resolution so they can be stored on the device, but are also usable for
mapping. However, the restricted range of only circa 3–4 m is a significant downside for
BIM modeling/evaluation.

4. Methodology

In this section, the methodology is formulated to determine the impact of data acqui-
sition and the subsequent semantic segmentation on the point cloud suitability for BIM
modeling/evaluation. Concretely, we first conduct a sensor capacity test, where each sensor
is tested to produce proper point cloud data. Next, we evaluate the point cloud suitability
for BIM modeling/evaluation in a detailed study where each system’s data is semantically
segmented and evaluated whether the results can be used for as-built BIM modeling or
analyses. We use international specifications such as the LOA [43] and common literature
metrics wherever possible to provide a clear comparison of the results.

4.1. Sensor Capacity

First, a quantitative analysis on the point clouds is conducted to analyze the raw
performance of each system (Figure 3). As is common in the literature, we evaluate the
sensor accuracy and error propagation along the trajectory by computing the Euclidean
cloud-to-cloud (c2c) distances between the sensor’s point cloud and the ground truth data.
For these tests, the TLS data, which is confirmed to comply to LOA40 [2σ < 0.005 m]
by total station measurements, is considered as the ground truth. To compare the point
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clouds, all datasets are referenced to the same coordinate system and only the overlapping
areas are evaluated. For every point cloud, the cumulative percentage of c2c-distances are
computed at 68% and 95% inliers as reported by [48]. Furthermore, the metrics will be
compared to the LOA specifications as stated in [43]. The overlapping point clouds are
reported cumulatively for each bracket, i.e., LOA30 [2σ < 0.015 m], LOA20 [2σ < 0.05 m]
and LOA10 which is user-defined and set to [2σ < 0.1 m] conform common building
tolerances [4].

(a) D-hall: Test design for drift accumulation in subideal conditions compared to periodic con-
trol points.

(b) E-hall: Test design for the impact of loop closures on the drift accumulation without con-
trol points.

Figure 3. Overview of the test setup for the sensor capacity tests: (green triangle) starting point (red
triangle) end point, (yellow) trajectory and (red) control points of testsite (a) D-hall and (b) E-hall.

To asses the capacity of each system, the need for loop closures and control points
needed to obtain accurate results, are evaluated. This knowledge is vital to obtain a
maximal efficiency on site with a minimal amount of time needed to capture a scene.
These characteristics are tested by mapping the same datasets shown in Figure 3, with
and without control points and loop closures. First, a long hallway is mapped without
possibility for loop closures to test the raw tracking cabailities of each device. The narrow
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pathway and scene repetitiveness pose key challenges for iMMs and thus significant drift
can be expected this subideal D-hall dataset (Figure 3a).

Analogue, the influence of loop closures, is measured by mapping the same loop with
and without loop closures (Figure 3b). To this end, a square shaped corridor is mapped
with the different systems. The P30 is again used as a reference and is validated with
control points on each corner of the square. The passage between the starting and end point
of the loop is important in this dataset. To ensure an unbiased evaluation, the passage was
closed off so the raw drift of each system could be measured directly by observing both
sides of the passage. When loop closures were to be applied, the passage was left open so
the processing software could align the starting and end zone.

4.2. Point Cloud Suitability

The second analysis evaluates each system’s capabilities for BIM modeling and eval-
uation. As described in the related work, the key stages that influence this process are
the initial geometry production and the semantic segmentation. In this test, we evaluate
both aspects for each system on 3 distinct target areas (see Section 5). We test 5 common
structure classes that are part of most unsupervised BIM reconstruction/analyses methods
as they form the observable core of each structure, i.e., ceilings, floors, walls, beams and
columns. For these experiments, a manual as-built BIM is conceived as accurately as
possible by expert modelers. Analogue to the capacity tests, the P30 data are used as the
main repository as they is proven to comply with LOA40. However, in areas where the P30
did not capture any data, the Leica VLX was used in combination with control points and
loop closure which is also highly accurate and has the best coverage.

From the literature, the BIM information extraction requirements for these classes are
established. Table 2 depicts the expected Level of Accuracy and Level of Development that
are commonly reported for the structure classes [2,3,49].

The point cloud suitability of the initial geometry production is established by trans-
lating the above requirements to point cloud parameters for quality, completeness and
detailing as reported by Wang et al. [4] and Rebolj et al. [42]. We report each parameter per
class, based on its semantic segmentation. As such, we can asses how well the different
classes correspond to the expected requirements.

It is important to notice that significantly lower inliers are expected for the represented
accuracy due to modeling abstractions. For instance, none of the sensors achieve LOA30 in
any of the test cases as abstract BIM objects are used to represent the geometry (which is
custom in industry), that do not take into consideration the detailing and imperfections
of the real environment. Furthermore, while the filtering algorithm for the classes (see
Methodology) achieves a proper segmentation, some noise and clutter can be expected that
will negatively impact the number of inliers. However, we can still evaluate the relative
performance between the sensors to establish the point cloud suitability.

The quality is established by the point accuracy similar to the capacity tests with the
c2c-distance being evaluated. However, the LOA represented accuracy (point cloud vs.
model) is evaluated rather than the documentation accuracy (point cloud vs. point cloud)
in the above tests (Equation (1)). As such, the BIM is uniformly sampled (Psynth) and used
as the reference for each dataset’s distance evaluation, which also allows us to evaluate
the suitability of the TLS. To ensure a balanced quality measure, we uniformly sample
the input point clouds P up to 0.01 m, which does not compromise the number of LOA30
inliers. Similar to the above tests, the distance threshold td is capped at 0.1 m to not include
outlier points.

