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Abstract: Multispectral sensors constitute a core earth observation imaging technology generating
massive high-dimensional observations acquired across multiple time instances. The collected multi-
temporal remote sensed data contain rich information for Earth monitoring applications, from flood
detection to crop classification. To easily classify such naturally multidimensional data, conventional
low-order deep learning models unavoidably toss away valuable information residing across the
available dimensions. In this work, we extend state-of-the-art convolutional network models based
on the U-Net architecture to their high-dimensional analogs, which can naturally capture multi-
dimensional dependencies and correlations. We introduce several model architectures, both of
low as well as of high order, and we quantify the achieved classification performance vis-a-vis the
latest state-of-the-art methods. The experimental analysis on observations from Landsat-8 reveals
that approaches based on low-order U-Net models exhibit poor classification performance and are
outperformed by our proposed high-dimensional U-Net scheme.

Keywords: remote sensing; u-nets; higher-order convolutional neural networks; multi-temporal data
classification

1. Introduction

The field of Remote Sensing (RS) enables researchers to detect and monitor the physical
characteristics of an area on Earth by measuring from a distance its reflected and emitted
radiation. High-resolution satellite or aircraft-borne sensors are usually employed in order
to observe a certain range of the electromagnetic spectrum. The collected data serve as a
useful information source to various applications, such as object characterization [1], forest
fire detection, and crop classification [2—-4].

Designing accurate land-cover classification maps has been an item of extensive
research within the RS community. The availability of publicly available Multi-Temporal
(MT) RS data, i.e., data of specific geographical scenes acquired across multiple dates,
becomes a major enabling driving force. Since various platforms contribute nowadays to
the generation of MT-RS data, we need to further enhance the time-series representation of
conventional Multi-Spectral (MS) systems in order to reveal and exploit sequential patterns
useful for achieving better detection and classification performance.

Once the MT-RS data are collected, automated supervised-learning methods are
usually used for their accurate classification [5]. The whole process involves two stages:
feature extraction and classification. During the first stage, raw MT-RS data are transformed
into “representative” features, which in turn are fed to the second stage for the respective
labelling process. In MT-RS applications, features can be extracted in two ways: by deriving
spectral vegetation indices directly from the data [6-8] (e.g., Normalized Difference Vegetation
Index (NDVI) [9]) or by using the raw MT-RS data directly for classification [10,11]. Feature
generation can be hand-crafted or performed automatically; in the former case, traditional
Machine Learning (ML) methods are used, whereas, in the latter case, Deep Learning (DL) is
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employed. The input features, manually extracted from the raw data by domain experts
for the problem at hand (e.g., NDVI), are then fed to various state of the art ML classifiers:
Support Vector Machines (SVM) [12], k-Nearest Neighbours (kNN) [13], Decision Trees (DT) [14-16],
Random Forests (RF) [17-19], and Artificial Neural Networks (ANN) [20,21].

On the other hand, DL [22] models assign the feature generation step to the network
itself via an end-to-end learning process. Among them, Convolutional Neural Networks
(CNNSs) have drawn significant attention over the last years as they perform extremely
well in various tasks, including the classification of RGB [23], multispectral [24], and
Hyper-Spectral (HS) [25] images and other land-cover [26] and RS applications [27].

Traditional 2D-CNNSs are not directly applicable to the MT-RS land-cover classification
task, as the additional-to-spatial temporal information must be collapsed. To address this
problem, Kussul et al. [28] proposed a technique to tie together a 2D-spatial CNN with a 1D-
spectral CNN, whereas, in [29], a 3D-CNN simultaneously employs spatial and temporal
feature learning. Methods based on the so-called Temporal CNNs (TCNNs) [30-32] have
also proved promising as they do not operate on raw MT-RS data but rather on (temporal)
NDVI representations. Other approaches such as Recurrent Neural Networks (RNNs) [33,34]
and Long Short-Term Memory (LSTM) networks [35,36] are, by design, suitable for time-
series modelling.

As MT-RS land-cover classification is essentially a pixel-level classification problem,
special attention should be placed on U-Nets, a class of CNN models introduced by
Ronneberger et al. [37], for the problem of semantic segmentation (i.e., pixel-level classifica-
tion). U-Net architectures originated from the the so-called Fully Convolutional Networks
(FCNSs) [38] and comprise two paths (i.e., a contracting path and an expansive path) in a
U-shape manner, hence the name of the models. These paths are more or less symmetric,
as the pooling layers of the contracting path are replaced with upsampling ones in the
expansive path. Consequently, the large number of feature channels derived in the expan-
sive path allows the network to propagate context information to higher resolution layers,
leading to more precise segmentation results with fewer training samples.

A recent approach for the efficient combination of mono-temporal and MT data was
proposed by Sefrin et al. in [39]. Therein, the authors adopt two different DL architectures:
an FCN 2D U-Net baseline, which can only handle mono-temporal RS data, and an FCN
2D U-Net combined with a LSTM network in order to further exploit sequential (MT)
information. More specifically, the first method proposed in [39] comprises an FCN which
employs the VGG-19 model [40] (originally used for image classification tasks) as its expan-
sive path. It employs several convolution, max-pooling, up-sampling, and normalisation
blocks, just as the 2D U-net model presented in Section 3.5. It is a 5-depth architecture,
and it accepts two-dimensional input data across all available spectral bands. The second
method proposed in [39] is a combination of the previously FCN model with an LSTM one.
In order to benefit from the sequential information of the RS data, the FCN is used as a
pre-trained base model from which every temporal RS sample is passed through separately.
The outputs of FCN (without the final SoftMax classification layer) are then stacked in
chronological and reverse-chronological order, forming a bi-directional architecture. Those
two output sequences are then fed to a 2D convolutional-LSTM (ConvLSTM) layer, which
in turn produces an output for both sequences (of forward and backward chronological
order). At the final step of the architecture, those two outputs are passed through a final
SoftMax classification layer and are subsequently averaged to derive the final output. Their
proposed approach is tested on Sentinel-2 RS data and demonstrates the significance of
employing temporal information in land-cover classification and change detection tasks.

Retooling existing lower-order DL architectures for handling 4D MT-RS data is clearly
not optimal, and it inevitably leads to loss of valuable information, as depicted in Figure 1.
A MT-RS scene measured at different time instances (e.g., years) holds important evidence
about the evolution of its content across time. The values of a specific spectral band can
have notable differences among successive time acquisitions, which can prove useful in clas-
sifying the whole MT-RS scene. Moreover, spectral images for a single time instance carry
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important information about the land-cover. Thus, the need for higher-order classification
models and systems which can exploit the whole available information simultaneously
becomes apparent.
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Figure 1. The motivation for higher-order classification models. MT-RS imagery obtained at different
time instances comprises rich information, as it reflects the evolution of pixel values across time.
At the same time, spectral signatures across different spectral bands for each time instance reveal
valuable physical information that can be preserved and exploited through a specially designed 4D
model architecture.

Departing from the aforementioned approaches, in this paper we propose a 4D U-Net
solution to the MT-RS land-cover classification task. Instead of modelling only part of the
available information, we extend the notion of 3D U-Nets to their higher-order counterparts,
and we jointly learn spatio-spectro-temporal features. We employ a recently released MT-
RS dataset to train and evaluate the performance of the proposed 4D U-Net model vis-a-vis
its 3D and 2D counterparts, as well as state-of-the-art methods. Extensive experiments
are performed in order to assess the performance of each model with respect to different
architectures and several model parameters. Experimental results on real MT-RS data
demonstrate the potential and superiority of the proposed higher-order feature modelling
in all examined scenarios.
The key contributions of this paper can be summarized as follows:
¢ The design and implementation of a new 4D U-Net to address the MT-RS land-cover
classification problem and its evaluation on a recently released dataset;
¢ The provision of a purely 4D U-Net model, extending all required 3D functionality-
layers (convolution, pooling, transpose-convolution) to their higher-order counter-
parts;

. An effective exploitation of high-order data correlations at their nominal dimensions,
without any loss of information;

*  The demonstration of the 4D U-Nets’ potential over their lower-order counterparts.

