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Abstract: Terrestrial snow is a vital freshwater resource for more than 1 billion people. Remotely-
sensed snow observations can be used to retrieve snow mass or integrated into a snow model estimate;
however, optimally leveraging remote sensing observations of snow is challenging. One reason is
that no single sensor can accurately measure all types of snow because each type of sensor has its
own unique limitations. Another reason is that remote sensing data is inherently discontinuous
across time and space, and that the revisit cycle of remote sensing observations may not meet the
requirements of a given snow applications. In order to quantify the feasible availability of remotely-
sensed observations across space and time, this study simulates the sensor coverage for a suite of
hypothetical snow sensors as a function of different orbital configurations and sensor properties.
The information gleaned from this analysis coupled with a dynamic snow binary map is used to
evaluate the efficiency of a single sensor (or constellation) to observe terrestrial snow on a global
scale. The results show the efficacy achievable by different sensors over different snow types. The
combination of different orbital and sensor configurations is explored to requirements of remote
sensing missions that have 1-day, 3-day, or 30-day repeat intervals. The simulation results suggest
that 1100 km, 550 km, and 200 km are the minimum required swath width for a polar-orbiting sensor
to meet snow-related applications demanding a 1-day, 3-day, and 30-day repeat cycles, respectively.
The results of this paper provide valuable input for the planning of a future global snow mission.

Keywords: orbital configurations; hypothetical sensors; viewing extent simulation; terrestrial snow;
snow mission planning tool

1. Introduction

Snow is an important component of global freshwater storage. It provides freshwater
supply for more than 1 billion people [1–3]. Snow-covered terrain serves as a natural
reservoir that slowly attenuates freshwater runoff during the snow ablation season [4].
Snow albedo also plays an important role in energy balance and climate change. For
example, atmospheric warming could reduce the seasonal snow cover and, hence, increase
shortwave absorption at the land surface, which could introduce a positive feedback [5].

Snow storage estimation is increasingly important as the virtual reservoir of snow is
threatened by global warming and climate change [6–8]. Earlier snowmelt due to global
warming could exacerbate severe floods and droughts [9–11]. As a result, the vulnerability
of snow storage has attracted considerable interest from the hydrologic community to
monitor the equivalent amount of liquid water contained within the snowpack (a.k.a snow
water equivalent or SWE) so that this vital resource may be better managed and preserved.

1.1. Limitations of Existing Spaceborne Snow Products

Spaceborne remote sensing is the only viable technique to detect SWE across the
globe in a timely manner [12] when considering the large spatial extent of snow and
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the difficulties in collecting in-situ measurements over such large regions. Despite the
extensive efforts of researchers to provide accurate SWE retrievals, current SWE products
using passive microwave (PMW) remote sensing observations still do not meet the accuracy
requirements (±15%) needed to support operational decision-making at a continental or
global scale [13,14]. One main reason is the knowledge gap in coupling precise physical
emission models (i.e., radiative transfer models (RTMs)) of snowpacks to remotely-sensed
observations [12].

A general approach for using PMW observations is the spectral polarization difference
(SPD) [15] employing the Chang algorithm [16] and its modification for forested areas
(Foster 1997); this approach uses PMW spectral difference, i.e., the difference in brightness
temperature between two microwave frequency channels. This technique is effective in
some regions e.g., dry, shallow snow on flat terrain, but is unable to detect thin snow due
to a low signal-to-noise ratio, or accurately retrieve deep snow due to signal saturation, or
snow with overlying vegetation due to vegetation attenuation [12,17]. To help overcome
the problems of PMW observations across regional or continental scales, some studies have
fused satellite data with ground-based snow measurements to better estimate SWE [18,19].

There has never been a dedicated satellite mission for snow mass (SWE) detection.
Existing spaceborne sensors used to estimate snow mass have typically been designed
for a different purpose [20]. With the above limitations, most operational, stand-alone
passive microwave SWE products produced using the spectral difference method are far
from optimal. Typically, these products are inconsistent with independent reanalysis data
and ground-based measurements from meteorological stations and snow courses [10,21],
particularly in deep snow, wet snow, snow in complex terrain, or snow with overlying
vegetation [10,17,22].

Analogously, the Moderate Resolution Imaging Spectroradiometer (MODIS), a passive
visible and thermal infrared radiometer, was designed to view the spatial extent of snow
rather than the mass of snow within that snow-covered extent. Thus, MODIS is limited
in skill in terms of snow mass estimation although it does an good job of viewing where
snow is found on the ground in the absence of dense forest [9,23]. More recently, active
microwave (AMW) synthetic aperture radar (SAR) has been employed for global snow
mass detection [24,25], but two issues remain unsolved: one is the limited repeat overpass
(relative to Advanced Microwave Scanning Radiometer (AMSR) or MODIS), and the other
is that C-band microwave radiation on, e.g., Sentinel-1, is not as sensitive to snow volume
scattering as compared to X-band or as skilled in the detection of shallow snow as compared
to Ku-band [26,27], although recent studies showed its potential at mapping snow mass
in mountainous regions [28]. Suffice it to say that the development of such sensors for
purposes other than terrestrial snow mass limits the skill of these sensors in the application
to global SWE estimation. As a result, the snow science community is discussing the
prospect of a future, dedicated spaceborne snow mission which would be the first of its
kind [29,30].