D =

{
d
∣∣∣q ∈ Q, p ∈ Psynth : min

q
‖p− q‖ < td

}
(1)
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As the point accuracy is not normally distributed, we report the inliers for the cumu-
lative LOA30 [2σ < 0.015 m], LOA20 [2σ < 0.05 m] and LOA10 [2σ < 0.1 m] brackets
(Equation (2)).

Quality =


LOA30: |D<0.015 m|

|D|
LOA20: |D<0.05 m|

|D|
LOA10: |D<td |

|D|

(2)

The completeness of the point clouds is established by determining the coverage per
class. Wang et al. [4] define this as the ratio between covered area and total area, but they
correctly state that this is an ambiguous measure as it does not account for the clutter that
occludes significant portions of the object. We therefore perform an initial filtering on P
for each class based on td. Additionally, we evaluate the normal similarity between the

observed
−−→
n(q) and the reference

−−→
n(p) normals in both datasets [50] (Equation (3)).

Coverage =
1

|Psynth|

∣∣∣∣∣
{

p ∈ Psynth

∣∣∣q ∈ Q : argmin
p
‖p− q‖ < td for which

∣∣∣−−→n(p) ·
−−→
n(q)

∣∣∣ > t‖

}∣∣∣∣∣ (3)

Finally, the density of each point cloud is established by the average spatial resolution
of P. To this end, n samples are extracted from P for which the Euclidean distance to its
nearest neighbor is computed (Equation (4)).

Density =
1
n

n

∑
i=1

{
d

∣∣∣∣∣pi, pj ∈ P : min
pj
‖pi − pj‖

}
(4)

The subsequent semantic segmentation capacity is tested by processing each system’s
dataset with the same state-of-the-art CNN. Concretely, we adapt RandLA-Net which was
pretrained on Area 5 of the S3DIS stanford dataset [18]. The model was trained according
to the specifics discussed in [36] and achieved on average 88% of the structure classes
of S3DIS Areas 1–6 which are representative indoor scenes captured by a mobile RGBD
scanner. From S3DIS, we solely retain the ceilings, floors, walls, beams, and columns classes
and store the remainder in a clutter class, except, the classes windows, doors and boards,
which are stored in the wall class, because these object classes are contained within the wall
structure class and are modeled once the structure is completed.

As a baseline for the model expectations, we inherit the Hu et al. [36] mIoU values
of each class given a 6-fold cross-validation (see Table 2). Additionally, we report the IoU
values of an idealized synthetic point cloud of our datasets that are generated from the
as-built model. Given the IoU values of each class, we will conduct a quantitative and
visual analysis of the results.

5. Test Setups

The experiments are conducted in different areas of our university technology campus
in Ghent, Belgium. In total, five test zones are developed for the sensor capacity and point
cloud suitability tests (Figure 4).

For the sensor capacity test, two drift-sensitive areas are selected. The first is the
D-hall (Figure 4, row 1) and the E-hall (Figure 4, row 2). Both hallways do not contain
distinct features and form a monotonous scene. The D-hall trajectory (90 m) is specifically
chosen to evaluate the drift of the different iMMs. The E-hall trajectory (120 m) is chosen
to evaluate the effect of loop closure on each point cloud. In each zone, a control network
was established with total station measurements and georeferenced in the Belgian Lambert
72 (L72) coordinate system. In the capacity tests, the Leica Scanstation P30 is used as the
ground truth due to its superior accuracy which was established in previous work [46].
The alignment of the iMMs datasets with and without control points was performed with
control points outside of the targeted survey area. Figure 3 shows the trajectory of M6 and
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the VLX, as well as the location of the control points. While the NavVis software allows a
seamless integration with control and uses this in post-processing, this is not the case for the
Hololens 2. Therefore, the Hololens 2 data were divided into chunks that were manually
registered to the control. In Table 3, an overview of the survey is presented, including the
time needed to map the zones and the manual intervention time in the post-processing
that was required. The time for measuring end materializing the control points and time to
prepare the sensors before data capture was not included as all methods employ this data.

Sensor capacity test zones

D-hall
Dim: 4 × 90 m

E-hall
Dim: 64 × 70 m

Scan-to-BIM suitability test zones

Lab 1 (Concrete)
Dim: 34 × 35 m

Lab 2 (Asphalt)
Dim: 28 × 27 m

Lab 3 (HVAC)
Dim: 24 × 24 m

Figure 4. Overview of the different test zones that are used for the sensor capacity and point cloud
suitability experiments.
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For the point cloud suitability test, three industrial laboratories were selected. Lab 1 is
used for concrete processing and contains hydraulic presses, aggregate storage, a classroom
and several experiment setups (Figure 4, row 3). Lab 2 has facilities for road construction
research including several environmental cabins and asphalt processing units (Figure 4,
row 4). It also has several free standing desks, desktop computers, and a separate office
space. Both these labs are located in a refurbished factory space where the concrete
beams and columns are still visible. Finally, Lab 3 is a building physics lab in an adjacent
masonry building which has visible steal beams and contains several experimental setups,
i.e., a blowerdoor test, insulation setup and ventilation experiment (Figure 4, row 5).
These environments are chosen for their representation of industrial environments and the
presence of all target classes. The column class, however, is still underrepresented as the
columns are located inside the walls, which will also negatively impact their coverage and
subsequent semantic segmentation. However, the pretrained S3DIS model also suffers from
similar issues as columns and beams are commonly occluded. Similar to the capacity test,
each zone was mapped with the four sensors and georeferenced with TS measurements
(Table 3). In this test, the synthetic point cloud generated from the as-built BIM is used as
the ground truth for the quality, completeness, and semantic segmentation comparison.