To the best of our knowledge, 4D U-Nets have never been employed in MT-RS imagery
to derive high-resolution dense predictions, nor have they been compared to 3D U-Nets and
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2D U-Nets for the problem at hand. They have been employed in the context of semantic
segmentation of cardiac volumetric sequences [41], but with an architecture that does not
extend all U-Net functionalities such as upsampling via kNN interpolation instead of fully
learnable 4D transpose-convolution, as is the case in our proposed study.

The rest of the paper is organised as follows: In Section 2, we introduce a 4D U-
Net architecture for tackling the MT-RS land-cover classification problem, alongside a
detailed mathematical and conceptual description of every module and functionality in
it. In Section 3, the employed dataset as well as the experimental settings are described,
accompanied by the tests to evaluate the proposed 4D U-Net performance as well as the
experimental conclusions that can be drawn. Moreover, Section 4 provides an interpretation
of the derived results, accompanied by the strengths and limitations of the proposed
method with respect to its competitors. Finally, Section 5 draws the main conclusions of
the present work.

2. Materials and Methods

In this section, we initially describe the scenario under investigation for the classi-
fication task of MT-RS land-cover. Subsequently, we provide the rationale for choosing
higher-order U-Nets, and we formulate the problem by applying 4D filters on the series
of MT-MS datacubes. Finally, we present the complete mathematical components on how
U-Nets can be used in the estimation task, we develop the proposed methodology for
MT-RS land-cover classification, and we build the associated network architecture.

2.1. 4D U-Net for Multi-Temporal Remote Sensing Land-Cover Prediction Modeling

As mentioned in the introduction, CNNs constitute a particular type of DL models
with excellent performance on imaging tasks. Traditional 2D CNNs convolve raw input
data with learnable filters in a layer-wise manner such that a CNN can end up having
several layers each one of which is assigned to detect different features of an image. Filters
are applied to each training image at different resolutions, and the output of each convolved
image is used as the input to the next layer. The filters can start with very simple features,
such as brightness and edges, and increase in complexity to features that uniquely define
the object.

When tackling the MT-RS land-cover classification task, which is intrinsically a 4D in-
put problem (involving 2D spatial, spectral, and temporal dimensions), 2D CNNs inevitably
toss away valuable information. Even 3D models need to choose between preserving spec-
tral or temporal information. To address this issue, we hereby introduce and employ a 4D
CNN model for jointly exploiting correlations among all different dimensions. We focus
our attention on U-Net models, extending 2D and 3D architectures [37,42] for the problem
at hand.

As illustrated in Figure 2, in order to efficiently train our 4D U-Net model, we
feed it with raw MT-RS imagery (i.e., sequences of 3D MS data), without any data pre-
processing/collapsing step. Those sample images are passed through a series of high-
dimensional operations (e.g., convolution, pooling, upsampling) encapsulated in the U-Net
model, which become more complex as the depth of the network increases (i.e., the number
of filters at the bottom of each module increases accordingly). At the same time, spatial
information (i.e., the spatial size at the top of each module) is sequentially downsampled
and upsampled in order to derive more representative features, while the spectral and tem-
poral information are preserved up to the final classification module of the network. Unlike
lower-order models, which have to collapse data information before training the network,
our proposed architecture exploits all high-dimensional information by performing all
operations in the nominal data dimensions. Experimental results on real MT-RS images
demonstrate that directly learning features employing all available data dimensions, rather
than selecting, averaging, or even collapsing some of them, achieves a significantly higher
accuracy level, indicating the efficacy of the proposed approach.
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Figure 2. The proposed method pipeline for the classification task of MT-RS imagery. Raw 4D data

(i.e., time series of 3D data) are fed to the designed higher-order U-Net model, which preserves all
available information until the classification step, predicting each pixel value of the scene. All key-
operations of the model (e.g., convolutions, transpose-convolutions) are performed in the 4D space.

2.2. 4D U-Net Modules for Multi-Temporal Multi-Spectral Feature Learning

The proposed method fits within the framework of classification-flavoured supervised
learning, employing higher-order CNNss for efficient feature learning of the MT-RS image
content. In order to effectively extract features from raw data, CNNs employ the notion of
local receptive fields, in which each locally connected input subset of the input neuron is
mapped to a single output neuron. With the intention of capturing as many representative
features as possible, this process is performed in a stacked manner throughout convo-
lutional layers. Input and output neurons are connected via convolutions by means of
trainable filters, with specific filter coefficients.

In traditional 2D CNNs, the value of a convolved output neuron at position (k, ) can
be expressed as follows:

—1W—
w-r(LE g otkenten b ) )

where f(.) is the activation function, w; ; stands for the value of the kernel connected to the
current feature map at position (7, ), X (k44)(1+ j) represents the value of the input neuron
at input channel ¢, b; ; is the bias of the computed feature map, C;, denotes the number of
original channels (i.e., first layer) or the number of feature maps of the previous layer (i.e.,
intermediate layer), and H and W are the height and width of the kernel, respectively.

Of course, in MT-RS land-cover classification, raw input data are not 2D, so in order
for (1) to be applicable, the spectral and time dimensions have to be collapsed. To partially
alleviate this, Zhang et al. proposed in [29] a 3D-CNN to preserve temporal information
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across all different spectral bands. In their configuration, (1) is extended to three dimensions
as follows:

CinT-1H-1W-1
Yelm = <Z Z 2 Z Wi jtXe,(k+i) (I14f) (m+t) +0b it ) )

¢ t=0 i=0 j=0

where the extra parameter, T, over (1) denotes the temporal length of the kernel.

As it can be seen from (2), a 3D convolution cannot exploit the available informa-
tion hidden in the spectral bands. The fact that rich information distributed across the
spectral dimension goes untapped has a considerable negative impact in the classifica-
tion task. To preserve all available information, we herein introduce a 4D convolutional
layer/module/functionality capable of jointly exploiting spatial, spectral, and temporal
information. More specifically, we extend (2) to its four-dimensional counterpart as follows:

Cin S—1T-1H-1W-—
ninn=f(LL L & z e ks k) biias ) G)
¢ s=0 t=0 i=0 j=0

where S denotes the spectral bands of the kernel.

Unfortunately, 4D convolutional layers are not available in modern DL frameworks
such as TensorFlow (https://www.tensorflow.org/) (accessed on 13 September 2021) [43],
so we have implemented our own 4D convolutional layer as a custom TensorFlow layer plu-
gin. To do so, and to exploit TensorFlow’s fast libraries of implementations, we rearrange (3)
as follows:

1T-1H-1W-1

Yilmn = f(cci”SZ i i

Wi jtsXe (k1) (14) (m~+t) (n+s) + b1] t s)
s=0 t=0 i=

~

=0

4)

:f(Szl {CciTlf'Izlw 1

i,j,t,sxc,(k+i)(l+j)(m-&-t)(n-&-s)} + bi,j,t,s>
s=0 t=0 i=0 j=0

The rearrangement of the convolution sums shown in (4) is feasible since convolution
is a linear operation and therefore the order of summation in (3) can be changed. A similar
rearrangement was proposed in [41,44], and it results in summing/stacking multiple
sequences of 3D convolutions (the term in brackets in (4)) along the fourth dimension. From
an implementation point of view, further rearrangement of the respective for-loop takes
place as in [41] (i.e., 3D input frames convolved with respective 3D filter frames) in order
for our custom TensorFlow layer to implement true (instead of separable) 4D convolution.