1.2. Limitations of Remote Sensing Snow Techniques

The complexity of snow further confounds the retrieval of snow properties using
remotely-sensed observations such that no single technique can work for all types of
snow. One significant source of uncertainty in retrieving snow mass comes from the
sensitivity of remotely-sensed observations to other snow-related variables, such as snow
microstructure (e.g., grain size), snow stratigraphy, the amount of liquid water content
coating the snow grains, overlying vegetation, complex topography, and atmospheric and
cloud conditions [17]. Microwave radiation, in general, is sensitive to the snow liquid water
content (SLWC) such that even a small amount of liquid water in the snowpack greatly alters
the dielectric constant and, hence, the emissivity and absorptivity of the snowpack. SLWC,
which is relatively large during the melting season, often introduces large uncertainties
into SWE retrievals from both PMW and AMW retrievals [31]. Snow density, snow grain
size, and snow grain shape are other variables that influence the snow emissivity and
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scattering characteristics and, as a result, the corresponding electromagnetic response of
the snowpack [12]. The variability in these snow characteristics can result in a strong
correlation between the PMW signals and snow mass for some years, but not for other
years. Additionally, the complex microstructure of a snowpack due to variations in depth
hoar, internal ice layering, and vertical heterogeneity increase the spatial and temporal
variability of the snowpack [12]. Overlying vegetation further complicates snow remote
sensing by attenuating microwave emission from the snowpack, while simultaneously
contributing its own signal as measured by the spaceborne radiometer. Findings have
shown that PMW SWE retrievals tend to underestimate SWE in forested areas [32]. Complex
terrain, such as in mountains, also reduces the efficacy of coarse-resolution sensors, such
as PMW radiometers or AMW scatterometers [17,33,34]. All of these uncertainties are
exacerbated by the coarse-scale resolution of these measurements that cannot adequately
capture the true spatial variability of SWE [35,36]. To overcome this problem, recent studies
improved large-scale patterns of snow mass estimation by merging PMW observations
with ground-based measurements [19,28].

In the context of spaceborne LiDAR, which is another option for retrieving snow depth
and snow mass, a major limitation is the relatively narrow swath width of LiDAR [37]
(∼10 km) as compared to SAR (∼100 km) or PMW radiometry (∼1000 km). The individual
LiDAR beams typically obtain tracks with widths of 100 meters or less. Using multiple
LiDAR beams as part of a sampling strategy, the swath width of a spaceborne LiDAR
retrieval is typically around 6 km [38,39]. Furthermore, the optical signal used by a
snow LiDAR cannot penetrate optically-thick clouds [40]; hence, the snow under the
clouds remains unobserved. LiDAR is an effective tool for retrieving snow depth, but
that effectiveness is severely curtailed when considering swath width limitations and
cloud attenuation.

In short, no single spaceborne sensor will adequately measure all types of snow under
all conditions required for global snow monitoring. Rather, a mixture of observations from
different sensors, each with its own strengths and weaknesses, is needed to yield the best
estimate of global snow mass [37].

1.3. Snow Mass Mission Trade-Offs

To make global snow mass estimation even more complicated, a future snow mission
will face a trade-off between sensor design, spatial resolution, and revisit frequency. For
example, a different orbital configuration (largely as a function of inclination angle and
satellite altitude) changes the nadir track, which directly influences which portions of the
globe are, or are not, observed. Similarly, a wider swath width for a given sensor increases
the revisit frequency but likely results in larger errors along the swath periphery due to
slant range geometry effects or significant reductions in backscatter, e.g., associated with
changes in forward scattering characteristics as the sensor looks increasingly off-nadir [41].
An increase in satellite altitude or changes in orbital parameters could impact the spatial
resolution, as well as the frequency with which the globe is viewed. However, both the fine
spatial resolution and short revisit interval are of interest in SWE estimation considering
the strong spatiotemporal dynamics of the snow [42,43]. Additional concerns about this
trade-off include non-uniform distribution of snow cover and diversity of snow types
or snow features. The majority of snow occurrence is distributed in the high-latitude or
high-altitude regions. Consideration of the different suitable remote sensing techniques to
capture the different types of snow, such as tundra, taiga, or ephemeral snow, adds even
more complexity to the task of global snow mass estimation.

Given the difficulties listed above, along with the general lack of uptake of PMW
estimates of SWE into hydro-meteorology and hydro-climatology applications [35], the
research presented here aims to study the efficacy of different orbital configurations and
sensor characteristics on snow mass detection from the perspective of maximizing the
global snow coverage to be viewed. The goal of this exercise is to facilitate the mission



Remote Sens. 2022, 14, 633 4 of 18

planning process and enhance the future potential of snow remote sensing, e.g., PMW,
LiDAR, and SAR.

The first challenge is to link and combine the prediction ability of different satellite
orbits and estimation of snow dynamic extent. The sensor’s viewing extent is estimated
under various orbital configurations coupled with a snow cover climatology as a function
of different snow classes. The goal, hence, is not to quantify global snow mass (which is to
be pursued in a follow-up study) but, rather, to explore the different options to quantify
snow mass, as well as how best to maximize global coverage (in space and time) en route
to estimating global snow mass.

This paper is structured as follows. In Section 2, we introduce the methods to simulate
the sensor’s viewing extent given a particular orbital configuration and proposed metrics to
analyze the coverage in space and time. We then apply this method to orbital configurations
for five different sensors, as well as four different constellations, in Section 3, and then
evaluate their effects on snow observability. Sections 4 and 5 provide a discussion and
conclusion on the findings.

2. Methodology

The snow mass detection capability of sensors (and sensor constellations by construct)
is limited by the sensors’ viewing extent, the distribution of snow in space and time, and the
sensors’ efficacy to specific snow conditions (e.g., ability to retrieve deep snow, wet snow,
snow overlain by vegetation). This section introduces the methods to analyze these three
factors, including the methodology used to simulate the sensor viewing extent, different
scenarios for simulations, application of a dynamic snow mask, and metrics for use in
evaluating observation efficacy.