Table 3. Overview of the number of datasets and time needed with one person to capture and process
the data. These times do not include the time needed to establish the TS-network.

NavVis M6 NavVis VLX Leica
Scanstation P30

Microsoft
Hololens 2

D
-h

al
l points 9,998,247 17,838,269 74,301,732 346,206

Capture time ±10 min ±10 min 1 h 45 min ±35 min
Process time ±20 min ±20 min 35 min ±20 min

E-
ha

ll points 14,906,837 21,411,219 49,415,423 193,611
Capture time ±10 min ±10 min 1 h 30 min ±15 min
Process time ±20 min ±20 min 30 min ±20 min

La
b

1 points 28,387,570 62,441,871 70,176,074 306,300
Capture time ±20 min ±20 min ±1 h 45 min ±27 min
Process time ±20 min ±20 min ±45 min ±25 min

La
b

2 points 19,855,995 32,255,982 55,171,563 218,790
Capture time ±20 min ±20 min ±1 h 30 min ±30 min
Process time ±20 min ±20 min ±30 min ±20 min

La
b

3 points 17,827,807 45,715,878 26,501,599 93,002
Capture time ±10 min ±10 min ±45 min ±20 min
Process time ±20 min ±20 min ±15 min ±15 min

6. Experimental Results

In this section, the results of the experiments to evaluate the sensor capacity and the
point cloud suitability are discussed.

6.1. Sensor Capacity
6.1.1. Impact of Control Points

As discussed in Section 5, accumulative drift along the repetitive hallway is expected.
Figure 5 reports the visual deviations and the inliers for each LOA bracket for the D-hall
with and without the support of a control network. Figure 6a shows the percentual inliers
with respect to td = 0.1 m, conform common industry tolerances. Overall, the VLX and
M6 iMMs maximum deviations fall within the threshold, showing less than 0.01 mm/10 m
drift without control which is in line with the NavVis reports [51]. As expected, the low-end
Hololens 2 reports much higher drift, with a maximum of 0.86 m deviation at 90 m. With
the inclusion of control, the LOA30, 20, and 10 inliers for the M6 and the VLX, respectively,
improve by 44.8% and 48.5%, while for the Hololens 2 this is only 21%. This is mainly
caused by the poor close-range data quality of the Hololens 2, which prevents it from
achieving LOA20 or 30 even without drift accumulation.



Remote Sens. 2022, 14, 582 13 of 28

NavVis M6

LOA30 30.4% 81.7%
LOA20 67.0% 99.5%
LOA10 100.0% 100.0%

NavVis VLX

LOA30 21.9% 81.6%
LOA20 61.7% 99.6%
LOA10 100.0% 100.0%

Microsoft Hololens 2

LOA30 33.5% 44.9%
LOA20 53.7% 81.6%
LOA10 61.5% 100.0%

Figure 5. Impact of control points on the sensor capacity (D-hall): c2c analysis of the point clouds
captured (left) without and (right) with control points compared to the P30 point clouds. Color scale
is indicated from 0 m (blue) to 0.1 m (red).

When compared to each other, the impact of the different sensors of each system on
the drift can be observed. The experiments clearly show that the range errors of each
system (Hololens 2: 0.01 m/1 m, M6: 0.01 m/10 m, and VLX: 0.01/50 m) play a major role
in the drift accumulation. For low-end sensors, the close-range noise negatively impacts
the data-driven SLAM which leads to increased drift. However, there is a clear drop-off of
this affect when the range-noise drops below a certain point, i.e., the NavVis VLX Velodyne
lidar sensors produce more qualitative data, and yet the drift accumulation is similar to the
M6. This is due to the sideways configuration of the Lidar sensors, which thus only capture
data that is less than 10 m away. As such, the distribution of the data and the quality of the
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motion sensor are more important in close-range scenes than further increasing the quality
of the lidar sensor.

(a)

(b)

Figure 6. Overview of the Sensor capacity test: Graphs showing the cumulative percentage of
c2c-distances between the target and reference point clouds for (a) D-hall: The impact of a control
network and (b) E-hall: The impact of loop-closure.

From the experiments, it can be concluded that without control, the M6 and VLX
can be used small-scale projects up to LOA10 [2σ < 0.10 m] and that the Hololens 2 is
unsuitable for BIM modeling/analyses with these settings. With control, the M6 and VLX
easily achieve LOA20 [2σ < 0.05 m] close to LOA30 [2σ < 0.015 m] when control is added
circa every 25 m. Analogue, the Hololens 2 can achieve LOA10 close to LOA20 when
control is added every 10 m. However, as discussed in Section 5, the Hololens 2 processing
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software does not yet have a functionality to import control points, and thus no control can
be used during the adjustment of the Hololens 2 setups during processing. This is highly
advised as control is one of the most effective ways to reduce drift accumulation for iMMs.

