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Abstract: Frequency diverse array (FDA) produces a beampattern with controllable direction and
range by slightly shifting the carrier frequencies across the elements, which is attractive in many
applications. By further incorporating coprime array structure and coprime frequency offsets, im-
proved degrees-of-freedom and spatial/range resolutions have been achieved. For such a relatively
new array configuration, theoretical performance analyses are essential to explore the potentials and
to facilitate practical implementation. In this work, we consider coprime-FDA-based joint/separate
angle-range estimation of far-field targets that exhibit two different types of Swerling fluctuation
behavior, which are respectively modelled as deterministic and stochastic sources. Analytical ex-
pressions of the Cramér–Rao bounds (CRB) and numerical simulations for both cases are provided.
The results reveal that the relationship between CRB and coprime FDA parameters is not simply
monotonic. As shown in the numerical simulations, the CRB of coprime FDA outperforms that of
uniform FDA-MIMO for more than 60% under commonly-adopted coprime patterns. The presented
results can be used as a guideline for optimal design of coprime FDA.

Keywords: Cramér–Rao bound (CRB); direction of arrival (DOA); parameter estimation; coprime
array; frequency diverse array (FDA)

1. Introduction

The concept of frequency diverse array (FDA) was first proposed by Antonik et al.
in 2006 [1,2]. In the pioneer work, a small and progressive frequency offset upon the
carrier frequency is applied across the radiating elements. The use of element-to-element
frequency offset generates a time-range-angle-dependent beampattern. Such a pattern
is highly attractive for numerous applications including radar target localization [3–5],
synthetic aperture radar (SAR) imaging [6,7], and wireless communications [8], since it
enhances the flexibility of beam scanning and offers the potential to resist interference in a
specific spatial region [9]. Nevertheless, the FDA beampattern generally exhibits periodicity
in angle, range, and time [10,11]. Additionally, a standard FDA, i.e., a uniform linear FDA
employing linearly increasing frequency offsets, yields coupling angle and range responses
in the far-field beampattern. These unfavorable characteristics conspire to a spatiotemporal
periodic S-shaped energy distribution in the angle-range plane, which further leads to
ambiguity in target localization.

Owing to the fact that the FDA beampattern distribution can be controlled by tuning
the frequency offsets, various solutions, such as time-dependent [12], logarithmic [13,14],
and random [15] offsets, have been suggested to achieve a spatial-focusing and also
preferably a time-invariant beampattern. Some sophisticated selection mechanisms have
also been designed, which includes a transmit subarray strategy [16], adaptive selection
scheme [17], and a multi-carrier transmission scheme [18,19], to name but a few. Addition-
ally, by imposing certain evaluation metrics and penalty functions, the problem of frequency
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offset selection can be recast as an optimization problem [19]; different algorithms [20–22]
have been employed to determine the optimal frequency offset.

The FDA angle-range estimation can also be decoupled from an array structure per-
spective. For example, many efforts have been made to incorporate the multiple-input
multiple-output (MIMO) concept into FDA [4,23,24] to form a range-dependent-only beam-
pattern. For MIMO enjoys the merits of increased degrees-of-freedom (DoF) and spatial
diversity gain [25], it has attracted considerable interests. On the other hand, several types
of sparse arrays have emerged to provide an enlarged array aperture and to overcome
the DoF limitation for a given number of physical sensors. Among these sparse arrays,
nested and co-prime configurations are compelling because they are more flexible and
permit systematical design guided by explicit close-form expression [26,27]. But the latter
is usually preferred, primarily due to the reduced mutual coupling [28,29]. FDA-MIMO
radars exploit the DoF in the angle-range domain to jointly estimate the direction and
range parameters of the targets [23]. In order to further achieve an improved DoF and
spatial/range resolutions, a coprime FDA is proposed [30]. On the one hand, by incorpo-
rating the idea of coprime sampling to circumvent the limitation of physical sampling and
using the virtual difference coarray concept, coprime FDA shows prominent advantages
in terms of DOA-range resolution, localization accuracy, and the number of resolvable
targets. Under the space-frequency difference equivalence of a coprime FDA, the unqiue
non-negative lags of coarray produce extensive DoFs compared to the physical array [31].
On the other hand, the robustness of the coprime configuration in spatially filtering the
interference [32] shows huge potential of adaptive beamforming using coprime FDA.

Objective performance analysis and optimal subarray design strategy are of paramount
importance for arrays in practice, and they are often interconnected. In general, the Cramér–
Rao bound (CRB) serves as a statistical benchmark to evaluate the degree of suboptimality
that a certain unbiased parameter estimator exhibits. CRB also provides insights into the
optimization of the array structure (cf., e.g., [20,33–35]). In the field of array signal process-
ing, conventional research with respect to CRB mostly focuses on DOA estimation [36–38].
Motivated by the potentials of coprime FDAs and given the fact that their CRBs with respect
to joint DOA-range estimation and the dependence between joint and separate estimations
remain as yet uninvestigated, the technical contributions of this work are threefold, which
are summarized as follows.

• In an attempt to capture the amplitude fluctuation of a target signal return due to the
temporal variations of radar cross-section (RCS), Swerling models were established.
Swerling 0 model [39,40] is associated with non-fluctuating RCS, and the radar return
of such a target type shows deterministic characteristics. For complex targets that have
many small surfaces and joints with different orientations, a Swerling I target-type
model [41] is used, and the corresponding receive signal is subject to a stochastic
model. In this work, we investigate far-field target detection, and both deterministic
and stochastic signal models are considered.