2.1. Simulation of Sensor Viewing Extent

In order to simulate the viewing extent of the single sensor, we use the Trade-space
Analysis Tool for Constellations (TAT-C) simulator to explore the ground track of the sensor
orbit under different orbital configurations. The module for simulating the sensor orbits in
TAT-C has been employed to investigate the nadir position track of a variety of different
satellite sensors [44]. The second step in simulating the viewing extent of a single sensor is
to adjust the sensor swath width to enhance the hypothetical sensor coverage for this study.
Specifically, the satellite viewing extent is generated by extending the ground track in the
cross-track direction to a given swath width of interest. The viewing extent simulation
is ultimately expressed as a binary map marking the global surface as viewed (or not)
in the absence of clouds. The viewing extent simulation is conducted at a 0.01° spatial
resolution in this study, and subsequently aggregated in space to match relatively coarse-
scale geophysical retrievals in the following analysis. Finally, a realistic cloud mask is
convolved with the viewing extent to explore the effects of cloud attenuation on terrestrial
snow observability.

2.2. Orbital Configuration and Sensor Type

In short, the orbital configuration mainly depends on satellite altitude and inclination
angle. Orbital configuration and swath width determine the repeat cycle of the sensor
viewing extent. To represent typical (i.e., polar-orbiting, sun-synchronous) configurations,
six different sensors are selected here to represent a range of hypothetical instruments
including PMW radiometers, SARs, and LiDARs.

2.2.1. Passive Microwave Radiometer

The first evaluated sensor is an AMSR2-like PMW radiometer [45]. It has a wide
swath and relatively high revisit frequency but typically has a coarse spatial resolution
(∼10 km). PMW radiometers have served as stalwarts for snow mass estimation over the
last 30+ years [12] and have demonstrated considerable skill as estimating relatively dry,
shallow snow mass in relatively flat terrain and in the absence of dense vegetation [10].



Remote Sens. 2022, 14, 633 5 of 18

2.2.2. Synthetic Aparture RADAR

The second hypothetical sensor is a Ku/Ka dual-band SAR similar to the Terrestrial
Snow Mass Mission (TSMM) that is currently under consideration by the Canadian Space
Agency (CSA) [20]. A Ku/Ka dual-band SAR is expected to have a better response to snow
mass than other existing spaceborne SARs. The third evaluated sensor is a Sentinel-1-like
C-band SAR [46]. It represents an existing SAR instrument that is currently used for snow
mass detection even though the scattering characteristics of C-band radiation in dry or
shallow snow can be of limited value [26]. However, given that Sentinel-1 is currently
operational now and into the future, it is considered here as a viable snow information
source that should be included in this current study. Two C-band SAR instruments are
included here to mimic the Sentinel-1 A/B constellation. The two C-band SARs share the
same orbital plane but with a 180° phase difference.

2.2.3. LiDAR Altimetry

The fourth hypothetical sensor is a wide-swath (imaging) LiDAR with a 20 km swath
width. This specific configuration (and the assumed instrument errors) for use in space
may not be achievable given the engineering requirements of today, but this aspirational
sensor is considered here as a feasible part of a future, hypothetical snow constellation
configuration and, as such, is explored in this study. The fifth evaluated sensor is an ICESat-
2-like narrow-swath LiDAR [47]. It has a similar orbit as ICESat-2, but with better spatial
coverage assuming the use of a hypothetical 6 km continuous swath width to replace the
original ICESat-2 observations that are sampled by six laser beams, each with a 10-meter
footprint across a 6 km field of view. The sixth evaluated sensor is a GEDI-like (Global
Ecosystem Dynamics Investigation onboard the International Space Station) low-inclination
angle LiDAR [38]. As a low-inclination angle platform, it only views regions within ±51.6°
latitude. Although it loses the ability to monitor snow over high latitudes, it yields a higher
revisit frequency in low latitude areas of snow. The orbital configurations for each of these
sensors are provided in Table 1.

Table 1. Orbital configurations of the tested sensors. The sensor prototype and its status (existing or
hypothetical) is marked in “Prototype” column.

ID Sensor
Type

Orbit
Altitude [km]

Inclination
Angle [°]

Swath
Width [km]

Prototype
(Status)

1 PMW
Radiometer 510 97 1450

AMSR2
(Existing)

2 Ku-band
SAR 705 98 500

TSMM
(Hypothetical)

3 C-band
SAR 705 98 250

Sentinel-1 A/B
(Existing)

4 Wide
LiDAR 481 92 20

ICESat-2
(Hypothetical)

5 Narrow
LiDAR 481 92 6

ICESat-2
(Existing)

6 Low-inclination
LiDAR 415 51.6 6.5

GEDI
(Existing)

PMW = passive microwave; SAR = synthetic aperture RADAR; LiDAR = light detection and ranging; AMSR2 =
Advanced Microwave Scanning Radiometer 2 (AMSR2); TSMM = Terrestrial Snow Mass Mission; ICESat-2 = Ice,
Cloud and land Elevation Satellite-2; GEDI = Global Ecosystem Dynamics Investigation.

Among the existing spaceborne altimetry and LiDAR instruments, ICESat-2 has a
6 km total swath width [48], and GEDI has a total swath width of 6.5 km [49]. There-
fore, the assigned swath width of the hypothetical LiDAR is set to 6 km in order to
appropriately represent the current, state-of-the-art technology. The swath width of the
hypothetical “wide-swath” LiDAR is assigned as 20 km. Even though such a spaceborne
LiDAR does not currently exist, it is worth conducting this experiment to consider the
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added value associated with a hypothetical increase in swath width relative to that which
is currently operational.