Stacking convolutional layers in DL models allows layers close to the input to learn
low-level features (e.g., lines), whereas those deeper in the network’s architecture to learn
high-order and more abstract features (e.g., shapes, specific objects). However, a limitation
of the feature map output of convolutional layers is that they record the precise position
of features in the input. This means that small movements in the position of the feature
in the input data (e.g., rotation, shifting) will result in a different feature map. A com-
mon approach to address this issue, from a signal processing perspective, is to perform
downsampling. The most robust and common approach for doing so is to use pooling
layers, whose operation, in contrast to convolution, is specified rather than learned. Since
max-pooling has been found to work better in practise for computer vision tasks than
average-pooling [45], and it is commonly used in most lower-dimensional U-Net models,
we accordingly employ max-pooling as the downsampling operation in the contracting
path of our network. As it was the case for the 4D convolutional layers, 4D max-pooling as
well is not available in TensorFlow. Consequently, we implemented it as the higher-order
analogue of vanilla max-pooling layers by adopting a frame-wise logic, similar to that in (4),
in order to again take advantage of fast libraries provided by TensorFlow.

More specifically, the max-pooling operation can be defined as a function fx computing
the maximum value around a neighbourhood/patch in R"*" for the 2D case and in R"*"*"
for the 3D case. Similarly, for the 4D case, we can extend operator fx as follows:


https://www.tensorflow.org/

Remote Sens. 2022, 14, 634

7 of 32

x'_>fx :Rnxnxnxn _>R
fx — max(x) = max(max(x'~1)) ©)
where x’ and x~! are the feature maps in the £-D and (¢ — 1)-D spaces (¢ = 4), respectively.

Moving deeper in the contracting path of a U-Net, the model understands better
“what” is present in the data but loses information about "where" it is present. In our
case, the end goal is not the provision of a class label for the whole MT-RS scene, but
rather the classification of every pixel in it. Consequently, there is a need for an efficient
upsampling mechanism that will transform the contracting path low-resolution output to a
higher-resolution in order to efficiently recover the "where" information as well.

Conceptually, we need a module in order to transition from a feature map of di-
mension derived from a convolution to a feature map of dimension originating from a
convolution [46]. To achieve this goal, existing techniques, such as kNNs and bi-linear
or cubic interpolation, do not involve any learning from the network but rather employ
pre-defined manual feature engineering. Departing from these approaches, in order for our
proposed 4D U-Net model to learn to upsample optimally in an end-to-end trainable way,
we employ and extend the notion of transposed convolution.

As in the case of the 4D convolution and max-pooling layers, we accordingly imple-
ment the 4D transpose-convolution layer in a frame-wise logic for fast computation via the
efficient implementations of the lower-order functionalities provided by Tensorflow. In
traditional 2D transpose-convolution, the value of an output neuron at position (k, /) can
be expressed as follows:

Cin H-1W-1
yk,l— (ZZ Z Wi jXe,(i:i+k) ]/+l)+b1]> (6)

¢ i=0 j=0

where f(.) is the activation function, w; ; stands for the value of the kernel connected to the

current feature map at position (i, j), X, (i:i+k)(j:j+1) tepresents the value of the input neuron

at input channel ¢, b; ; is the bias of the computed feature map, C;, denotes the number of

original channels (i.e., first layer) or the number of feature maps of the previous layer (i.e.,

intermediate layer), and H and W are the height and width of the kernel, respectively.
Extending (6) to the three-dimensional case, we obtain:

Ciy T-1H-1W-1
Yiim = f (Z Yo X Y WX (k) (o) (et m) T bi,j,t) )

¢ t=0 i=0 j=0

Finally, so as to derive the equation for the four-dimensional transpose-convolution
task, we further extend (7) based on the same reasoning we used in (4):

i W—
Yilmn = f ( Z Z Wij,tsXe, (k) (jij+1) (Et+m) (s:is+n) T bz] t s)
C ]:
S-17rCyT-1H-1W-1 (8)
= f< Z [Z L . i,j,t,sxc,(i:i+k)(j:j+l)(t:t+m)(s:s+n)] + bi,j,t,s)
c

In conclusion, we have extended all the key-modules of conventional lower-order U-
Net models to their high-dimensional counterparts. As a result, our 4D U-Net architecture
can handle MT-RS data in their nominal dimensions, efficiently addressing the dense
pixel-level classification task at hand.

2.3. U-Net Architectures for Multi-Temporal Remote Sensing Land-Cover Classification

The end goal of the present study is to compare the performance of U-Net models
of various orders and obtain intuition about the potential merits of the proposed 4D
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architecture over the respective 2D and 3D systems. We employ the vanilla 2D U-Net [37] as
a benchmark-comparison model, and we construct the respective 3D and 4D analogs. There
are two reasons for concentrating on “purely” U-Net architectures. First, U-Net models
have been proven to be the best performers in pixel-level classification and segmentation
problems, hence they are used as reference techniques in the land-cover classification
field [47-51]. Second, the dimensionality of the employed dataset (i.e., raw MT-RS 4D data)
makes comparisons with other, non-U-Net, models intractable for various data tiles.

Each architecture contains convolutional, max-pooling, transpose-convolutional, skip-
connection, activation, and dropout layers, arranged in “stacks-of-layers” along the con-
tracting and expansive paths of the model, as illustrated in Figure 2. More specifically, there
are 3 stacks-of-layers along each path, and 1 stack at the bottom/middle of the model. Each
contracting path’s stack comprises 2 convolutional layers, immediately followed by ReLU
activation layers. At the end of the contracting path stacks, there exists a max-pooling layer
(for downsampling) alongside a dropout layer (for regularization). On the other hand, each
expansive path’s stack contains a transpose-convolutional layer (for upsampling), followed
by skip-connection and concatenation layers (for copy-and-crop purposes), and a dropout
layer. At the end of the expansive stack, there exist 2 convolutional layers immediately
followed by ReLU activation layers. The middle/bottom stack also contains 2 convolu-
tional layers immediately followed by ReLU activation layers. Finally, the prediction layer
contains a convolutional layer with a number of filters equal to the number of available
classes, followed by a SoftMax activation layer (which contains the probabilities of each
pixel belonging to each available class).

Since our samples are 4D dimensions, i.e., two spatial, one spectral, and one temporal,
(H,W,S, T), low-dimensional U-Net models have to perform a type of collapsing on every
sample, in order to be used for training. For that reason, we perform averaging across the
dimensions not to be used as “active information”, in order to avoid a biased selection of a
specific spectral band /time instance. Consequently, the 2D U-Net model operates spatially
in averaged samples across all spectral bands and time instances. There exist two different
alternatives for the 3D U-Net models: the 3D-Temporal U-Net (operating on spatial and
temporal dimensions, averaged across all spectral bands), and the 3D-Spectral U-Net
(operating on spatial and spectral dimensions, averaged across all time instances). On the
other hand, our proposed 4D U-Net model operates directly on the original dimensions of
the data, exploiting all available information without the need for collapsing across any
specific dimension.