6.1.2. Impact of Loop Closure

The results of the loop closure experiments are shown in Figures 6b and 7. Analogue
to the control point evaluation, the accumulative error within the loop as well as the inliers
for the consecutive LOA brackets are reported. First of all, all values are lower than in the
E-hall. This is expected as the path is significantly longer (160 m opposed to 120 m) than in
D-hall. As a result, maximum deviation of each system is 0.06 m for the M6, 0.2 m for the
VLX, and 0.85 m for the Hololens 2. Upon closer inspection, this error is both in the X, Y, and
Z directions which can be explained by the similar point distributions in these directions
for E-hall. In terms of drift patterns, Figure 7 shows that the VLX slightly underperforms
compared to the D-hall due to the increased length of the trajectory. Additionally, as the
registration of the system has 6 DoF instead of 4 (see Section 3.3), an increased error can
be expected from the randomized trajectory of the sensor. Similarly, the M6 loop closure
optimization does not improve the results as the 120 m loop is too large for loop closure
to compensate and thus fails to create a meaningful difference between the LOA20 and
30 inliers. This effect is more expressed for the Hololens 2, where the optimization of
already properly aligned areas further improves, but poorly aligned areas do not shift
towards a more accurate solution.

From D-hall and E-hall combined, the following conclusions are presented. In terms
of control points, it is stated that the high-end iMMs can achieve LOA20 for circa 50 m of
trajectory without the support of control points or loop closures. The low-end sensor can
solely achieve LOA10 close to LOA20 when control is added every 10 m. In terms of loop
closures, it is stated that the high-end iMMs can achieve LOA20 for circa 100 m of trajectory
without the support of loop closures. The low-end sensor can solely achieve LOA10 close
to LOA20 when loops are made every 30–40 m. While simultaneously applying control
and loop closures does not significantly improve the result, there is a massive gain by using
both techniques complementary. For instance, control networks only need to be established
along the main trajectory of a building, while any short side-trajectories, (e.g., separate
rooms) can be accurately mapped solely using loop closures.

6.2. Point Cloud Suitability

The quantitative results of the point cloud suitability experiments are shown in
Tables 4–6. Each table includes the data acquisition parameters to evaluate the qual-
ity, completeness, and detailing as described in Section 4. The IoU percentages for the
semantic segmentation of RandLA-Net are also reported per class and an overview of each
classification is shown in the tables. Aside from the quantitative results, Figures 8–13 show
detailed call-outs to evaluate the point cloud’s suitability to be processed to individual
objects. Each aspect is discussed below.

6.2.1. Impact of Quality

The accuracy of the captured data is reported as the LOA30, 20, and 10 inliers of the
represented accuracy as discussed in the methodology. For the evaluation, it is important
to notice that significantly lower inliers are expected for the represented accuracy due to
modeling abstractions. For instance, none of the sensors achieve LOA30 in any of the test
cases as abstract BIM objects, (i.e., IfcWallStandardCase) are used to represent the geometry
as is custom in the industry. Furthermore, while the filtering algorithm for the classes (see
Methodology) achieves a proper segmentation, some noise and clutter can be expected
that will negatively impact the number of inliers. However, this dataset is the preferred
reference to evaluate the relative performance between the sensors to establish the point
cloud suitability.
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NavVis M6

LOA30 56.5% 51.0%
LOA20 94.8% 93.8%
LOA10 100.0% 100.0%

NavVis VLX

LOA30 29.1% 51.4%
LOA20 75.5% 99.0%
LOA10 88.5% 100.0%

Microsoft Hololens 2

LOA30 8.8% 16.9%
LOA20 39.9% 55.9%
LOA10 72.6% 73.6%

Figure 7. Impact of loop-closure on the sensor capacity (E-hall): c2c analysis of the point clouds
captured (left) without and (right) with loop-closure compared to the P30 point clouds. Color scale
is indicated from 0 m (blue) to 0.1 m (red).
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Table 4. Results of the point cloud and semantic segmentation testing (Lab 1): Comparative study
of the input-validation parameters. Ceilings (black), floors (red), walls (green), beams (blue), and
columns (yellow).

Quality Completeness Detailing Semantic Segmentation
LOA30 (%) LOA20 (%) LOA10 (%) Coverage (%) Resolution (m) IoU (%)

C
ei

lin
gs

Synth - - - - 0.01 49.6
P30 52.9 87.7 98.2 63.5 0.003 69.4
VLX 38.1 86.4 97.5 77.6 0.004 70.9
M6 22.1 89.1 97.9 69.9 0.005 72.2
Hololens 2 33.4 89.1 98.5 51.3 0.05 72.4

Fl
oo

rs

Synth - - - - 0.01 39.5
P30 93.7 97.3 98.3 23.0 0.003 64.1
VLX 56.3 97.3 98.8 39.2 0.004 72.1
M6 16.4 92.2 99.4 32.3 0.005 76.5
Hololens 2 27.9 70.2 96.8 29.0 0.05 69.3

W
al

ls

Synth - - - - 0.01 84.9
P30 29.7 79.2 96.7 22.9 0.003 55.3
VLX 36.5 80.5 96.5 58.3 0.004 53.0
M6 44.2 82.2 95.5 49.6 0.005 69.5
Hololens 2 31.7 79.6 97.5 23.4 0.05 69.7

C
ol

um
ns

Synth - - - - 0.01 0.4
P30 53.2 94.0 97.9 44.4 0.003 0.4
VLX 47.2 71.0 94.8 65.3 0.004 0.00
M6 54.8 96.4 98.4 52.3 0.005 0.00
Hololens 2 17.6 73.8 97.8 47.4 0.05 0.00