2.2.4. Orbital Parameters

Sensor IDs 1-3 (Table 1) have orbital configurations that are polar and sun-synchronous,
which means the local overpass time at the equator will be similar from one day to the
next. A consistent overpass time is critical for microwave-based remote sensing, be it
active or passive in nature, because the presence (or absence) of liquid water can drastically
change the snow dielectric constant that could in turn affect the observed signals and,
therefore, introduce additional errors or uncertainties in the snow retrievals. To further
reduce the diurnal variations of the observations in sensor IDs 1-3, only one overpass
direction representing the nighttime overpass is used here in order to minimize wet snow
effects. By contrast, both ascending and descending observations are used for sensor IDs 4,
5, and 6 since the snow depth measured by LiDAR is less impacted (related to microwave
sensors) by snow wetness or snow temperature.

2.2.5. Constellations

In addition, the performance of four hypothetical constellations (i.e., mixtures of
different sensors) is also considered. Four specific constellations were selected from a near-
infinite number of possible configurations as the focus of the paper to make the analysis
tractable. The combinations explored here include (see Table 2):

(a) sensors of PMW radiometer, two C-band SARs, Narrow LiDAR;
(b) sensors of PMW radiometer, Ku-band SAR, narrow LiDAR;
(c) sensor IDs PMW radiometer, Ku-band SAR, wide LiDAR; and
(d) sensor IDs PMW radiometer, Ku-band SAR, two C-band SARs, wide LiDAR, narrow

LiDAR.

The different constellations represent: (a) currently available techniques for snow
remote sensing (C1), e.g., the two C-band SARs represents the Sentinel-1 A/B constellation;
(b) proxies of sensors feasibly applied in the near future (C2); (c) incorporate the additive
value of a wide swath LiDAR (C3); and (d) represent what could be achieved if all sensors
are simultaneously spaceborne (C4). The selection of these different sensors within each
constellation does not consider a likely cost cap to sensor deployment. Rather, the selection
of these different sensors aims to explore what could be viewed assuming the financial
resources were available to deploy such a configuration.

Table 2. Sensor makeup of hypothetical snow constellation configurations.

Constellation ID Sensor Marks Sensor Mixture

C1 @HH x PMW & two C-band SARs & narrow LiDAR
C2 @N x PMW & Ku-band SAR & narrow LiDAR
C3 @N z PMW & Ku-band SAR & wide LiDAR
C4 @HHN x z PMW & two C-band SARs & Ku-band SAR &

narrow LiDAR & wide LiDAR
@ = PMW sensor; H = C-band SAR; N = Ku-band SAR; x = narrow LiDAR; z = wide LiDAR.

2.3. Dynamic Snow Mask

To help investigate the space-time coverage of terrestrial snow, we use the Interactive
Multisensor Snow and Ice Mapping System (IMS) snow cover [50] for the years 2001–2020
to serve as a reasonable proxy for binary (yes or no) snow coverage, as well as a determinant
for a dynamic snow mask. Since the vast majority of the terrestrial snow cover is located
in the northern hemisphere—about 40 million (km2) [51] compared to less than 1 million
(km2) in the southern hemisphere [52]—only terrestrial snow over the northern hemisphere
is explored here in order to minimize computational expense.

The IMS snow mask is leveraged here to empirically describe the snow coverage extent.
We compute the daily snow-covered probability through statistics of snow occurrence
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within each 0.04-degree grid from historical data to estimate the maximum likelihood
of snow cover. For the pixels with a probability larger than 0.5, it is marked as snow.
Otherwise, it is considered as snow-free. The binary snow map is computed as:snow-covered pixel if ∑2020

i=2001 IMS(~x,doy,i)
N ≥ 0.5

snow-free pixel if ∑2020
i=2001 IMS(~x,doy,i)

N < 0.5
, (1)

where ~x refers to the pixel location in space, doy refers to the day of year, and N = 20
represents the total number of years used during the analysis.

This snow cover extent approximates the climatological space-time occurrence of snow
as prior knowledge for simulation. It is eventually convolved with the sensor viewing area
(see Section 2.1) to estimate the viewed snow cover extent, which is a necessary precursor to
study remotely-sensed snow mass. This current study focuses on the viewed snow extent
as a means of further exploring the snow mass in a follow-up study.

2.4. Dynamic Cloud Mask

In order to consider the impacts of clouds on the snow retrievals observations obtained
via LiDAR, a daily cloud mask is employed to simulate the cloud cover distribution.
The cloud mask is extracted from the quality flag (i.e., Coarse Resolution Internal Cloud
Mask) of the 0.05-degree MODIS Aqua daily reflectance collection 6 product (MYD09CMG,
https://ladsweb.modaps.eosdis.nasa.gov/filespec/MODIS/6/MYD09CMG accessed on
20 December 2021) [53]. The 0.05-degree cloud mask is then interpolated to 0.01-degree grid
using the nearest-neighbor algorithm. The cloud mask is not available during the nighttime-
only polar winter given the passive (optical) nature of the MODIS sensor. Therefore, a
gap filling strategy is adopted to simulate the cloud distribution when the data is missing.
A set of gap-free cloud masks collected during the polar summer (i.e., from March 22 to
September 20) is employed. When cloud retrievals are missing during the polar winter
(i.e., from 22 September to 21 March), the gap-free cloud masks from the summer are used
as a reasonable surrogate to estimate the impact of cloud attenuation on optical sensor
retrievals collected from space. Even though this method does not exactly reproduce the
cloud conditions that existed, the filled cloud map serves as a reasonable proxy to represent
the true cloud variability across space and time.