Since U-Nets are mostly used for segmentation purposes, the samples and labels are
usually of the same size (e.g., 2D images in image segmentation, 3D volumetric-images in
volumetric-image segmentation). However, in our high-dimensional U-Net models, we
have to deal with the problem of different dimensionalities between samples (3D/4D) and
labels (2D). To overcome this obstacle and to preserve as much information as possible, we
perform all functionalities of the U-Net model at the respective high-dimensional spaces
until we reach the final classification layer. Therein, we employ filters of kernel-size 1 across
every dimension, with unit strides across every dimension except those to be exploited
in addition to the spatial ones (i.e., (1,1,T), (1,1,5), (1,1,5,T) for the 3D-Temporal,
3D-Spectral, and 4D U-Net models, respectively). In that way, we keep the additional-to-
spatial information intact until right before classification is performed, downsampling it
appropriately at the utmost step in order to train the network with 2D ground-truth labels.

Concerning the U-Net topology, all convolutional layers are used with a small kernel
size equal to 3 across every dimension and with "same"-padding for all U-Net models.
We accordingly employ unit strides on all convolutions across all dimensions, whereas
the number of filters is doubled as we proceed deeper in the contracting path of the U-
Net as follows: The first stack-of-layers number of filters is equal to a parameter (called
“starting-neurons”), which is doubled at every following stack (e.g., the second stack has
2x”starting-neurons” filters, the third stack has 4 x ”starting-neurons” filters, etc.). Since
we intend to downsample input data samples only spatially in order to preserve as much
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high-dimensional information as possible, max-pooling layers have pool-size and strides
of 2 across the spatial dimensions and 1 across the spectral and temporal dimensions (for
the 3D and 4D U-Net models). All max-pooling layers employ "same"-padding, whereas
dropout layers have rates (i.e., fraction of input units to drop) equal to 0.5. As far as the
transpose-convolutional layers are concerned, we employ small kernels of size 2 across all
dimensions, with “same”-padding for all designed U-Net models. Since we perform only
spatial-downsampling in the contracting path, the strides of the transpose-convolutions
are accordingly set to 2 for the spatial dimensions (for the respective upsampling) and to 1
for the rest of the dimensions (for the 3D and 4D U-Net models). The number of filters in
each expansive stack is reverse of the number of the respective contracting stack (e.g., the
first stack has 8 ”starting-neurons” filters, the second stack has 4 x ”starting-neurons”
filters, etc.).

The aforementioned method for classifying MT-RS images is summarised in Algorithm 1.
Therein, we clarify the function of each path’s block of the proposed 4D U-Net model,
as well as the specific contributions of the designed higher-order layers in the whole
classification pipeline.

Algorithm 1: 4D U-Net model inference.

Input: MT-RS Images: F; € REXWxSxT

Output: MT-RS Predictions Fp € RFF*W

Parameter Initialization: "starting-neurons"
Contracting-path block

e Input feature maps, Fjc, subsampled only spatially

*  Output feature maps: Foc € R X% xSxT

e Foc = g4p(hyp (Fic)), where g4p and hyp are the introduced
4D max-pooling and convolution operators, respectively

Expansive-path block

¢ Input feature maps, Fig, upsampled only spatially

e Output feature maps: For € R2H X2W'XSXT g — fap (Fie), where fyp is
the introduced 4D transpose-convolution operator, H' = %, W' = %

e For = ®(Foc, For): Concatenation with respective contracting-path’s
output feature map

Prediction block

e Input feature maps, Fjp € RIT*WxSxT

e Impose strided 4D-convolution, strides = (1,1,5,T)

e Output feature maps, Fop € RF*W

Taking into account that we perform dense pixel-level classification, each pixel can
belong to one out of C mutually exclusive classes. In order to recast the network’s outputs
as probabilities, categorical cross-entropy was used as the loss function, since the cross-
entropy can be interpreted as the log-likelihood function of the training samples. By using
this loss function, we train our models to output a probability over the C available classes
for each pixel by combining the SoftMax activation (f(s);) and the cross-entropy loss (CE),
as seen in (9):

f(s)i= ﬁ 9

CE = — Y5 tilog(f(s):)

Given the fact that the ground-truth labels in the problem at hand will be matrices
(instead of vectors as in image classification tasks) of spatial size (H, W), we convert them to
one-hot encoding format by generating a third-order label-tensor of dimensions (H,W,C),
in order for the multi-class classification task to take place. In this format, every slice of
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the label-tensor contains the probabilities of each pixel belonging to each different class.
Only the positive class Cp keeps its term in the loss described in (9), and consequently,
there is only one element of the target-slice t which is not zero, with t; = t,. In that way,
discarding the elements of the summation which are zero due to target labels, we can derive
the categorical cross-entropy loss for our U-Net models, as described in (10):

CCE = —I < e > (10)
= —I0 —_— ,
g Z]C:1 eS]'

where s, is the models” score for the positive class.

During the training phase of the network, the weights of every model are randomly
initialised with the Glorot-Uniform initialiser [52]. Regarding the optimisation learning
algorithm, the Adam scheme [53] was used with a constant learning rate of 0.0001 and
exponential decay rates for the first and second moment estimates equal to f; = 0.9 and
B2 = 0.999, respectively.

Training was performed using a constant number of up to 100 epochs with the intention
of observing how the prediction accuracy changes by increasing the number of epochs the
network is trained for. Since the size of the data samples is quite memory intensive, we
dynamically load the data for training each different model (2D/3D/4D) using a batch-
size of 1 sample, aiming to measure fairly among the different models metrics, such as
classification accuracy and computational time needed for the training process.

3. Results

In this section, we initially describe the dataset on which the upcoming experiments
are performed, as well as the employed experimental setup. Afterwards, we define the
evaluation metrics for the comparison of the various DL models. Subsequently, we provide
detailed results of the adopted approach under different experimental scenarios, using
several configurations in order to quantify the effects of all pertinent parameters in the
whole MT-RS land-cover classification pipeline. Finally, we compare the proposed ap-
proach with state-of-the-art methods, and we demonstrate its improved performance over
its competitors.

3.1. Dataset Description

The availability of a suitable training and test set is a critical prerequisite when eval-
uating DL solutions and training ML models. Fortunately, quite recently, a large MT-RS
dataset was released in the context of the IEEE GRSS Data Fusion Contest (“[REFE. NO.]
2021 IEEE GRSS Data Fusion Contest. Online: https://www.grss-ieee.org/community /
technical-committees /2021-ieee-grss-data-fusion-contest-track-msd/, accessed on 20 De-
cember 2020) for the problem of MT-RS land-cover classification. The dataset provides
2250 different tiles (each one covering approximately a 4 km x 4 km area) over the state
of Maryland, USA. The tiles are located in East Coast USA, and an exemplar map of the
area under study alongside with its neighbouring states is illustrated in Figure 3. Each tile
contains Landsat-8 training data (i.e., 9-band MS satellite data at a 30 m spatial resolution
collected once a year through 2013-2017) as well as USGS National Land Cover Database
(NLCD) ground-truth labels for years 2013 and 2016 (i.e., 15-class land cover data at a 30 m
spatial resolution from the April 2019 data release). Those ground-truth labels (alongside
their real values) are reported in Table 1, corresponding to 15 classes including various
forest and developed categories.