• CRB identifies the potential performance of a signal model with the variance lower
bound of unbiased estimation. For DOA-range estimation, the prior information of the
radar target makes an impact on the CRB result. In this work, this issue is described as
separate parameter estimation, i.e., CRB of DOA (range) estimation while range (DOA)
is known. The relation between CRB of separate parameter estimation and CRB of
joint estimation is studied via Fisher information with respect to angle and range.

• Analytical form expressions are derived for the input signal-to-noise ratio (SNR)
and CRBs of DOA and range. Accordingly, numerical simulations are presented to
compare CRBs for deterministic and stochastic source cases, and separate parameter
estimation and joint estimation models. According to the analyses of CRB results,
an intuitive method for coprime FDA design is proposed based on CRB minimization.

This paper is organized as follows. In Section 2, the configuration of coprime FDA
and the transmit-receive steering vectors in deterministic case and stochastic cases are
formulated. Based on the steering vectors, the array signal model is given. In Section 3,
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the explicit analytical form CRBs of joint estimation and separate estimation in deterministic
signal cases are derived in terms of Gaussian distribution probability density function (PDF).
When it comes to the stochastic signal case, the CRB is derived on the basis of the matrix
form solution [42] in Section 4. Moreover, Section 5 presents some numerical simulations of
CRBs in deterministic and stochastic source cases for different uniform FDA structures and
coprime FDA structures. The comparisons of CRBs in different scenarios, i.e., two kinds of
statistical characteristics and joint/separate estimation are analyzed. Ultimately, we make
our conclusion in Section 6.

Notations: Lower (upper)-case bold characters are used to denote vectors (matrices).
Vectors are by default in column orientation. (·)T and (·)H respectively represent the
transpose and Hermitian operators of a matrix. tr(·) returns the trace of a matrix. Symbol
� stands for the Hardmard-product. E[·] returns the expected value of a discrete random
variable. ∇ is the Nabla symbol. < returns the real part of a complex value. Operators (·)⊥
represents the ortho-complement of a projector matrix.

2. Signal Model

In this work we consider a coprime FDA that consists of two collocated uniform linear
subarrays. The transmit and receive subarrays respectively have N and M elements, where
N and M are coprime integers. The array configuration of the coprime FDA is illustrated
in Figure 1.

Receive

Transmit

#1 #2 #3 #M

#1 #2 #3 #N

Nd

Md

Figure 1. Configuration of the coprime FDA under investigation.

We assume that the unit inter-element spacing d is λ/2, where λ denotes the wave-
length. For a coprime FDA, a frequency increment as a multiple of ∆ f is applied across
the array element. As such, the carrier frequency of the nth transmit element can be
expressed as

fn = f0 + (n− 1) ·M · ∆ f , n = 1, 2, · · · , N, (1)

where f0 represents the FDA carrier frequency.
In array signal processing, the modelling of signal sources commonly falls into two

categories [43], i.e., the deterministic and stochastic models. The former model category is
adopted to describe the Swerling 0 type radar targets [39,40] and also in wireless communi-
cations [44]. The latter is related to Swerling I type targets and generic interferences [45]
in radar applications as well as acoustic signals [46], where the signals are assumed to
be driven by a Gaussian random process. In the following, we investigate radar detec-
tion performance for Swerling 0 and I targets, where the receive signals are respectively
represented by deterministic and stochastic models.

2.1. Deterministic Signal Model

We first establish a deterministic signal model in this subsection. As stated above, we
assume that a priori knowledge on the scattered waveform from the target is accessible
to the radar operators. Consider a far-field Swerling 0 target at position (θ, r), where
r ∈ [0, c/2∆ f ] denotes the range from the far-field target to the first element and θ ∈
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[−π/2, π/2] denotes the angle between arrival direction and array normal. Then, in the
transmit stage, the phase of the signal radiated from the first element is

ϕ1 =
2π f1

c
r. (2)

Likewise, we can express the phase of the signal transmitted from the second ele-
ment as

ϕ2 =
2π f2

c
(r−Md sin θ) =

2π( f0 + M∆ f )
c

(r−Md sin θ). (3)

The phase difference between the first and the second elements caused by the path
length difference is

∆ϕ2 = ϕ2 − ϕ1 =
2π

c
(− f0Md · sin θ + M∆ f · r−M2∆ f d · sin θ). (4)

Similarly, the phase of the signal transmitted from the nth transmit element is

ϕn =
2π fn

c
(r− (n− 1)Md sin θ) =

2π( f0 + M(n− 1)∆ f )
c

(r− (n− 1)Md sin θ). (5)

The phase difference ∆ϕn between the first and the nth transmit element is

∆ϕn = ϕn − ϕ1 =
2π

c

[
− f0(n− 1)Md · sin θ + (n− 1)M∆ f · r−M2(n− 1)2∆ f d · sin θ

]
. (6)

By taking the first transmit element as the reference, the transmit steering vector
at(θ, r) is given by

at(θ, r) = [ at1(θ, r), at2(θ, r), · · · , atN(θ, r) ]T, (7)

where atn(θ, r) = e∆ϕn , n = 1, · · · , N, and  =
√
−1.