2.5. Evaluation Metrics

Three different metrics are employed to evaluate the sensors’ viewability of terrestrial
snow: (1) viewed snow coverage percentage, (2) viewed snow classification coverage
percentage, and (3) viewing repeat interval for each terrestrial snow class. These metrics
help to quantitatively assess the sensor/constellation efficacy in observing snow across
space and time, while also considering differences in regional snow climatology.

2.5.1. Viewed Snow Coverage Percent

The first metric is the snow coverage percent within a certain interval of time, i.e.
1-day, 3-day, and 30-day periods. The three different periods represent time to respond
to the daily, synoptic scale, and seasonal variations, respectively [54]. To investigate the
viewing effectiveness, as a single sensor or part of a sensor constellation, we calculated the
normalized snow coverage percentage that is viewed (Psnow) over the northern hemisphere
terrestrial environment as:

Psnow =

⋃n
i=1[A(~x, t)viewed,i ∩ Asnow(~x, t)]∫

Asnow(~x, t)d~x
× 100%, (2)

where Asnow(~x, t) refers to the dynamic snow-covered terrestrial area during the study
period (defined by IMS), A(~x, t)viewed,i is the terrestrial area that is viewed by the sensor i,
and

∫
Asnow(~x, t)d~x is the total snow-covered area for a given day in space (~x) and time (t).

https://ladsweb.modaps.eosdis.nasa.gov/filespec/MODIS/6/MYD09CMG
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The symbol
⋃n

i=1 denotes the union of areas viewed by satellites from 1 to n that compose a
given constellation. The symbol ∩ represents the intersection.

2.5.2. Viewing of Snow Classification Coverage Percentage

In addition to the total viewed snow coverage, the second metric explores the efficacy
of each sensor configuration to view a specific snow classification as:

Pj =

⋃n
i=1(A(~x, t)viewed,i ×Wi,j) ∩ Asnow(~x, t) ∩ Aj(~x, t)∫

Aj(~x, t)d~x
× 100%, (3)

where Aj(~x, t) refers the area of snow class j, and Pj is the percentage of the viewed snow-
covered area of the j-th class. Wi,j represents the weight of the efficacy of a given sensor i
on the snow class j. The snow classification system proposed by Reference [55] is employed
here (see Figure 1). Snow is categorized into six different classes based on the physical
properties and includes: (1) tundra, (2) taiga, (3) alpine, (4) maritime, (5) ephemeral, and
(6) prairie classes; ice is not discussed in this paper. Table 3 shows the assigned weight
matrix Wi,j used in this study. It provides a first-order estimate of the sensor efficacy on
specific snow classification according to the assumptions as follows: (1) PMW sensors
do not work well for snow under dense forest (taiga), deep snow (maritime), and snow
over complex terrain (alpine) [12,17]; (2) SAR sensors do not work effectively for snow
under dense forest (taiga); and (3) LiDAR sensors are affected by cloud attenuation [40].
The situation in the real world is complex; hence, the weight applied here is somewhat
subjective over large areas for each class. However, these values are useful in specifying
a reasonable estimation of each sensor’s efficacy and allow for a relatively transparent
understanding of the assumptions made.

Figure 1. Map of snow cover classification based on Reference [55].
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Table 3. Assumed weight of sensor efficacy, Wi,j, for snow mass estimation in each snow class, j.
Individual weights are subjective but serve as an effective skill estimate for each sensor relative to
one another.

Tundra Taiga Maritime Ephemeral Prairie Alpine

Radiometer 1 0 0 1 1 0
SAR 1 0 1 1 1 1

LiDAR (cloud-free) 1 1 1 1 1 1
LiDAR (cloud-covered) 0 0 0 0 0 0

0 = contains no skill; 1 = contains skill.

2.5.3. Temporal Repeat Interval

The third metric employed here is the temporal repeat interval for each terrestrial
snow class. Compared to the snow coverage percentage, the temporal repeat interval
better reflects the orbital overlap, which is a strong function of latitude when using a
polar-orbiting sensor. The repeat interval, I(~x), is calculated as:

I(~x) =
T

F(~x)
, (4)

where ~x is space; T refers to a certain period in units of days; F(~x) is the number of repeat
times during period T considering the sensor efficacy weight shown in Table 3; and I(~x)
refers to the repeat interval in units of days since last viewed.

3. Results
3.1. Sensor Simulation of Viewing Extent

Figure 2 illustrates the viewing extent simulation steps described in Section 2.1.
Figure 2a shows the nadir points of a single sensor, e.g., Ku-band SAR in Table 1, as
simulated by TAT-C tool for a 1-day period of integration. These nadir points are then
extended to the swath width coverage, as shown in Figure 2b.

Figure 2. Satellite viewing extent simulation of the hypothetical Ku-band SAR in Table 1 for (a) nadir
points for the ascending pass during a 1-day integration period; and (b) viewing extent for the
ascending pass during a 1-day integration period.
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Similarly, Figure 3 shows the sensor ground track from TAT-C and 1-day set of results
of viewing extent for each of the sensors introduced in Section 2.1.

The viewed area depends on the sensor’s swath width, as well as the orbital configu-
ration. The narrow swath sensors generally have larger gaps in coverage across space and
time and, hence, longer revisit intervals relative to the wide swath sensors.

Figure 3. Example of daily viewing extent of sensors listed in Table 1.