In the present study, ground-truth labels are considered those of the year 2016 (the most
recent ones), while training data are the respective MT-RS images through years 2013 to 2016.
From the aforementioned data collection, we selected only those image tiles whose respec-
tive labels do not contain any pixels with undefined values (i.e., pixels with values equal to
0), since these pixels do not form any meaningful class out of the 15 available ones. As a
result, we keep 1580 different samples (e.g., image tiles) and discard the other 670.


https://www.grss-ieee.org/community/technical-committees/2021-ieee-grss-data-fusion-contest-track-msd/
https://www.grss-ieee.org/community/technical-committees/2021-ieee-grss-data-fusion-contest-track-msd/
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Bearing in mind that directly processing MT-RS images of such a large spatial size
is too complex and demanding in memory during training, we adopted the following
pre-processing steps for each MT-RS image: spatial padding of each MT-RS image tile
until its spatial size reaches 4096 x 4096, followed by spatial subsampling every 16 pixels
across height and width (thus reducing the spatial size from (4096,4096) to (256,256)).
In this way, we finally end up with a dataset comprising 1580 different samples of size
(256,256,9,4) each.
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Figure 3. Visualization of the area under study, in terms of geographic location and global basemap.
Maryland state, located in East Coast USA, includes several vegetation as well as forest-dominated areas.

3.2. Experimental Setup

Since the main supervised learning task of the present study focuses on classification,
two non-overlapping training-test sets had to be defined a priori. Based on the reasoning
explained in Section 3.1, as computational resources are not unlimited (in terms of both
training time and memory), we randomly selected 100 image tiles for our experimental
study. With this setup, we split the employed tiles into 80%/20% training/test sets. More-
over, 25% of the training set is used for validation purposes, ending up in a general split of
60%/20% /20% training/validation/test sets (and 60/20/20 training/validation/test sam-
ples accordingly). All splits are performed in a random way, to avoid bias in favour/against
specific classes.

In order to provide an overview of the tiles used in the training/validation/test sets,
in Figure 4 we provide several different NLCD label-tiles included in each set, accompanied
by the respective label values previously summarized in Table 1. Moreover, in Figure 5, we
visualize the respective real RGB aerial images corresponding to those of Figure 4, which
were collected at a 1-meter spatial resolution on single days in 2017 as part of the National
Agriculture Imagery Program (NAIP). From both Figures 4 and 5, we observe that the
classification problem at hand constitutes a realistically quite difficult one, since different
tiles are composed of diverse label distributions.
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Figure 4. Overview of the label-tiles used for training (left column), validation (middle column),
and test (right column) of the models. Different tiles are composed of different labels” distributions,
indicating the difficulty of the problem at hand. (a) Training Set-Tile 171. (b) Validation Set-Tile
2388. (c) Test Set-Tile 224. (d) Training Set-Tile 380. (e) Validation Set-Tile 2551. (f) Test Set-Tile 3244.
(g) Training Set-Tile 3376. (h) Validation Set-Tile 3035. (i) Test Set-Tile 3264. (j) Training Set-Tile 3663.
(k) Validation Set-Tile 3118. (1) Test Set-Tile 3976.
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Figure 5. Overview of the real RGB version of the tiles used for training (left column), validation (middle
column), and testing (right column) of the models. The various different objects indicate the difficulty of the
classification task. (a) Training Set-Tile 171. (b) Validation Set-Tile 2388. (c) Test Set-Tile 224. (d) Training
Set-Tile 380. (e) Validation Set-Tile 2551. (f) Test Set-Tile 3244. (g) Training Set-Tile 3376. (h) Validation
Set-Tile 3035. (i) Test Set-Tile 3264. (j) Training Set-Tile 3663. (k) Validation Set-Tile 3118. (1) Test Set-Tile 3976.
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Table 1. Ground-truth labels of the employed dataset; 15 different classes constitute a quite challeng-
ing classification task.

Class ID Class Value Class Name
1 11 Open Water
2 21 Developed, Open Space
3 22 Developed, Low Intensity
4 23 Developed, Medium Intensity
5 24 Developed High Intensity
6 31 Barren Land (Rock/Sand/Clay)
7 41 Deciduous Forest
8 42 Evergreen Forest
9 43 Mixed Forest
10 52 Shrub /Scrub
11 71 Grassland /Herbaceous
12 81 Pasture/Hay
13 82 Cultivated Crops
14 90 Woody Wetlands
15 95 Emergent Herbaceous Wetlands

Since our task is to classify every pixel in an MT-RS image (and not the whole image
itself), it is to be expected that the dataset is going to be imbalanced. Such a case is
common in pixel-level classification tasks, as a direct consequence of non-uniform label
distribution among different sample MT-RS images in real-world datasets. Figure 6 depicts
the normalized histogram of the different classes present in every different set (i.e., training-
validation-test), clearly showing the imbalanced label distribution. We observe that some
classes are quite infrequent (e.g., barren land, shrub/scrub), whereas some others dominate
the dataset (e.g., deciduous forest with a relative probability of almost 25%).

Using the aforementioned dataset splits, in the upcoming experiments we train each
model in the training set and validate its performance (by trying various hyper-parameter
configurations) in the validation set. Subsequently, we select and report the model’s
performance based on the best validation accuracy it achieved during the training process
(irrespective if that was obtained at the final epoch or not). These best performing models
are then used in the test set, once, in order to assess the final performance of the model.

The designed U-Net architectures were developed in a Python programming platform
by exploiting the TensorFlow and Keras [54] libraries. The reason behind such a choice is
threefold: First, TensorFlow is an open-source ML framework, which now integrates the
higher-level DL-specific Keras library and provides support and updates on most state-of-
the-art DL models and algorithms. Second, TensorFlow and Keras provide a high level of
customization in nearly every part of a DL model, which was highly desired in the present
study since various custom layers were implemented. Finally, and most importantly, both
libraries can perform calculations on a GPU, dramatically decreasing the computational
time of the training process. In our experiments, we used NVIDIA’s GPU model Quadro
P4000 with 8 Gb of available RAM memory.
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Figure 6. Labels’ distribution in the employed training-validation-test sets. In every set, there exists a
clear dominant class (i.e., deciduous forest), whereas some classes (e.g., barren land, shrub/scrub,

grassland/herbaceous) are extremely scarce. (a) Labels” distribution—Training Set. (b) Labels
distribution—Validation Set. (c) Labels” distribution—Test Set.

3.3. Evaluation Metrics for Multi-Temporal Land-Cover Classification

Since the problem at hand is essentially a pixel-level multi-class classification task,
we rely on several ML metrics for the evaluation of the designed models. Comparing the
prediction of one pixel with its ground-truth value, the outcome can be one of four types:
True Positive (TP), False Positive (FP), False Negative (FN), or True Negative (TN). Positive and
Negative correspond to the class for which we compute the metric, while True and False
stand for the equality between the ground-truth label and the predicted one. Based on
these definitions, widely-used ML metrics are defined for each different class present in the
data as follows:

— TP
recall = 7p=rry
.. o TP
precision = TP + ID (11)

_ TP + TN
accuracy = Tpy rp+ FN + TN

Since pixel-level classification can be seen as an image segmentation task and because
we are dealing with a highly imbalanced dataset, pixel-level accuracy is by no means the
only suitable metric for segmentation purposes. Indeed, certain classes clearly dominate
specific sample tiles, ending up in predictions which can have unclear segmentation
interpretations. To overcome this issue, we additionally report the F;-score as well as the
IoU index. The F;-score can be interpreted as a weighted average (harmonic mean) of the
precision and recall metrics defined in (11), and it is widely used in segmentation tasks under
the Dice coefficient name. On the other hand, IoU (also known as the Jaccard index) is the area
of overlap between the predicted segmentation and the ground-truth, divided by the area
of the union between the predicted segmentation and the ground-truth. Based on these
remarks, as well as on (11), the F;-score and the IoU index metrics are defined class-wise
as follows:

. __ ~  precision-recall __ TP
Fy — score =2 precision+recall — Tp 4 EP n EN (12)
ToU — |Ground—TruthNPrediction| __ TP

|Ground—TruthUPrediction| — TP + FP + FN

Since all metrics in (11) and (12) are computed for each different class in the dataset,
their overall counterparts are then calculated and reported by averaging them across
all classes. This approach is called the Macro-Averaging of metrics, and treats all classes
equally. Since our problem is a highly-imbalanced multi-class classification task, we instead
compute and report the so-called Micro-Averaged respective metrics. In that way, we
aggregate the contributions of all classes to compute the average metric, ending up with
less biased estimations. We should notice at this point the fact that, from ML evaluation
theory for multi-class problems [55], in the micro-averaged metrics’ case, the classification
accuracy metric coincides with the precision, recall, and F;-score ones. Moreover, for each
of the trained models presented below, we report the time for its training as a metric of its
computational complexity.
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Finally, we additionally provide several confusion matrices, where each row represents
the observations in a true/actual class while each column represents the observations in
a predicted class. To have a clearer sense of the metrics reported for each class, each cell
value in all subsequent confusion matrices is normalized by the total number of obser-
vations. Furthermore, the respective class-wise recall is displayed across each confusion
matrix’s row, whereas the respective class-wise precision is displayed across each confusion
matrix’s column.

3.4. 4D U-Net Architecture Parameter Tuning

Two important hyper-parameters mostly affect the performance of the proposed 4D
U-Net model: the number of stack-layers it contains (i.e., the depth of the U-Net model) and
the number of filters employed for efficient MT-MS feature learning. In order to determine
the best hyper-parameter configuration, we performed an ablation study considering each
one of them separately as well as in combination.

The first set of experiments assesses the performance of the 4D U-Net in relation
to its depth, i.e., the number of stack-layers it comprises. We trained two different 4D
U-Net models with depths equal to 3 and 4, respectively, and the parameter configuration
described in Section 2.3. The number of filters employed for this set of experiments was set
to 4 for the first stack in the contracting path (doubled to 8 in the second stack, 16 in the
third stack, and 32 in the fourth stack).

The second set of experiments quantifies the number of filters used to train the 4D
U-Net model. We again trained two different models with depths equal to 3 and 4, but this
time we doubled the number of filters used in the first contracting path stack from four
to eight. In this way, we obtained more feature maps across every layer, aiming to a more
complex model with a better performance.

Table 2 shows that as we employ more filters, the obtained metrics increase, indicating
that the network’s generalization capability improves. Of course, more filters automatically
translate to more parameters to be learned, resulting in an increase in the time needed to
train the network. We also observe that increasing the U-Net depth from three to four has a
positive effect in all metrics when four filters are employed, rather than eight. All in all, we
can conclude that the best U-Net model has a depth equal to 3 and achieves a classification
accuracy of 61.56% in approximately 9 h.

Table 2. Classification metrics and associated training times (minutes) for the trained 4D U-Net
models. Employing more filters and constructing deeper architectures leads to more complex and
accurate models, requiring longer training times.

U-Net Depth  #Filters 1st Stack Accuracy Time Precision Recall
3 0.4192 452.59 0.4192 0.4192
0.6156 542.14 0.6156 0.6156

1 0.4682 463.13 0.4682 0.4682
0.6078 565.72 0.6078 0.6078

3.5. Comparison to Lower-Order U-Net Models

In order to compare our method and investigate its possible merits, we performed the
same ablation study for similar lower-order U-Net models and tune their hyper-parameters
in the spirit of Section 3.4. The lower-order U-Net models are constructed based on the
approach described in detail in Section 2.3. More precisely, we employ the 2D U-Net basic
architecture proposed in [37], adapted for the problem at hand, with only spatial features
being learnt, whereas the spectral and temporal dimensions are averaged. We also consider
two distinct 3D U-Net models, one learning spatio-temporal features (i.e., averaging the
spectral dimension of the data) and one learning spatio-spectral features (i.e., averaging
the temporal dimension of the data). The models are constructed with exactly the same
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parameter values described for the 4D case (e.g., model-depth, number of filters per layer,
kernel sizes according to dimension, etc.), and they are tuned similarly to the 4D U-Net
model in order to converge to the best possible version.

Following the same approach as in Section 3.4, we train two distinct 2D and 3D
U-Net models with depths equal to 3 and 4, each having three or four filters in the first
contracting path stack. According to the results presented in Table 3, increasing the number
of employed filters has a positive effect in the performance of nearly all lower-order models.
We also note that increasing the U-Net depth has a significant positive effect only for the
3D U-Net-Spectral model. Of course, adopting deeper network architectures with a larger
number of filters results in more complex models (many parameters), thus increasing
accordingly the required time for training.

Table 3. Classification metrics and associated training times (minutes) for the trained 2D [37] and
3D U-Net models. The more filters are employed, the better the obtained classification metrics, with
higher-order models outperforming the lower-order ones.