In the receive stage, the receive steering vector corresponding to the carrier frequency
fn = f0 + (n− 1)M∆ f can be derived as

arn(θ, r) = exp
(

2π·(n−1)M∆ f ·r
c

)
·[

1, exp
(
− 2π

c ( f0 + (n− 1)M∆ f )Nd sin θ
)
, · · · ,

exp
(
− 2π

c ( f0 + (n− 1)M∆ f )(M− 1)Nd sin θ
) ]T.

(8)

The first term denotes the phase shift caused by carrier frequency fn, and the vector in
the steering vector corresponds to the sparse receive array. To concentrate on the impact
of coprime FDA structure, we consider an ideal case without mutual coupling and other
hardware impairments in this work. Therefore, the overall transmit-receive steering vector
a(θ, r) ∈ CMN×1 which captures the phase difference generated in the transmit-receive
stages can be written as

a(θ, r) =
[

at1(θ, r) · aT
r1, · · · , atN(θ, r) · aT

rN

]T
. (9)

More concretely, the entry in a(θ, r) that corresponds to the nth transmit element and
the mth receive element is

an,m(θ, r) = exp
(
− 

2π

c
(

f0M
(
n− 1

)
d sin θ − 2∆ f M

(
n− 1

)
r + ∆ f M2(n− 1

)2d sin θ
))

· exp
(
− 

2π

c
(

f0 + M(n− 1)∆ f
)(

m− 1
)

Nd sin θ

)
. (10)
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Overall, the output of matched filter corresponding to the nth transmit element and
the mth receive element can be expressed as

yn,m(k) = an,m(θ, r)sdet(k) + nn,m(k), k = 1, · · · , K, (11)

where sdet(k), k = 1, · · · , K denotes a signal with non-zero mean and zero variance [45]. Fur-
thermore, nn,m(k) is the additive white Gaussian noise. Stacking yn,m(k) for all n =1, · · · , N
and m = 1, · · · , M yields an MN × 1 vector and we have the deterministic receive sig-
nal vector

ydet(k) = a(θ, r)sdet(k) + n(k), k = 1, · · · , K. (12)

2.2. Stochastic Signal Model

In this subsection we discuss the stochastic signal model that is used in Swerling I type
target detection. Concretely, the statistics are governed by a chi-squared probability density
function with two DoFs, and the echoed signal is modelled as a complex Gaussian process
with zero mean and known variance. Suppose that we have a target at (ψ, l). By following
a similar derivation to (12), we obtain the stochastic receive signal vector below:

ysto(k) = a(ψ, l)ssto(k) + n(k), k = 1, · · · , K, (13)

where ssto(k), k = 1, · · · , K denotes a stochastic signal driven by a complex Gaussian
process N (0, δ2

s ). We so far have established two different signal models for coprime FDA,
which serve as the foundation for the following analyses of CRBs for joint DOA-range
estimation in the following sections.

3. CRB of Deterministic Signal for Coprime FDA
3.1. Deterministic Signal Model and CRB Derivation

The deterministic CRB is the lower bound of the square error for target parameter
estimation, which precisely defines the performance boundary of a specific array system,
and is commonly used as the benchmark for the evaluation of estimation algorithms [43].
In this section, we derive the CRB of deterministic signal model.

Recall that the far-field target is located at (θ, r). The matched filter at output of the
receive antenna array can be expressed as (12). The covariance matrix of the zero-mean
complex Gaussian white noise vector n(k) is

Rn = E
[
n(k)nH(k)

]
= σ2

nIMN , (14)

where σ2
n is the noise power, and IMN denotes the MN ×MN identity matrix.

For simplicity of derivation, the subscript of ydet(k) is omitted and the estimation
parameters (θ, r) are denoted as α. We first consider the single-snapshot case, in which the
observed vector follows a Gaussian distribution, i.e., y ∼ N (my(α), σ2

nIMN), where my(α)
represents the mean value of the observed vector y. As such, the PDF of y is

Py|α(y) =
1

det(πRn)
· exp {−(y−my(α))R−1

n (y−my(α))
H}, (15)

where det(·) denotes the matrix determinant. Then, the log-likelihood function of y is
expressed as

Ly(α) , ln Py|α(y) = − ln det(πRn)− {(y−my(α))R−1
n (y−my(α))

H}. (16)
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The CRB gives the lower bound of the variance of unbiased estimation for parameter
set α, which is denoted as â. That is to say, the covariance matrix C(α) , E[(α̂− α)(α̂− α)T]
satisfies the following inequality:

C(α) � CCR(α) , J−1, (17)

where J is the Fisher information matrix (FIM) giving by

J = −E
[
∇α∇α

TLy(α)
]
, (18)

and ∇α =
[

∂
∂θ

∂
∂r

]T
. Furthermore, for deterministic signals,

Ji,j =
∂2

∂αi∂αj
[Ly(α)] = 2 · <

{
∂mH

y (α)

∂αi
· R−1

n ·
∂my(α)

∂αj

}
, (19)

where Ji,j represents the element of the ith row and the jth column, αi represents the ith
parameter in α. The detailed proof of (19) can be found in Appendix A. Therefore, the CRBs
for parameter estimation are obtained as follows

CRB(α) =

CRB(θ)

CRB(r)

 = diag(J−1 � I), (20)

where diag(·) returns the diagonal elements of the matrix as a vector.