3.2. Dynamic Snow Mask Estimation

Figure 4 shows a viewing example for a C-band SAR, along with the coincident
snow-covered area (based on the IMS snow product) for a single day near peak snow
accumulation. The overlap between the blue and the green represents the snow-covered
terrain as viewed by the sensor. Since both the snow-covered terrain and viewing area
are a function of space and time, the variation of the overlay distribution is complex. This
process is repeated over multiple snow seasons for each individual sensor type (Section 3.3),
as well as for a mixture of different sensors (Section 3.4). The goal of this exercise is to
determine the spatiotemporal viewing capability of each sensor on its own, as well as in
coordination with other sensors. In addition, the use of the relative weights of each sensor
can help discern how best to coordinate these hypothetical sensors in a follow-up study
with direct applicability to global snow mass estimation.

Figure 4. Viewing example for a single day using a C-band SAR (No.3 in Table 1) overlying the
snow-covered area via IMS; blue is sensor coverage; green is snow-covered terrian according to IMS.

3.3. Evaluation of Single Sensor
3.3.1. Viewed Snow Coverage Percentage Analysis

To quantitatively assess the seasonal variation of the viewed snow area, the total snow
area and viewed snow area by each individual sensor over different periods is illustrated
in Figure 5. The total snow cover area in the northern hemisphere varies as a function
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of season and reaches a peak of about (5.4 × 107 km2) during February with a minimum
value of about (0.2 × 107 km2) during August. As a result, the spatial coverage for snow
varies correspondingly, and yields the largest difference between different sensors during
peak snow accumulation. For example, a single PMW sensor could observe more than 80%
of the snow-covered terrain in a single day in February, while a single SAR sensor could
observe between 20% and 40%, depending on the swath width. A single LiDAR sensor
views less than 5% of the snow-covered terrain area in a single day.

Figure 5. Seasonal variation in viewed terrestrial snow area for different types of existing and
hypothetical sensors. Subplot (a) shows coverage based on a 1-day integration period; (b) shows a
3-day integration period; (c) shows a 30-day integration period.

When the integration time increases to three days, a PMW radiometer can view all
of the terrestrial snow across the northern hemisphere. However, a single LiDAR sensor
coverage is still limited to less than 15%. For a 30-day integration period, the wide-swath
LiDAR could cover more than 50% of terrestrial snow in the northern hemisphere, while
the narrow-swath LiDAR views approximately 38%. In short, a single PMW sensor views
most of the northern hemisphere snow-covered terrain in a 1-day period; a single SAR
sensor views most of the snow-covered area in a 3-day period; and a 20-km swath width
LiDAR sensor cannot view most of the snow-covered terrain even in a 30-day period.

The difference between their coverage mainly results from the swath width configura-
tions of each sensor. Figure 6 highlights the viewed snow percentage as a function of swath
width. This result is computed using an inclination angle of 97° and a 510 km altitude as a
function of swath widths ranging from 50 km to 1500 km. The increase in viewed snow
cover percentage is nearly linear as the swath width increased during a 1-day integration
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period. The growth rate of percent coverage is asymptotic when the swath width is large
for a 3-day or 30-day integration period due to the successive overlaps between different
days. When arbitrarily drawing a line of 80% of snow-covered percentage, the swath width
required is about 1100 km, 550 km, and 200 km for a 1-day, 3-day, and 30-day integration
period, respectively. This result provides a useful benchmark of snow mission demands
when considering daily, synoptic, and seasonal variations of snow. This analysis assumes a
peak snow period. For other days of the year, the extent of low-latitude snow decreases.

Figure 6. Viewed snow coverage percentage as a function of orbit swath width for 1-day, 3-day, and
30-day integration periods during the month of February near peak accumulation of snow in the
northern hemisphere. The dot-dashed line represents 80% viewed snow coverage.

We employ the effective coverage as presented in Section 2.5.2 to reflect the effect of
sensor efficacy on different snow classes, along with consideration of cloud attenuation.
The effective coverage not only indicates the snow extent viewed by the sensor(s) but also
shows the skill of each sensor to detect the snow in different snow classes.

The simulated results for effective snow coverage percentage are shown in Table 4.
It shows poor percent coverage for all sensors over taiga since we assume only LiDAR
sensors, whose swath widths are limited, work well for this class. The PMW sensor
provides considerable viewing for the tundra, ephemeral, and prairie classes within one
day. The SAR sensors cover most areas of these classes when the integration period is
increased to three days, which helps mitigate the PMW sensor’s limitations in areas, such as
maritime and alpine snow. The LiDAR sensors represent the smallest viewing percentage.
Even over a 30-day period, the viewed percentage can not meet a near-global requirement,
per se, but does view relatively large amounts of most snow classes. These results suggest
a wider swath width is likely required for LiDAR sensors or that more than one LiDAR
will be required in the assessment of northern hemisphere snow.
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Table 4. Effective coverage of sensors (in units of percent) for different snow classes with integration
periods of 1 day, 3 days, and 30 days. Values greater than 80% are in bold font.

Snow Class

Sensor ID Tundra Taiga Maritime Ephemeral Prairie Alpine

1-day

PMW 98.8 0.00 0.00 67.1 77.0 0.00
Ku-band SAR 55.2 0.00 34.5 22.1 25.2 33.5
C-band SAR 29.3 0.00 17.5 10.2 12.5 17.9
Wide LiDAR 1.88 1.83 0.795 0.802 0.768 1.61

Narrow LiDAR 0.686 0.374 0.316 0.344 0.346 0.447
Low-inclination

LiDAR 0.0901 0.105 0.211 0.522 0.158 0.163

3-day

PMW 100 0.00 0.00 93.7 95.8 0.00
Ku-band SAR 93.8 0.00 80.5 58.5 63.7 75.8
C-band SAR 68.6 0.00 47.4 30.6 35.7 46.1
Wide LiDAR 5.20 3.71 2.08 2.44 2.07 2.73