U-Net #Filters 1st

Model Depth Stack Accuracy Time Precision Recall

3 4 0.2198 18.97 0.2198 0.2198

2D U-Net [37] 3 8 0.2201 19.55 0.2201 0.2201
4 4 0.2202 19.32 0.2202 0.2202

4 8 0.2202 19.68 0.2202 0.2202

3 4 0.2202 39.20 0.2202 0.2202

3D U-Net-T 3 8 0.2606 44.23 0.2606 0.2606
4 4 0.2202 40.21 0.2202 0.2202

4 8 0.2652 44.76 0.2652 0.2652

3 4 0.2202 65.00 0.2202 0.2202

3D U-Net-S 3 8 0.4877 76.40 0.4877 0.4877
4 4 0.2202 66.80 0.2202 0.2202

4 8 0.4742 78.52 0.4742 0.4742

Figure 7 shows the confusion matrices for the proposed 4D U-Net model and the
3D U-Net-S that follows in performance. We observe that both models exhibit a similar
performance in the prediction of the dominant classes in the dataset, namely, deciduous
forest, open water and cultivated crops. However, for the rest of the classes, the proposed
4D U-Net model exhibits a better performance in recovering the actual labels than the 3D
U-Net-S method. Among the most challenging classes, we notice the following:
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Open Water -l 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 34%
Developed-Open Space | 0.1% 4.1% 0.1% 28% 0.0% 0.6% 0.0% 0.6% 0.8% 0.5% 0.1% 42.0%
Developed-Low Intensity |~ 0.1% 6.4% 0.1% 0.0% 0.7% 0.0% 0.3% 0.0% 0.1% 0.3% 0.1% 0.2% 15%
Developed-Medium Intensity | 04% 24% 0.0% 0.0% 01% 0.0% 0.2% 0.0% 0.1% 0.1% 0.0% 0.3% 0.0%
Developed-High Intensity |~ 1.1% 11% 0.0% 0.0% 01% 01% 0.6% 0.0% 0.1% 0.2% 0.0% 0.2%
Barenland | 01% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0
Deciduous Forest | 0.1% 0.6% 0.0% 1% 0.0% 13% 0.6% 0.1% 2.2% 0.0% 4 226%
Evergreen Forest|  0.0% 0.0% 0.0% 0.3% 0.0% 0.4% 0.0% 0.1% 28% 0.0% 0.5% 9.
g Mixed Forest|  0.1% 0.1% 0.0% 47% 0.0% 0.8% 0.2% 0.1% 22% 0.0% 10.1%
E Shrub-Scrub | 0.0% 0.0% 0.0% 05% 0.0% 0.1% 0.1% 0.1% 0.3% 0.0% 00.0¢
Grassland-Herbaceous | 0.0% 0.2% 0.0% 03% 0.0% 0.0% 0.2% 0.1% 0.0% 0.0%
Pasture-Hay | 0.0% 0.3% 0.0% 17% 0.2% 3.2% 05% 0.0% 0.0% 451%
Cultivated Crops | 0.1% 0.6% 0.0% 0.4% 0.0% 0.6% 19% - 0.3% 0.1% 20.3%
Woody Wetlands | 0.2% 0.2% 0.0% 16% 0.1% 0.8% 0.0% 0.1% 0.3% 49% 0.2% 41.5%
Emergent Herbaceous Wetlands | 0.5% 0.1% 0.0% 0.1% 0.0% 0.1% 0.1% 0.3% 0.1% 0.4% 25.2%
Predicted Class
(@
Open Water - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 01% 0.0% 01% 95.9%
Developed-Open Space | 0.1% 38% 22% 0.1% 0.0% 13% 0.0% 0.2% 0.0% 0.8% 0.9% 0.3% 0.1%
Developed-Low Intensity | 0.1% 18% 5.1% 0.5% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.3% 0.0% 0.0%
Developed-Medium Intensity | 0.0% 0.2% 11% 13% 0.8% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% -
Developed-High Intensity | 0.0% 0.1% 0.1% 11% 2.2% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1%
BarenLand |  01% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - 100.0%
Deciduous Forest|  0.1% 14% 01% 0.0% 0.0% 0.0% 0.5% 0.0% 0.5% 05% 0.6% 0.0% 82.7%
Evergreen Forest|  0.0% 0.3% 0.0% 0.0% 0.0% 0.2% 0.3% 0.2% 0.0% 0.2% 25% 0.0% 4 92.9%
g Mixed Forest | 0.1% 0.8% 0.0% 0.0% 0.0% 5.1% 0.0% 0.7% 0.0% 0.3% 0.3% 0.9% 0.0% .. 91.9%
0
g
E Shrub-Scrub | 0.0% 0.1% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.1% 0.2% 0.2% 0.0% 100.0%
Grassland-Herbaceous | 0.0% 0.1% 0.0% 0.0% 0.0% 02% 0.0% 0.0% 0.0% 0.3% 0.1% 0.0% 0.0% 100.0%
Pasture-Hay | 0.0% 0.6% 0.1% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 39% 10% 0.0% 0.0%
Cultivated Crops | 0.1% 0.5% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.5% - 0.2% 0.0%
Woody Wetlands | 0.1% 0.3% 01% 0.0% 0.0% 13% 02% 0.5% 0.0% 0.1% 0.6% 48% 03%
Emergent Herbaceous Wetlands | 0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 0.0% 0.7%
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Figure 7. Confusion matrices for the best 3D and 4D U-Net models. The higher dimensional U-Net
model recovers better nearly every possible class. (a) Confusion matrix for the best 3D U-Net-S model.
(b) Confusion matrix for the best 4D U-Net-Proposed model.
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*  Class deciduous forest is frequently mistaken for class developed-open space or mixed forest
by both models, although the 4D U-Net classifies it correctly at a higher rate.

e Class mixed forest is mostly mistaken for class deciduous forest or woody wetlands by 3D
U-Net-S and for deciduous forest by 4D U-Net.

*  Class developed-low intensity is rarely predicted correctly by the 3D U-Net model,
whereas classes developed-medium intensity and developed-high intensity are never pre-
dicted correctly at all. On the other hand, the proposed 4D U-Net model distinguishes
these highly similar classes quite well.

o Classes barren land, shrub-scrub, and grassland-herbaceous are never predicted correctly
by any of the methods, a result that can be attributed to their extremely rare frequency
in the dataset, as it can be seen from the respective labels’ distribution histograms in
Figure 6.

*  Predictions derived from the proposed 4D U-Net model exhibit clearly higher class-
wise precision (i.e., summaries across each column of the confusion matrices) across
14 out of the 15 available classes. This is indicative of the low number of observa-
tions being attributed incorrectly to each predicted class, leading to a low type-I error
per class.

¢  Predictions derived from the proposed 4D U-Net model clearly exhibit a higher class-
wise recall (i.e., summaries across each row of the confusion matrices) for 8 out of
the 15 available classes. This is indicative of the low number of observations being
attributed incorrectly to each true class, leading to a low type-II error per class.

Figure 8 presents the convergence behavior of our proposed 4D U-Net architecture
vis-a-vis 3D U-Net-S, which arose as the best among all lower-order U-Nets. Convergence
is depicted in terms of the classification accuracy as a function of the number of epochs, for
both the training and validation sets. Naturally, we used the best hyper-parameters for each
U-Net model. We observe that the performance of the 4D U-Net model improves gradually,
while at the same time, over-fitting issues are prevented as the validation curve tracks the
training curve fairly well, indicating a strong generalisation capability. On the other hand,
the best 3D U-Net-S model converges slower and to a lower classification accuracy value
when compared to the proposed 4D model.

In order to interpret the obtained results from an image segmentation point of view,
in Table 4, we additionally report the mean IoU index, as well as the F;-score, precision,
and recall metrics for the proposed 4D model and the lower-order methods. As we can see
in Table 4, the proposed 4D U-Net significantly outperforms all the other U-Net models
in terms of every reported metric, a strong indication of its robustness in class-imbalance
situations arising quite frequently in real-world datasets.

Table 4. Mean IoU, Fj-score, precision, and recall of the best 3D and 4D U-Net models. In every
metric, the proposed higher-dimensional model outperforms the second best one.

Model IoU F;-Score Precision Recall

2D U-Net [37] 0.1237 0.2202 0.2202 0.2202
3D U-Net-T 0.1529 0.2652 0.2652 0.2652
3D U-Net-S 0.3225 0.4877 0.4877 0.4877

4D U-Net-Proposed 0.4447 0.6156 0.6156 0.6156
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Figure 8. Classification accuracy of the 4D U-Net and 3D U-Net-S models. As the number of epochs
increases, the performance of both U-Net models improves, but with a clear classification accuracy
gap in favour of our proposed 4D U-Net system.

To have a comprehensive evaluation summary for all methods in the employed dataset,
in Table 5, we report the obtained accuracy for each one of the test set tiles and for all the
U-Net models. We observe that in 19 out of the 20 test tiles, the proposed 4D U-Net model
clearly outperforms all the competing methods by considerable margins, which, in several
cases, exceeds 10%, while being slightly inferior in only one tile.

To have a better visual sense of the proposed model’s performance, Figure 9 depicts
the actual labels of 4 different test tiles, accompanied by the predictions obtained using our
proposed 4D model and the second best method, i.e., 3D U-Net-S. The classification maps
shown in Figure 9 demonstrate that our 4D U-Net model captures most of the labels better,
resulting in clearly segmented regions. We also notice that the 3D U-Net-S model suffers
from severe “noise-effects”, a result of its poor performance to correctly predict large parts
of every test tile. On the other hand, the proposed 4D U-Net model captures most of the
labels of the actual classification map the best, ending up with clearly segmented regions
bearing a strong resemblance to the ground-truth labels.
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Table 5. Classification accuracy of the best U-Net models in each of the test set tiles. In 95% of all
cases, the proposed 4D U-Net model outperforms all competing ones.