Be
am

s

Synth - - - - 0.01 7.63
P30 65.4 98.7 99.6 59.8 0.003 1.5
VLX 58.1 98.2 99.2 83.1 0.004 17.4
M6 49.1 98.0 99.1 72.2 0.005 36.7
Hololens 2 31.5 79.2 97.7 55.9 0.05 1.3

Overall, from each sensor, LOA20 results (avg. 88%) could be reliably produced
given the abstractions and clutter save for the Hololens 2, that on average has 10% less
inliers. For objects that fit well with the abstract object definitions, the a BIM reconstruction
from these point clouds will achieve LOA30 for the high-end sensors and LOA20 for the
Hololens 2. Locally, this can improve to LOA40 for the high-end sensors and LOA30 for
the Hololens 2. However, there are significant differences between each class. For instance,
the average accuracies for the walls is significantly lower than for other classes. This is
due to the increased abstractions. For instance, Lab 3 consists of ornamented masonry
walls, leading to circa 35% lower inliers for the represented accuracy. For the ceilings, all
iMMs surprisingly yield similar inliers, while this is not the case for the floors. Aside from
abstractions, this is due to the sensor’s range noise, that misaligned the floor and the ceiling.
When looking at the joint inliers, this is confirmed with the M6 (1 cm/10 m) and Hololens
2 (1 cm/m) on average showing 20% and 30% less inliers. Furthermore, when examined
in more detail, a major error is detected in the floor data of the Hololens 2 (Figure 8). Due
to its horizontality assumption, it does not properly detect the 0.1 m height difference in
adjacent spaces in Lab 1. For the columns, the statistics show that each sensor achieves
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good LOA20 and even LOA30 results which is due to the positioning of these elements.
Especially on square or rectangular elements, the number of inliers is very high. For the
beams, the Hololens 2 again underperforms due to the height of the beams. However,
specifically for beams and columns, statistics alone are very ambiguous as high Euclidean
distance inliers do not guaranty proper point cloud processing. For instance, the increased
noise on a beam section would make detailed modeling from the M6 data challenging and
impossible from the Hololens 2.

Table 5. Results of the point cloud and semantic segmentation testing (Lab 2): Comparative study
of the input-validation parameters. Ceilings (black), floors (red), walls (green), beams (blue), and
columns (yellow).

Quality Completeness Detailing Semantic Segmentation
LOA30 (%) LOA20 (%) LOA10 (%) Coverage (%) Resolution (m) IoU (%)

C
ei

lin
gs

Synth - - - - 0.01 49.6
P30 51.7 91.6 98.9 43,9 0.003 73.5
VLX 36.2 91.3 98.9 74,5 0.004 83.6
M6 35.7 91.7 98.9 64.8 0.005 87.5
Hololens 2 10.3 85.7 99.2 41.0 0.05 80.2

Fl
oo

rs

Synth - - - - 0.01 53.6
P30 95.3 98.2 99.2 44.5 0.003 80.3
VLX 78.7 95.2 98.3 43.8 0.004 89.2
M6 47.3 69.6 98.3 36.0 0.005 94.2
Hololens 2 27.0 94.9 98.4 32.0 0.05 90.8

W
al

ls

Synth - - - - 0.01 85.1
P30 38.7 90.5 98.8 39.2 0.003 58.8
VLX 48.1 92.4 98.6 69.9 0.004 51.7
M6 41.5 88.6 98.3 64.2 0.005 67.7
Hololens 2 27.3 87.2 98.2 35.4 0.05 67.6

C
ol

um
ns

Synth - - - - 0.01 0.0
P30 37.9 91.0 96.8 21.0 0.003 0.1
VLX 40.6 87.2 97.9 66.7 0.004 0.0
M6 43.9 88.2 97.9 53.2 0.005 0.0
Hololens 2 33.1 86.0 98.4 23.0 0.05 0.0

Be
am

s

Synth - - - - 0.01 0.8
P30 48.7 95.7 99.2 60.8 0.003 3.3
VLX 61.9 98.8 99.0 80.0 0.004 21.2
M6 60.3 99.0 99.2 70.9 0.005 42.7
Hololens 2 33.7 93.6 99.5 42.8 0.05 3.6

6.2.2. Impact of Completeness

In addition to the quality, the completeness is essential to create as-built models. Some
occlusions are inevitable, i.e., with ceilings and floors, and this also reflects in the BIM LOD
requirements that are lower for these categories.
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Table 6. Results of the point cloud and semantic segmentation testing (Lab 3): Comparative study
of the input-validation parameters. Ceilings (black), floors (red), walls (green), beams (blue), and
columns (yellow).

Quality Completeness Detailing Semantic Segmentation
LOA30 (%) LOA20 (%) LOA10 (%) Coverage (%) Resolution (m) IoU (%)

C
ei

lin
gs

Synth - - - - 0.01 48.1
P30 40.3 99.8 99.9 30.8 0.003 85.3
VLX 11.9 98.3 98.8 37.5 0.004 86.7
M6 26.3 99.7 99.8 34.0 .005 83.1
Hololens 2 49.3 95.2 97.7 26.0 0.05 94.6

Fl
oo

rs

Synth - - - - 0.01 40.4
P30 76.1 99.1 99.6 15.0 0.003 91.4
VLX 32.5 93.7 99.2 22.0 0.004 89.9
M6 31.8 93.2 99.8 24.0 0.005 81.2
Hololens 2 14.4 96.6 99.7 21.0 0.05 94.1