Narrow LiDAR 1.92 1.14 0.832 1.04 0.911 0.913
Low-inclination

LiDAR 0.269 0.303 0.597 1.17 1.23 0.519

30-day

PMW 100 0.00 0.00 98.2 97.8 0.00
Ku-band SAR 97.7 0.00 96.0 93.3 90.3 94.3
C-band SAR 94.9 0.00 91.5 87.7 82.2 88.9
Wide LiDAR 18.3 13.8 8.84 11.4 9.22 9.70

Narrow LiDAR 10.6 7.80 5.18 7.00 5.32 5.18
Low-inclination

LiDAR 2.00 2.12 3.60 8.20 7.30 3.01

The assumed weight of sensor efficacy listed in Table 3 is to be improved. For exam-
ple, defining the PMW sensor’s efficacy as zero over taiga regions is arguable [12,32,56].
Alternatively, Pulliainen et al. [19] showed there could be a significant correlation between
PMW-observed SPD and SWE in a typical boreal forest region. In order to account for a
range of feasible efficacies, we apply values ranging from 0.1 to 0.5 with an increment of
0.1. The results shown in Table 5 highlight how the effective coverage of PMW radiometry
within taiga snow regions increases with increasing efficacy. During a 1-day integration
period, the percentage increases linearly from 9.8% to 49%. During a 3-day or 30-day
integration period, the effective coverage is similar to the 1-day integration period because
of the relatively large swath width of the PMW radiometer. However, the efficacy of PMW
varies in time and space considerably due to the variation of snow properties, such as
snow depth, snow wetness, snow density, and snow grain size. This paper only provides a
first-order estimate of the approximated efficacy; a dynamic efficacy (in space and time) is
likely required in a follow-up study in order to improve model performance.

Table 5. Percent effective viewing coverage in taiga snow regions using PMW radiometers in conjunc-
tion with efficacies ranging from 0.1 to 0.5. The different rows represent different integration periods.

Integration Period
Efficacy

0.1 0.2 0.3 0.4 0.5

1-day 9.8 20 29 39 49
3-day 9.9 20 30 40 50

30-day 10 20 30 40 50

3.3.2. Repeat Interval Analysis

The results of the repeat interval analysis are presented in Table 6. The repeat interval
represents an averaged viewing of sensors across space and time as computed from a simu-
lation of an entire year and averaged across the northern hemisphere by each individual
snow class. The repeat interval reflects how frequently an observation could be obtained
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for each sensor. In addition to the taiga snow class, the ephemeral snow class is relatively
difficult to view given the lower-latitude position of these snow classes when viewed using
polar-orbiting sensor configuration. Even with a 500 km wide swath, the Ku-band SAR
does not fully view the ephemeral snow class at a synoptic scale (i.e., approximately 3-day
period). The narrow-swath LiDAR takes a long time to revisit a given location, especially
for locations at low latitudes. Compared to a polar-orbiting LiDAR, the low inclination
LiDAR views the snow classes at low latitudes (e.g., ephemeral snow) more frequently
but less so for snow classes at high latitudes (e.g., tundra snow). The wide-swath LiDAR
requires over 50 days to revisit the same location depending on the latitude and cloud
conditions. This suggests a LiDAR with a swath width larger than 20 km or a constellation
with several LiDARs would be required in order to achieve a monthly (or less) repeat
interval across the northern hemisphere. All variations of LiDAR explored here have a
longer interval to revisit maritime snow as compared to other snow classes because cloud
attenuation is more prevalent over maritime snow.

Table 6. Domain-average repeat intervals (in units of days) for different snow sensors as a function
of snow class and sensor efficacy (see Table 3).

Snow Class

Sensor ID Tundra Taiga Maritime Ephemeral Prairie Alpine

PMW 1.03 - - 1.54 1.31 -
Ku-band SAR 2.12 - 3.40 4.61 3.92 3.07
C-band SAR 4.15 - 6.76 9.11 7.77 6.08
Wide LiDAR 64.1 61.3 179 75.1 93.1 85.0

Narrow LiDAR 172 159 450 172 221 210
Low-inclination LiDAR 390 400 332 136 138 292

3.4. Evaluation of Constellations

The results from the individual sensor experiments illustrate how no single sensor
can adequately measure all types of snow at all locations across the hemisphere. That is,
it is clear that a constellation of different sensors is required to achieve this goal. Table 7,
therefore, illustrates the effective coverage of the tested constellation cases.

The shortcomings of any single sensor are compensated for by the other sensors in
the constellation. For example, the PMW sensor obtains a regular, short duration repeat of
observations of the tundra, prairie, and ephemeral snow classes, while the SAR sensors
can collect information regarding maritime and alpine snow. Further, the LiDAR sensors
help provide important information about snow with overlaying vegetation. Although
the viewable area is limited, the LiDAR information could potentially help cross-calibrate
other sensor retrievals in other areas. The comparison between constellation (a) and (b)
shows the impact on viewing coverage by replacing two C-band SARs with one Ku-band
SAR. The constellation containing two C-band SARs achieves more coverage within a
1-day integration period but less coverage within 3-day and 30-day integration periods
as compared to the constellation containing one Ku-band SAR. The difference in viewing
coverage between the constellations are not significant, but the higher quality and relatively
fine-resolution observations from the Ku-band SAR could potentially improve the snow
retrieval quality of the tundra, prairie, and ephemeral snow classes. With a wide-swath
LiDAR, constellation (c) viewed a larger portion of snow in the taiga regions relative to
constellation (b). In constellation (d), all candidate sensors are introduced; hence, the
viewing coverage is maximized.
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Table 7. Effective viewing coverage (in units of percent) of constellations for different snow classes
with 1-day, 3-day, and 30-day integration periods. Values greater than 80% are in bold font.