3.2. CRB of Joint DOA-Range Estimation

As mentioned above, the steering vector of coprime FDA is a function of both range
and angle which leads to the capacity of joint DOA-range estimation. For the situation
where the DOA and the range of the far-field target are both unknown and need to be
estimated jointly, the corresponding FIM is expressed as

J =

Jθθ Jθr

Jrθ Jrr

. (21)

Based on the deterministic signal model established in Section 2.1, we first derive
the analytical expression of Fisher information with respect to θ. Formula (19) is first
rewritten as

J1,1 =
∂2

∂θ2 [Ly(α)] = 2 ·
∂mH

y (α)

∂θ
· R−1

n ·
∂my(α)

∂θ
= 2 ·

A2
y

σ2
n
· ∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂θ
, (22)

where A2
y = |my(α)|2 represents the power of the deterministic signal. For each element

an,m(θ, r) in the steering vector a(θ, r), we readily obtain

∂an,m(θ, r)
∂θ

= an,m(θ, r)·(−η)·
{

f0 ·[M(n−1)+N(m−1)]

+∆ f · [M2(n− 1)2 + MN(m− 1)(n− 1)]
}

,
(23)

where η = 2πd cos θ/c. Substituting (23) into (22) and considering the property ∆ f 2 � f 2
0 ,

we have the following approximation
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∂aH(θ, r)
∂θ

· ∂a(θ, r)
∂θ

= η2 f 2
0

M−1

∑
m=0

N−1

∑
n=0

(Mn + Nm)2

+ η2∆ f 2
M−1

∑
m=0

N−1

∑
n=0

(M2n2 + MNmn)2 + 2η2∆ f f0

M−1

∑
m=0

N−1

∑
n=0

(M3n3 + 2M2Nmn2 + MN2m2n)

≈η2 f 2
0

(
M3

N−1

∑
n=0

n2 + N3
M−1

∑
m=0

m2 + 2MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)

+ 2η2∆ f f0

(
M4

N−1

∑
n=0

n3 + 2M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2 + MN2
M−1

∑
m=0

m2
N−1

∑
n=0

n
)

. (24)

Accordingly, the Fisher information with respect to θ for the coprime FDA can be
expressed as (25),

Jθθ = J1,1

= 2 · SNR · 4π2d2cos2θ

c2 ·
{

f 2
0 ·
(

M3
N−1

∑
n=0

n2 + N3
M−1

∑
m=0

m2 + 2MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)

+ 2 · ∆ f f0 ·
(

M4
N−1

∑
n=0

n3 + 2M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2 + MN2
M−1

∑
m=0

m2
N−1

∑
n=0

n
)}

= 2 · SNR · 4π2d2 cos2 θ f0

c2 ·
{

f0 ·
(
7M3 − 6M2 + M

)
N3 +

(
− 6M3 + 3M2)N2 + M3N

6

+ ∆ f ·
(
9M4 − 7M3 + M2)N4 +

(
− 14M4 + 9M3 −M2)N3 +

(
5M4 − 2M3)N2

6

}
. (25)

We next consider the Fisher information with respect to r. Similar to the derivation of
(22), we obtain the Fisher information with respect to r as follows:

J2,2 =
∂2

∂r2 [Ly(α)] = 2 ·
A2

y

σ2
n
· ∂aH(θ, r)

∂r
· ∂a(θ, r)

∂r
. (26)

We also get

∂an,m(θ, r)
∂r

= an,m(θ, r) · 2π∆ f
c
· (n− 1)2M, (27)

and
∂aH(θ, r)

∂r
· ∂a(θ, r)

∂r
=

(
2π∆ f

c

)2
· 4M3 ·

N−1

∑
n=0

n2. (28)

Thus, the Fisher information with respect to r is expressed as

Jrr = J2,2 = 2SNR · 4π2∆ f 2

c2 · 4M3 ·
N−1

∑
n=0

n2

= 2 · SNR · 4π2∆ f 2

c2 ·
(

8M3N3 − 12M3N2 + 4M3N
6

)
. (29)

Thus far, Jθθ and Jrr have been derived. In addition, we know that Jθr = Jrθ and
we have

J1,2 = 2 · <
{

∂mH
y (α)

∂θ
· R−1

n ·
∂my(α)

∂r

}
= 2 ·

A2
y

σ2
n
· <
{

∂aH(θ, r)
∂θ

· ∂a(θ, r)
∂r

}
. (30)
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We further obtain

∂aH(θ, r)
∂θ

· ∂a(θ, r)
∂r

=
8π2d cos θ∆ f

c2 ·{
f0
(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)
+ ∆ f

(
M4

N−1

∑
n−0

n3 + M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2)}. (31)

Hence, Fisher information with respect to θ and r is computed as (32),

Jθr = J1,2 = 2 · SNR · 8π2d cos θ∆ f
c2 ·{

f0

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n

)
+ ∆ f

(
M4

N−1

∑
n−0

n3 + M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2

)}

= 2 · SNR · 8π2d cos θ∆ f
c2 ·

{
f0 ·

(
7M3 − 3M2)N3 +

(
− 9M3 + 3M2)N2 + 2M3N

12

+ ∆ f ·
(
5M4 − 2M3)N4 +

(
− 9M4 + 3M3)N3 +

(
4M4 −M3)N2

12

}
. (32)

Substituting (25), (29) and (32) into (20) yields the analytical expression of the CRB for
the joint DOA-range estimation, given as

CRBθ =
[
J−1]

1,1 =
1

Jθθ − Jθr Jrθ
Jrr

, (33)

CRBr =
[
J−1]

2,2 =
1

Jrr − Jθr Jrθ
Jθθ

, (34)

where
[
·
]

i,j denotes the element of the ith row and the jth column. For the K-snapshot
case, the Fisher information are scaled up by a factor of K on the basis of (25), (29) and (32).
As a result, the CRBs are scaled down by a factor of K on the basis of (33) and (34).