W
al

ls

Synth - - - - 0.01 82.4
P30 9.8 46.5 83.7 21.0 0.003 79.9
VLX 15.0 60.0 82.7 41.0 0.004 70.5
M6 15.4 60.0 83.0 36.0 0.005 86.2
Hololens 2 12.9 48.9 90.6 18.0 0.05 81.2

Be
am

s

Synth - - - - 0.01 1.5
P30 25.0 80.9 97.8 90.0 0.003 0.0
VLX 43.7 85.4 97.4 95.7 0.004 0.0
M6 46.4 93.8 98.7 81.3 0.005 0.0
Hololens 2 20.0 53.0 91.6 75.1 0.05 0.0

(a)
(b)

(c)
(d)

Figure 8. Alignment shortcomings: Sideview of the Hololens 2 misalignment with sloped floors due
the assumptions in the SLAM algorithm (reference point cloud is shown in black). (a) VLX, (b) M6,
(c) P30, and (d) Hololens 2.

The sensors achieved the following results. Overall, the VLX (60%) scores extremely
high given the clutter and systematic occlusions, followed by M6 (52%), the P30 (41%),
and the Hololens 2 (37%). This is due to the increased accessibility of the iMMs, where the
backpack system scores circa 10% better than the cart-based system. Surprisingly, the highly
mobile Hololens 2 underperforms, mainly due to its range limitations. This especially
affects the capture of industrial sites where ceiling heights typically are more than 3–4 m.
For higher and complex walls, the range of the Hololens 2 is insufficient, resulting in large
parts of walls that remain unrecorded as can be seen in Figure 9. In contrast, the P30



Remote Sens. 2022, 14, 582 20 of 28

underperforms due to its limited setups which leads to large gaping occlusions despite its
range, e.g., Figure 10 shows that with the P30, massive occlusions exist on the ceiling when
a beam is attached near the ceiling.

(a) (b)

(c) (d)

Figure 9. Coverage shortcomings: The P30 has large systematic occlusions due to limited setups.
With the Hololens 2, the ceiling is not recorded due to the limited range of the sensor. The VLX and
M6 have higher coverage due to their increased mobility. (a) VLX, (b) M6, (c) P30, and (d) Hololens 2.

(a) (b)

(c) (d)

Figure 10. Coverage shortcomings: Due to the limited range of the Hololens 2, parts of higher walls
cannot be captured properly. (a) VLX, (b) M6, (c) P30, and (d) Hololens 2.
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(a) (b)

(c)
(d)

Figure 11. Accessibility shortcomings: Due to the limited space between the obstacles, the P30 and
the M6 suffer from large occlusions. (a) VLX, (b) M6, (c) P30, and (d) Hololens 2.

(a) (b)

(c) (d)

Figure 12. Resolution shortcomings: The Hololens 2 has an order of magnitude lower resolution
compared to the other three sensors. This results in narrow or small objects being misinterpreted or
missed all together. The VLX and P30 generally have the highest density and give the most dense
point cloud which makes it easier to visually identify smaller details. (a) VLX, (b) M6, (c) P30, and
(d) Hololens 2.
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(a) (b)
(c)

(d)

Figure 13. Detailing shortcomings: Modeling detailed beam profiles from the Hololens 2 data is
impossible due to the noise and the reduced resolution. From the data of the high-end devices, the
I-profile can be identified. However, the thickness of the body of the profile remains challenging to
model due to noise. (a) VLX, (b) M6, (c) P30, and (d) Hololens 2.

Overall, the coverage of floors with any sensor is much lower (on average <30%).
The accessibility to the different floor parts is the driving factor for a proper point cloud.
Especially in densely occupied spaces, every sensor struggles to achieve sufficient coverage
to model anything more complex than a simplistic floor. However, the distribution of the
occlusions varies widely between the sensors. The M6 and the P30, in particular, have
large occlusions as they have restricted accessibility. With the other devices, however, it
is possible to walk between obstacles (Figure 11). For the walls, the P30 and the Hololens
2 score on average 25% lower than the two other iMMs. However, their occlusions are
very different with the P30 mainly struggling with clutter and the Hololens 2 missing
large portions of the upper part of the walls due to its limited range. It is argued that the
Hololens 2 occlusions are less impactful as these occlusions do not interfere with the proper
modeling of the walls.

Analogue to the quality estimation, the coverage statistics for beams and columns
are ambiguous as the impact drastically varies with respect to the beam/column type and
the location of the occlusions. For instance, an I-profile, for which the section is partially
occluded, prohibits proper modeling. For the exposed beams, the high-end sensors have
an average coverage of 89%, while the Hololens 2 only achieves 58%. Furthermore, due to
the height of the beams, a large portion of the section is occluded for the Hololens 2. For
the largely occluded columns, all sensors achieve similar coverage as with the walls.