Snow Class

Constellation ID Tundra Taiga Maritime Ephemeral Prairie Alpine

1-day

(a) 97.8 0.710 34.5 77.1 90.9 25.6
(b) 98.8 0.710 29.0 72.7 91.4 32.1
(c) 98.7 1.83 29.6 72.9 91.4 33.8
(d) 98.7 2.54 47.6 78.3 93.4 42.0

3-day

(a) 100 2.00 68.9 98.0 99.0 67.4
(b) 100 2.00 74.2 98.0 99.2 81.4
(c) 100 5.19 74.7 98.1 99.2 81.8
(d) 100 7.14 87.3 98.4 99.3 87.0

30-day

(a) 100 19.7 95.9 98.9 99.0 98.4
(b) 100 19.7 96.8 98.8 99.1 99.0
(c) 100 44.5 96.9 98.9 99.1 99.0
(d) 100 49.2 97.8 99.2 99.2 99.2

4. Discussion

What observations are needed to study terrestrial snow across the northern hemi-
sphere? Mission planners want to maximize the scientific value given a fixed budget.
However, the exact approach to maximize snow science remains an open question. This
research is designed to assist researchers and mission planners weighing the different trade-
offs based on sensor selection and orbital configurations. In addition, this study explores
a range of snow researchers’ requirements (in terms of temporal integration periods) for
remote sensing snow observations.

This study also provides key information relevant to a future observing system sim-
ulation experiments (OSSE) to be conducted in a follow-up study. An OSSE serves to
mimic nature and help quantitatively explore the impact of different hypothetical observ-
ing systems (such as the snow sensors explored here) on conditional (a.k.a. updated)
snow model results. Furthermore, this study provides a slew of sensor coverage simu-
lations with various sensor swath widths and orbital configurations. The results from
this study will be applied in a data assimilation experiment in a similar manner as Ref-
erence [57], which was only applied to LiDAR remote sensing of snow. For researchers
who are interested in similar topics, the simulated sensor viewing coverage of the hy-
pothetical sensors in this study are published on DRUM at the University of Maryland
(https://drum.lib.umd.edu/handle/1903/27610) (accessed on 25 December 2021) and
available for public access.

This study has several aspects that should be refined in the future regarding the
simulation method and the metrics for the use of coverage evaluation. First, snow that is
viewed does not necessarily mean that it can be retrieved accurately. There is a complex,
nonlinear calculation going from the sensor observations to snow retrievals. The increase
of viewing extent only represents the upper-bound on the quantity of observations, not
what the retrievals will actually see. Meanwhile, the increase in the number of observations
does not guarantee an improvement in snow retrieval quality. To avoid introducing more
noise due to information related to something other than snow mass (e.g., snow grain size,
snow wetness), efficacy weights are used to reflect the sensor skill as a function of different
snow classes. Another limitation is that snow is assumed to be uniform within a given
snow class. The weight matrix in Table 3 is used to describe sensor efficacy as a first-order
estimate. However, sensor efficacy depends on the specific snow conditions (e.g., dry
versus wet snow, shallow versus deep snow). Besides, the skill of LiDAR to retrieve snow
depth is adversely impacted by clouds in a complex, nonlinear manner. When LiDAR’s
efficacy over cloudy regions is set to zero in Table 3, it is a first-order estimate without
direct consideration of the cloud optical thickness. That is, even though cloud cover may

https://drum.lib.umd.edu/handle/1903/27610
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be present, optically-thin clouds (e.g., cirrus clouds) may still allow for snow retrieved
using LiDAR.

Additionally, the geophysical retrievals from each sensor are assumed to be mutually
unbiased. As a result, constellation case (a) yields an overly optimistic view of snow-
covered terrain. This particular constellation scenario represents a constellation composed
of existing sensors. However, there are relatively few studies investigating the conjoined
use of these sensors because the observations from each sensor are inherently uncertain and
posses their own unique error characteristics. It is difficult to first merge these disparate
information sources prior to evaluating their additive value relative to one another. Another
factor is then needed to carefully consider each sensor’s spatial resolution. Before jointly
using the different sensor observations, they must be first integrated into a unified product
via data assimilation or some other merging strategy.

5. Conclusions

This study explores a suite of existing and hypothetical sensors in the viewing of
snow-covered terrain as a function of sensor orbital configuration and sensor efficacy. The
research explores the viewing of a series of sensors, and constellations of sensors, with the
distribution of coincident terrestrial snow. The results help quantify the demands on sensor
swath width and orbital configuration for the requirement of 1-day, 3-day, and 30-day
integration periods. Viewing extent simulations show that sensors with swath widths
of 1100 km, 550 km, and 200 km could meet the demands of 1-day, 3-day, and 30-day
repeat intervals, respectively. However, the effective coverage when considering sensor
efficacy and cloud attenuation suggests a single sensor cannot observe all snow classes
at all locations in the northern hemisphere during all times of the year. Constellations
composed of different sensors could better compensate for the shortage of a single sensor
in a specific snow class. The combination of the PMW and SAR sensors could perform
well for all the snow cover classes except taiga, while the LiDAR sensors could potentially
provide some key information of snow with overlaying vegetation. In a future study, we
plan to apply the results of this study within a snow OSSE to quantify the expected model
improvements as a function of orbital configuration and sensor type. The results of the
snow OSSE combined with a cost analysis could help mission planners decide how to get
the most snow-related scientific bang for the scientific buck.
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