According to above results, we notice that all Fisher information increase with the
coprime FDA parameters, i.e., coprime integers M, N and the carrier increment ∆ f . Clearly,
the Fisher information Jθθ of an FDA is generally greater than or equal to that of a phased
array and, in particular, the equality holds when ∆ f = 0. Nevertheless, this does not lead
to the conclusion that CRBθ decreases with the increase of ∆ f . The reason is that the CRB of
joint DOA-range estimation is also influenced by the fisher information Jθr, which increases
with ∆ f . As a result, the mutual dependence of the DOA and the range estimations are
stronger in the joint estimation case. As will be shown in the numerical results of Section 5,
the relationship between CRBθ and ∆ f is nonmonotonic.

3.3. CRB of Separate Estimation

If either parameter of α = (θ, r) is known, the problem of joint parameter estimation
degrades to a separate parameter estimation problem. In this subsection, we assume a
certain one of the target parameters is known from a previous detection [47,48]. Based
on the Fisher information with respect to θ and r established in Section 2.2, we derive the
analytical expression of CRB of DOA (range) estimation with coprime FDA parameters
while the range (DOA) is known. The CRBs of separate estimation, which are denoted as
SCRB, are given by

SCRBθ =
1

Jθθ
and SCRBr =

1
Jrr

. (35)

We readily observe from (35) that, SCRBθ decreases with the increase of the coprime
FDA parameters, but the impact of ∆ f to SCRBθ is very limited, for coprime FDA is narrow-
band in nature. This result agrees with our common sense that the performance of DOA
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estimation is fundamentally determined by the array aperture. Likewise, SCRBr decreases
with the increase of the coprime FDA parameters.

4. CRB of Stochastic Signal for Coprime FDA
4.1. Stochastic Signal Model and CRB Derivation

In the following, we examine the stochastic signal case and derive the CRB for param-
eter estimation in coprime FDA. For notational convenience, we also simplify ssto(k) and
the estimation parameters (ψ, l) as s(k) and ξ, respectively. The mean and variance of the
observed vectors ysto(k) are respectively assumed to be

my(ξ) = 0, (36)

Ry(ξ) = aσ2
s aH + σ2

nIMN . (37)

The log-likelihood function of y is expressed as

Ly(ξ) , ln Py|ξ(y) = − ln det(πRy)− yR−1
y yH, (38)

where det(·) represents the matrix determinant. Similar to the deterministic signal case,
according to the matrix form solution [42], the FIM of stochastic signal can be written as

J = −E
[
∇ξ∇ξ

TLy(ξ)
]
=

2
σ2

n
<{(σs

2aR−1
y aσs

2) · (∇ξaHP⊥a ∇ξa)}, (39)

where ∇ξ =
[

∂
∂ψ

∂
∂l

]T
and P⊥a = I− a(aHa)-1aH. In order to facilitate the numerical

computing, the former factor in (39) is expressed as

σs
2aHR−1

y aσs
2 = [I− aHaΣ(aHaΣ + I)−1]aHaΣ =

MN · SNR
1 + MN · SNR

· σ2
s , (40)

where Σ = σ2
s /σ2

n = SNR. The readers are referred to the proof given in Appendix B for
more details. The latter factor in (39) can be reformulated as

∇ξaHPa
⊥∇ξa = ∇ξaH[I− a(aHa)

−1
aH]∇ξa = ∇ξaH · ∇ξa− 1

MN
· ∇ξaH · aaH · ∇ξa. (41)

Hence, the FIM of stochastic signal can be derived as

J = 2 · MN · SNR2

1 + MN · SNR
·
(
∇ξaH · ∇ξa− 1

MN
· ∇ξaH · aaH · ∇ξa

)
. (42)

4.2. CRB of Joint DOA-Range Estimation

Similar to the analysis of the deterministic signals, in deriving the analytical form CRB
of joint DOA-range estimation, the corresponding joint FIM is expressed as

J =

Jψψ Jψl

Jlψ Jll

. (43)

According to Formula (42), the Fisher information with respect to ψ is

J1,1 =2 · MN · SNR2

1 + MN · SNR
·
(

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂ψ

− 1
MN

· ∂aH(ψ, l)
∂ψ

· aaH · ∂a(ψ, l)
∂ψ

)
. (44)
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For arbitrary element an,m(ψ, l) in the steering vector a(ψ, l), which corresponds to the
nth transmit element and the mth receive element, we have

∂an,m(ψ, l)
∂ψ

=
∂an,m(θ, r)

∂θ

∣∣
θ=ψ,r=l . (45)

Since ∆ f 2 � f 2
0 , we further have

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂ψ

=
∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂θ
|θ=ψ,r=l , (46)

and

∂aH(ψ, l)
∂ψ

· aaH · ∂a(ψ, l)
∂ψ

=

∣∣∣∣∣∣∣∣∂aH(ψ, l)
∂ψ

· a
∣∣∣∣∣∣∣∣2

= ϑ2

{
f0

(
M2

N−1

∑
n=0

n + N2
M−1

∑
m=0

m

)
+∆ f

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n

)}2

, (47)

where ϑ = 2πd cos ψ/c. Substituting (47) into (44), the Fisher information with respect to ψ
is derived as (48),