6.2.3. Impact of Detailing

The impact of the detailing of the point clouds varies wildly depending on the class and
the complexity of the objects. For generic walls, ceilings and floor, even an extremely sparse
point cloud suffices to properly model or analyze a LOD350 as-built BIM. In these cases, it
is argued that the density of the P30, NavVis M6, and the NavVis VLX are complete overkill
if their registration algorithms were not also data-driven. For the beams and columns,
the opposite is true, e.g., for a modeler/algorithm to determine the proper beamtype, the
resolution should be less than the flange thickness. For the high-end sensors, the density
surpasses the flange thicknesses of most beam/column types so it is stated that LOD350 can
be achieved with these sensors. The Hololens 2 data on the other hand does not allow the
recognition of the proper beamtype as can be seen in Figure 13. Therefore, the Hololens 2
can only be used for object classes with details larger than 5 cm. With the high-end scanners,
the detailing and resolution is sufficient, on the other hand with the Hololens 2, it must be
possible to go close enough to the object in order to achieve good detailing.
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6.2.4. Impact of Semantic Segmentation

For the RandLA-Net processing, every dataset was processed as an unorganized point
set with the BIM mesh being sampled up to 0.01 m analogue to the synthetic data. As
discussed in the methodology, RandLA-Net was pretrained on Area 6 of the Stanford S3DIS
dataset, which consists of a single-storey indoor office/school environment. It is therefore
important to notice that lower IoU scores are expected for classes and objects that are not
part of this dataset. A very clear indication of this limitation is the poor performance on
the synthetic data, which is supposed to resemble a near perfect environment. The generic
color, combined with the lack of clutter and unexpected data introduces confusion in the
semantic segmentation that was solely trained on real data.

Overall, every dataset was able to be processed by the network at a similar speed as
reported by Hu et al. [36]. For the ceilings and floors, all sensors achieve reasonable results
(avg. 81%) which is expected given the cross-validation of 93% and 96% of the ceilings and
floors of S3DIS Area 6, respectively. However, while in each sensor’s data the main ceiling
is easily found, there is significant confusion with lower ceilings and central pieces of the
floors. These missclassifications appear in similar locations in all datasets due to training
shortcomings of S3DIS. Surprisingly, the lower completeness and quality of the Hololens 2
data do not significantly affect the ceiling or floor classification (Figure 14a).

(a) (b)

(c) (d)

Figure 14. Segmentation shortcomings: Problems in the semantic segmentation that are unrelated to
the input data. (a) Ceilings are correctly labeled despite large parts of missing data, (b) Due to clutter
close to the walls some parts are wrongly labeled, (c) I-profile beam was not recognised in any of the
datasets and (d) Rectangular beams are partially found in most datasets.

For the walls, there is a statistical IoU difference between the Hololens 2 and the M6
(avg. 73%), the P30 (65%), and the VLX (58%). However, the results should be nuanced.
First of all, the driving factor in the wall IoU is the confusion with clutter observations,
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especially near wall detailing. The VLX has the highest completeness and thus documents
more detailing than other sensors, which in turn leads to higher confusion rates. Second,
the wall classification heavily prioritizes precision over recall. As such, relevant parts are
found on nearly all wall surfaces without significant false positives for the different sensors
which is preferred for general BIM reconstructions (Figure 14b).

For the beams and columns, the results are dramatic, which is expected due to the
low cross-validation (beams: 62% and columns: 48%) on Area 6 as a result of limited
observations of these classes. For instance, the I-profile in Lab 3 was not found in any
sensor data due to a lack of training data (Figure 14c). However, there is an important
difference in the classification of each sensor’s data. In Lab 2, the Hololens 2 and P30 only
found 2 out of 9 beams, while the M6 and VLX found 5 (Figure 14d). While the Hololens 2
underperforms due to range limitations, the P30 had systematic occlusion gaps which
significantly lowered the detection rate. For the columns, it is observed that in the synthetic
data, erroneous columns were frequently found near the side faces of the walls where data
were also sampled in occluded areas.

7. Discussion

From the experiments, the relation between the point cloud characteristics and the
subsequent semantic segmentation can be described. Overall, a high completeness is the
most impactful parameter for a successful segmentation, followed by the quality and finally
the detailing. For instance, the P30 data has systematic gaps that negatively impact the
semantic segmentation of beam parts. However, the impact of all three parameters on
the semantic segmentation is rather limited, e.g., in the Hololens 2 data, which in some
regions only contains small patches of ceilings, the majority of isolated patches are still
properly classified. Similarly, systematic occlusions on floors or walls do not necessarily
lead to a worse semantic segmentation. This is also confirmed by other classes and the low
discrepancy between IoU statistics in the experiments. If anything, the training data of the
model is significantly more impactful, e.g., errors are found near the center of ceilings and
floors due to inappropriately trained network weights.

Interestingly, this lack of discrepancy between the classification of different sensor
data is extremely beneficiary for developing generalized deep learning models.

For instance, the training data from different sensors can be combined to train a
network without having to fear it will not properly train the weights. Further, models that
are trained on data from one specific sensor can be used on other sensory data without a
significant drop in performance. It is therefore very likely that synthetic training data can
be added to the already existing training data and that the model will be further improved.
As such, we can make training datasets more balanced and include scenes that would
otherwise be very rare in real-world datasets.