Jψψ = 2 · MN · SNR2

1 + MN · SNR
· 4π2d2 cos2 ψ f0

c2 ·
{

f0 ·
(

M3
N−1

∑
n=0

n2 + N3
M−1

∑
m=0

M2 + 2MN
M−1

∑
m=0

M
N−1

∑
n=0

N
)

+ 2 · ∆ f ·
(

M4
N−1

∑
n=0

n3 + 2M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2 + MN2
M−1

∑
m=0

m2
N−1

∑
n=0

n
)
− f0

MN
·
(

M2
N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)2

− 2 · ∆ f
MN

·
(

M2
N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)}

= 2 · MN · SNR2

1 + MN · SNR
· 4π2d2 cos2 ψ f0

c2 ·
{

f0 ·
(
2M3 −M

)
N3 −M3N

12

+ ∆ f ·
(
4M4 −M3 −M2)N4 +

(
− 3M4 + M2)N3 +

(
− 3M4 + M3)N2 + 2M4N

12

}
. (48)

In the same way, the Fisher information with respect to l is

J2,2 = 2 · MN · SNR2

1 + MN · SNR
·
(

∂aH(ψ, l)
∂l

· ∂a(ψ, l)
∂l

− 1
MN

· ∂aH(ψ, l)
∂l

· aaH · ∂a(ψ, l)
∂l

)
. (49)

For arbitrary element an,m(ψ, l), we can get

∂an,m(ψ, l)
∂l

=
∂an,m(θ, r)

∂r
∣∣
θ=ψ,r=l . (50)

Likewise, the first term in between the parentheses in (49) can be reformulated as

∂aH(ψ, l)
∂l

· ∂a(ψ, l)
∂l

=
∂aH(θ, r)

∂r
· ∂a(θ, r)

∂r
|θ=ψ,r=l , (51)

and the latter term can be derived as

∂aH(ψ, l)
∂l

· aaH · ∂a(ψ, l)
∂l

=

∣∣∣∣∣∣∣∣∂aH(ψ, l)
∂l

· a
∣∣∣∣∣∣∣∣2 =

4π2∆ f 2

c2

{
2M2

N−1

∑
n=0

n
}2

. (52)
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Then, the Fisher information with respect to l is expressed as

Jll = 2 · MN · SNR2

1 + MN · SNR
· 4π2∆ f 2

c2 · 4M3 ·
{ N−1

∑
n=0

n2 − 1
N

( N−1

∑
n=0

n
)2}

= 2 · MN · SNR2

1 + MN · SNR
· 4π2∆ f 2

c2 · M3N3 −M3N
3

. (53)

In the scenarios where the DOA and the range of the stochastic signal source are both
unknown and need to be estimated jointly, the Fisher information with respect to ψ and l is
expressed as

Jψl = J1,2 = 2 · MN · SNR2

1 + MN · SNR
·
(

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂l

− 1
MN

· ∂aH(ψ, l)
∂ψ

·aaH · ∂a(ψ, l)
∂l

)
. (54)

The two terms in between the parentheses in (54) are respectively further developed as

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂l

=
∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂r
|θ=ψ,r=l , (55)

and

∂aH(ψ, l)
∂ψ

· aaH · ∂a(ψ, l)
∂l

=
8π2d cos ψ∆ f

c2 ·
{

f0

(
M2

N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)

+ ∆ f
(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)}
·M2

N−1

∑
n=0

n. (56)

As such, the Fisher information with respect to ψ and l is derived as (57),

Jψl = 2 · MN · SNR2

1 + MN · SNR
· 8π2d cos θ∆ f

c2 ·{
f0 ·
(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)
+ ∆ f ·

(
M4

N−1

∑
n=0

n3 + M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2
)

− 1
MN

[
f0 ·
(

M2
N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)
− ∆ f ·

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)]
·
(

M2
N−1

∑
n=0

n
)}

= 2 · MN · SNR2

1 + MN · SNR
· 8π2d cos θ∆ f

c2 ·
{

f0 ·
M3N3 −M3N

12
+ ∆ f ·

(
3M4 −M3)N4 − 5M4N3 + M3N2 + 2M4N

24

}
. (57)

Substituting (48), (53) and (57) into (43) yields the analytical expression of the CRB for
the joint DOA-range estimation in stochastic signal case, i.e.,

CRBψ =
[
J−1]

1,1 =
1

Jψψ −
Jψl Jlψ

Jll

, (58)

CRBl =
[
J−1]

2,2 =
1

Jll −
Jψl Jlψ
Jψψ

. (59)

Note that, the K-snapshot PDF Py1,y2,··· ,yK |α(y) is the product of K single-snapshot
PDFs and the result resembles the aforementioned situation of the deterministic signal.
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4.3. CRB of Separate Estimation

Similar to the deduction in the deterministic signal case, the analytical expression of
CRB of DOA (range) estimation while range (DOA) is known can be expressed as

SCRBψ =
1

Jψψ
and SCRBl =

1
Jll

. (60)

We can see from (58), (59) and (60) that, the dependence of CRBψ (SCRBψ) and the
coprime FDA parameters M, N, and ∆ f is quite similar to that in the deterministic signal
case. On the other hand, CRBl (SCRBl) decreases with the increase of the coprime FDA
parameters. The detailed analyses will be provided in Section 5.

5. Numerical Simulations and Analyses

In this section, numerical simulations are presented to exemplify the CRBs in different
scenarios. We assume that the coprime FDA under investigation operates at the X-band
with a carrier frequency of f0 = 10 GHz. Both deterministic and stochastic signal cases
are investigated in the simulations. The location of the deterministic and stochastic signal
sources are set as α = ξ, and the azimuth angle is 30◦ while the range is 2.8 km. To observe
and analyze the CRB of coprime FDA, the following commonly-used coprime designs are
simulated as examples: (a) M = 5, N = 3, ∆ f = 15 kHz; (b) M = 7, N = 3, ∆ f = 15 kHz;
(c) M = 5, N = 4, ∆ f = 15 kHz; (d) M = 5, N = 3, ∆ f = 30 kHz; (e) M = 7, N = 3, ∆ f =
30 kHz; (f) M = 5, N = 4, ∆ f = 30 kHz. Note that the CRB results can be easily extended
to other parameter settings using the closed-form solutions. We also include the CRBs of
uniform FDA-MIMO [49] with the same number of array sensors in the numerical analyses
to demonstrate the benefits of coprime configuration. The markers on the curves are used
to distinguish between the CRBs of coprime and uniform FDAs.

Figure 2 shows the results of deterministic CRBθ and stochastic CRBψ for joint esti-
mation versus SNR. The zoomed-in view in Figure 2a,b indicates that the impact of the
frequency increment values on the CRBs of DOA estimation is trivial. Figure 3 presents the
curves of the deterministic CRBr and stochastic CRBl versus SNR. We can see from Figure 3
that, in both deterministic and stochastic cases, the CRBs of range estimation decrease with
the increase of the coprime FDA parameters M, N, and ∆ f . Furthermore, in contrast to
the DOA estimation, the range estimation performance is significantly influenced by the
unit frequency increment ∆ f . As for the comparison between the coprime FDA and the
uniform FDA-MIMO, we infer from the numerical results that the CRB of coprime FDA
is more than 60% which is lower than that of uniform FDA-MIMO owing to the coprime
configuration. The CRB performance for the detection of signals with different statistical
characteristics is evaluated in Figure 4. Three groups of array design are simulated for
deterministic and stochastic signal models. The simulation results suggest that the deter-
ministic CRB outperforms the stochastic one, which tallies with the common knowledge in
array signal processing.

In the following, we investigate the variation of angle CRB with the increase of
frequency increment ∆ f . A variable ∂CRB is used to quantify the magnitude of the CRB
variation, which is defined as

∂CRB ,
CRBB −CRB0

CRB0
, (61)

where CRB0 and CRBB denote the CRB of DOA when bandwidth is 0 and B, respectively.
We let B and κ = B/ f0 respectively denote the overall and relative bandwidth of the
coprime FDA. To ensure that the narrow-band assumption of coprime FDA is met, we
assume that κ is confined to ≤0.1. As depicted in Figure 5a, CRBs of DOA estimation in
stochastic signal case decline with the increase of ∆ f . The curves in Figure 5a also implies
a non-monotonic dependence of the deterministic CRBθ on the bandwidth. From (32)
we notice that Jθr increases with the increase of ∆ f . Hence, the dependence between
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parameters in the joint estimation cases is stronger. As a result, deterministic CRBθ first
decreases and then increases when the bandwidth reaches a certain level. Nevertheless,
in the case of joint estimation of stochastic signals as shown in Figure 5b, this phenomenon
is inconspicuous.
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Figure 2. CRB of DOA in joint DOA-range estimation. (a) Deterministic signal case. (b) Stochastic
signal case.
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Figure 3. CRB of range in joint DOA-range estimation. (a) Deterministic signal case. (b) Stochastic
signal case.
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Figure 4. Comparison between two types of CRB. (a) CRB of DOA estimation in deterministic case
and stochastic case. (b) CRB of range estimation in deterministic case and stochastic case.
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Figure 5. Influence of ∆ f on the DOA estimation performance. (a) ∂CRBθ
and ∂CRBψ

versus κ.
(b) ∂SCRBθ

and ∂SCRBψ
versus κ.

We compare the CRBs of separate and joint estimations under both deterministic
and stochastic signal models, which are respectively given in Figures 6 and 7. In addi-
tion, we examine the root mean square errors (RMSEs) of the classical spatial spectrum
estimation algorithms including the two-dimensional MUltiple SIgnal Classification (2-
D MUSIC) [50] and two-dimensional minimum variance distortionless response (2-D
MVDR) [51], and compare them with the CRBs. We observe from Figure 8 that both the
RMSEs of 2-D MUSIC and 2-D MVDR can approach the CRB gradually as SNR increases.
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Figure 6. CRBs of joint/separate DOA-range estimations in deterministic signal case. (a) CRB of
DOA estimation. (b) CRB of range estimation.
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Figure 7. CRBs of joint/separate DOA-range estimations in stochastic signal case. (a) CRB of DOA
estimation. (b) CRB of range estimation.
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Figure 8. RMSEs of 2-D MUSIC and 2-D MVDR algorithm. The coprime FDA parameters are set as
M = 5, N = 3 and ∆ f = 15 kHz. The number of snapshots is set as 100 and the result is obtained
through 500 Monte Carlo trials. (a) RMSE of DOA estimation. (b) RMSE of range estimation.