Given the above experiments, the points cloud suitability for the BIM structure classes
can be compiled for each sensor (Table 7). To this end, expert modelers visually inspected
the point clouds and tested whether object class instances their parameters could be reliably
set for the different point clouds. It is important to notice that a proper reconstruction
requires both suitable point cloud characteristics and that the relevant portions of each
object are properly semantically segmented. Overall, the NavVis VLX shows the best results
for LOD200-300 reconstructions. This type of portable system is the ideal setup to achieve
the highest possible accessibility and have an efficient data acquisition without the need
to sacrifice sensor quality due to the weight restrictions. The experiments show that both
abstract wall, ceiling, and floor classes as well as details and beam/column types can be
reliably extracted up to LOD350 from the classified point clouds conform LOA20 and even
LOA30. These systems do need to be supported by total station measurements but the speed
of the data acquisition is sufficiently high to merit this approach. In contrast, TLS is still the
most qualitative approach and allows modeling up to LOA40. However, this technique
struggles to achieve sufficient coverage for LOD350 modeling which also negatively affects
the semantic segmentation. Furthermore, TLS generates massive amounts of redundant
data in overlapping zones and has disproportionately high detailing compared to its
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suboptimal coverage. TLS is among the slowest techniques, but its efficiency can be
increased when used as a standalone solution which is a suitable approach for mid-scale
projects [10]. The NavVis M6 and cart-based systems in general are equally fast as portable
systems and offer similar benefits in terms of speed, accuracy, and semantic segmentation.
As such, they are outperformed by backpack-based systems that have increased accessibility
and thus coverage. Backpack-based systems allow us to map stairs and so connect different
datasets, while this is not supported by most cart-based solutions. Overall, these systems in
2021 are a suitable solution for LOD200–350 modeling up to LOA20, and LOA30 if properly
supported by TS.

Table 7. Overview of the BIM information that can be extracted from of each scanning technology
with regard to the requirements in Table 2.

Classes Leica P30 NavVis VLX NavVis M6 Microsoft Hololens 2

Ceilings LOA40/LOD200 LOA20-30/LOD300 LOA20-30/LOD300 LOA10-20/LOD100
Floors LOA40/LOD200 LOA20-30/LOD300 LOA20-30/LOD200 LOA10-20/LO200
Walls LOA40/LOD300 LOA20-30/LOD350 LOA20-30/LOD350 LOA10-20/LOD200
Columns LOA40/LOD300 LOA20-30/LOD350 LOA20-30/LOD350 LOA10-20/LOD100
Beams LOA40/LOD300 LOA20-30/LOD350 LOA20-30/LOD350 LOA10-20/LOD200

Finally, the Hololens 2 and other head-worn or hand-held devices offer a low-cost
alternative to the above high-end systems. Their coverage rivals that of backpack-based
systems, although the range is restrictive. Additionally, despite their low data quality,
their semantic segmentation is surprisingly good. As such, these systems are capable
of LOD200 modeling/analyses up to LOA10 and even LOA20 if properly supported by
control measurements or in small areas. Currently, the spatial resolution and the accuracy
are the main obstacles to reliably produce LOD300–350 of exact beam/column profiles,
accurate wall thickness, etc. Furthermore, the speed is surprisingly low (3× slower than
high-end mobile mappers) due to the limited field of view and range that both result in
much longer pathing. Overall, these systems are best suited to be used on conjunction with
other mapping systems that also provide proper alignment, i.e., standalone TLS or iMMs
plus TS.

8. Conclusions

In this paper, the relation between the point cloud data acquisition and the unsuper-
vised data interpretation for as-built BIM modeling/analyses is analyzed to advance the
state of the art in point cloud technologies. More specifically, the impact of point cloud data
acquisition technologies on the semantic segmentation for structure classes is analyzed.
First, the sensor capacity of state-of-the-art data acquisition systems is evaluated for the
production of detailed and accurate point cloud data. Secondly, the input point clouds are
analyzed for their modeling/analyses suitability conform the LOD and LOA specifications.
To this end, the input point clouds are processed by a pretrained RandLA-Net so that, for
the first time, the impact of point cloud characteristics on the semantic segmentation are
quantified and related to their information extraction suitability.

In the experiments, four types of sensors were tested: static TLS (Leica P30), cart-
based iMMs (NavVis M6), backpack-based iMMs (NavVis VLX), and head-worn iMMs
(Hololens 2). The point cloud suitability is quantified by the quality, completeness, detailing
of the sensor data, and the IoU of the semantic segmentation. Overall, it is concluded that
the high-end sensors can be used to model/evaluate geometries up to LOD300-350 by
LOA20 and LOA30 if properly supported. Specifically, the NavVis VLX shows the best
results for unsupervised point cloud processing automation due to its high coverage and
accuracy. Other high-end systems achieve similar results but can struggle with occlusions
due lower mobility or slower data acquisition. The low-end Hololens 2 is better suited
for close-range LOA10 and LOA20 applications due to its limited range. An important
conclusion is that the semantic segmentation is not significantly impacted by the large
discrepancies in point cloud characteristics. The accuracy and detailing have little to no
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impact, and while occlusions do impact the results locally, deep learning networks can
overcome this lack of information even for the low-end Hololens 2 data. Overall, we
can state that point-based semantic segmentation models do not significantly suffer from
differences in the input point clouds. What differences remain can easily be overcome
by adding more suitable training data to the network. This poses a great opportunity
for 3D data interpretation, as inputs from multiple sensors can be combined to provide
much needed deep learning models. As such, the currently scarce and heterogeneous point
cloud benchmark datasets can be jointly leveraged. It is important to notice that this sensor
invariance also opens the door to synthetic and automatically labeled training data which
underexplored for 3D scene interpretation.

This work provides crucial information for researchers and software developers to
take into consideration the combined impact of the initial data acquisition and the semantic
segmentation and unsupervised point cloud processing for BIM reconstruction/evaluation.
Specifically, this work will serve as the basis for future work to build deep learning networks
for 3D semantic segmentation that are sufficiently robust for market adoption. The next
steps is to generate more (synthetic) data for these networks and investigate whether
texture or imagery can offer complementary information to improve the interpretation and
reconstruction of heavily occluded building environments.
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