In addition to the analyses of the numerical results, from the analytical form expres-
sions given in (33)–(35) and (58)–(60), we arrive at the following remarks.

• Deterministic CRBr (SCRBr) and stochastic CRBl (SCRBl) are independent of the
range, meaning that the range of signal source has no influence on the CRB of range
estimation from the premise that the path loss is not considered.

• Since a coprime FDA is narrow-band in nature, the frequency-increment-induced
phase difference with respect to angle is much smaller than the array-spacing-induced
one. As such, deterministic CRBθ and stochastic CRBψ are weakly dependent on the
frequency increment ∆ f (see Figure 2). This is, however, not the case for determin-
istic CRBr (SCRBr) and stochastic CRBl (SCRBl). Furthermore, the range estimation
performance improves with the increase of the frequency increment (see Figure 3).

• Connecting to frequency increment ∆ f has limited impact on the DOA estimation,
and the dependence is not consistent in deterministic and stochastic CRBs for DOA
estimation (see Figure 5). Connecting this phenomenon to the previous remark,
the impact of ∆ f on CRB for DOA estimation defies generalisations.

• For a sufficient number of sensors, deterministic CRBθ , stochastic CRBψ, deterministic
CRBr and stochastic CRBl of coprime FDA are O(1/M3N3).

• The CRB of joint estimation is slightly worse than the SCRB. This implies that the
prior knowledge on the range/DOA of target is conducive to improve measurement
accuracy for deterministic and stochastic signal case (see Figures 6 and 7).

Furthermore, we observe from Figure 2 that the CRBs of both DOA and range estima-
tions decrease with the increase of coprime integers M, N, which leads to the expansion of
array aperture and bandwidth. This result tallies with our common sense. Accordingly,
we can use the largest M, N possible to design a theoretically best-performance coprime
FDA. Nevertheless, in reality, array designs are often subject to resource constraints such
as the total number of antenna elements and/or bandwidth. Therefore, a rational design
with limited resources is important in practice. From the analytical CRB results given in
the above sections, we notice that a larger total number of antenna elements M + N is not
equivalent to superior CRB. The above conclusion is drawn in Figure 3a. More concretely,
the CRB of range estimation for the coprime FDA choosing M = 5, N = 4, ∆ f = 15 kHz,
which uses a smaller number of elements, performs better than the coprime FDA choosing
M = 7, N = 3, ∆ f = 15 kHz. Based on this conclusion, we propose to use the CRB of
coprime FDA to choose the optimal solution of coprime integers M and N to assist the
array design.
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Consider a practical scenario where the total number of antennas is L and the upper
limit of bandwidth is B̃. By further denoting the coprime integers set as Sc, we formulate
the coprime FDA array design as the following optimization problem:

min
M,N

CRBθ + γ ·CRBr,

s.t. M + N ≤ L, (M− 1)N · ∆ f ≤ B̃,

{M, N} ∈ Sc, (62)

where γ represents the trade-off coefficient that controls the compromise between the CRB
of DOA (range) estimation. This problem can be readily solved via exhaustive search.
In doing so, we are able to design a theoretically optimal coprime FDA configuration with
constrained physical resources.

6. Conclusions

In this work, the analytical expressions of the CRBs in deterministic/stochastic signal
cases for joint DOA-range estimation using coprime FDA are derived. Extensive numer-
ical simulations are also provided and analyzed. We are able to arrive at the following
conclusions from the simulation results: (i) The CRB of DOA estimation is weakly related
with the frequency increment; (ii) The difference between the deterministic and stochastic
CRBs is distinct; (iii) The relation between frequency increment and the CRB of DOA for
joint estimation is nonmonotonic in the deterministic signal case; (iv) The CRB of joint
DOA-range estimation is slightly worse than the separate parameter estimation in both the
deterministic and stochastic signal cases; and (v) The CRB of coprime FDA outperforms
that of uniform FDA-MIMO for more than 60% under commonly-adopted coprime patterns.
The difference between the CRBs of joint and separate DOA-range estimation methods
is analyzed and we also propose an intuitive method for coprime FDA design based on
CRB minimization.
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Appendix A

The log-likelihood function Ly(α) can be written as
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where tr(·) returns the trace of the matrix. We notice that the first three terms in between
the curly brackets are zero, and (60) can be simplified as
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In the deterministic signal case, we have ∂Ry(α)
∂αi

=
∂Ry(α)

∂αj
= 0. As a result, (19)

is obtained.

Appendix B

For the stochastic signal case, according to the theorem of Woodbury matrix identity

R−1
y = 1

σ2
n
[I− σ2

s
σ2

n
a( σ2

s
σ2

n
aHa + I)−1aH] and denoting σ2

s /σ2
n (SNR) as Σ, we have

aHR−1
y aσ2

s =aH[I− aΣ(aHaΣ + I)−1aH]aΣ

=aHaΣ− aHaΣ(aaHΣ + I)−1aHaΣ

=[I− aHaΣ(aHaΣ + I)−1]aHaΣ

=[(aHaΣ + I)(aHaΣ + I)−1 − aHaΣ(aHaΣ + I)−1]aHaΣ

=(aHaΣ + I)−1aHaΣ =
MN · SNR

1 + MN · SNR
. (A3)

Thus, Formula (40) is obtained.
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