Tile-ID 2D U-Net [37] 3D U-Net-T 3D U-Net-S 4D U-Net
173 0.4703 0.4521 0.5782 0.6128
224 0.2991 0.2782 0.6554 0.6616
761 0.5271 0.4849 0.5460 0.6080

2223 0.2736 0.3009 0.3102 0.5417
2877 0.4176 0.5500 0.6412 0.7794
2937 0.1112 0.1080 0.3550 0.5732
3112 0.1245 0.1206 0.2495 0.3924
3227 0.0325 0.0893 0.7413 0.7907
3244 0.3023 0.3762 0.4971 0.6607
3264 0.3205 0.3308 0.4366 0.5622
3470 0 0.0071 0.0944 0.5722
3522 0.0416 0.0386 0.2392 0.6408
3532 0.5455 0.5368 0.5546 0.6018
3542 0.5896 0.5787 0.4739 0.5768
3772 0.3154 0.3671 0.3534 0.4095
3976 0.0011 0.0709 0.5906 0.6109
4137 0.0214 0.2447 0.7474 0.8010
4474 0.00006 0.1033 0.6509 0.7336
4478 0.0053 0.1030 0.4709 0.5358
4960 0.0054 0.1627 0.5685 0.6472
Total 0.2202 0.2652 0.4877 0.6156

3.6. Comparison to State-of-the-Art Methods

Apart from the lower-order U-Net models presented in Section 3.5, we also compared
our high-dimensional model to current state-of-the-art methods in the field. For the
comparison to be fair, we chose a method proposed by Sefrin et al. in [39] (described earlier
in Section 1), which operates directly on raw MT-RS data, as is the case with our proposed
method. Since the FCN architecture proposed in [39] does not exploit any sequential
information present in the data, we average their temporal dimension, as was the case
with the 2D U-Net model designed in the present study. Concerning the FCN + LSTM
approach of [39], the authors further construct two variants of the FCN + LSTM model: a
fixed-sequence LSTM (LST MF), which employs the available MT-RS data as they are, and a
variable-sequence LSTM (LST My ), which further adds MT-RS samples from further available
sampling dates. Since in our case we employ one time-series of RS data and since the
results in [39] demonstrate the superiority of the LSTMF over the LSTMy, we compare
our method with the LST Mr variant (denoted as FCN + LSTM from now on).
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Figure 9. Actual and predicted labels corresponding to four distinct test set tiles, obtained via the best
3D and 4D (proposed) U-Net models. The proposed 4D model captures better the texture of the map
as well as more of its actual labels/values. (a) Actual labels—Tile 2223. (b) Predicted labels—Tile
2223-3D U-Net-S. (c) Predicted labels—Tile 2223-4D U-Net. (d) Actual labels—Tile 2937. (e) Predicted
labels—Tile 2937-3D U-Net-S. (f) Predicted labels—Tile 2937-4D U-Net. (g) Actual labels—Tile 3470.
(h) Predicted labels—Tile 3470-3D U-Net-S. (i) Predicted labels—Tile 3470-4D U-Net. (j) Actual
labels—Tile 4474. (k) Predicted labels—Tile 4474-3D U-Net-S. (1) Predicted labels—Tile 4474-4D
U-Net.

Another aspect that should be highlighted here is the pre-processing steps proposed
in [39]. More specifically, the authors propose two ways in order to address the class-
imbalance problem faced in pixel-level classification tasks: Firstly, they exclude pixels which
belong to extremely scarce classes by forming an Excluded Class which contains half of the
less-frequent classes of the dataset; secondly, they further exclude shoreline-water pixels,
since they vary significantly across time, based on an NDVI-threshold criterion. In the
present study, though, we do not impose any pre-processing steps, in an attempt not only to
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quantify the performance of the proposed method on raw MT-RS data but additionally in
order to investigate its potential in real-world experimental cases where class-imbalanced
datasets are highly expected. As a result, for the FCN and FCN + LSTM methods, we do
not use any pre-processing steps in order to be aligned with the aforementioned results
presented in Section 3.5.

Figure 10 depicts the resulting confusion matrices for both comparison models. We
notice that both models outperform the lower-order U-Nets presented in Section 3.5, as they
achieve a classification accuracy of up to 0.5004% (FCN) and 0.5457% (FCN + LSTM). More-
over, we observe that the FCN method predicts the dominant classes slightly better (i.e.,
deciduous forest and cultivated crops), while for nearly all the other classes, the FCN + LSTM
recovers the actual labels more accurately. We further highlight the following:

*  Class deciduous forest is frequently mistaken for class developed-open space or mixed
forest by both models, while our proposed 4D approach predicts it correctly with a
higher rate.

e Predictions derived from both the FCN and FCN + LSTM methods exhibit comparable
class-wise precision (i.e., summaries across each column of the confusion matrices), as
the FCN model is better in 5 out of the 15 available classes, while being inferior in 5
out of 15.

e  Predictions derived from the FCN + LSTM [39] clearly outperform those of the
FCN [39] in terms of class-wise recall (i.e., summaries across each row of the con-
fusion matrices), as the FCN is better in only 3 out of the 15 classes while being inferior
in 8 out of 15.

In an attempt to interpret these results in terms of image segmentation metrics, in
Table 6 we report the mean IoU index, as well as the F;-score, precision, and recall metrics
for FCN, FCN + LSTM, and 4D U-Net. We observe that the FCN + LSTM outperforms the
FCN in all metrics, as expected. Nevertheless, both models are clearly outperformed by
the proposed 4D U-Net in both segmentation and classification metrics, implying inferior
robustness in real-world class-imbalance situations.

Since the FCN + LSTM outperforms the FCN, we further depict its predictions across
four specific tiles in Figure 11, accompanied by their actual labels, together with the
predictions obtained using our proposed 4D model. The classification maps shown in
Figure 11 demonstrate that the FCN + LSTM delivers poorly segmented regions in most
of the tiles. On the other hand, the proposed 4D U-Net model ends up with more clearly
segmented regions, closer to the ground-truth labels.

Table 6. Mean IoU, F;-Score, precision, and recall for FCN, FCN + LSTM, and 4D U-Net. The
proposed higher-dimensional model outperforms its competitors in both metrics.

Model IoU F;-Score Precision Recall
FCN 0.3337 0.5004 0.5004 0.5004
FCN + LSTM 0.3753 0.5457 0.5457 0.5457

4D U-Net-Proposed 0.4447 0.6156 0.6156 0.6156
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Open Water [ 8.0% 0.0% 0.0% 0.1% 0.2% 0.0% 0.0% 0.1% 0.0% 0.0%
Developed-Open Space | 0.1% 0.5% 0.8% 0.2% 0.0% 3.0% 0.1% 0.3% 11% 36% 0.2% 0.0%
Developed-Low Intensity | 0.1% 0.3% 1.6% 12% 0.0% 0.8% 0.0% 0.0% 0.2% 3.9% 0.0% 0.0%
Developed-Medium Intensity |~ 0.0% 0.0% 0.3% 17% 0.0% 0.1% 0.0% 0.0% 14% 0.0% 0.0%
Developed-High Intensity | 0.0% 0.0% 0.0% 31% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0%
Barenland| 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
Deciduous Forest | 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.6% 0.4% 0.9% 0.4% 0.0%
Evergreen Forest|  0.0% 0.1% 0.0% 0.0% 1.0% 1.3% 0.7% 0.0% 0.2% 0.5%
g Mixed Forest| ~ 0.0% 0.1% 0.0% 0.0% 6.6% 0.0% 0.8% 0.2% 0.3% 0.2% 0.0%
E Shrub-Scrub | 0.0% 0.0% 0.0% 0.0% 0.5% 0.1% 0.1% 0.2% 0.2% 0.1%
Grassland-Herbaceous|  0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.3% 04% 0.0%
Pasture-Hay | 0.0% 0.1% 0.0% 0.0% 0.5% 0.0% 0.1% 32% 2.2% 0.0%
Cultivated Crops |~ 0.0% 0.1% 0.0% 0.0% 06% 0.0% 0.2% 0.8% - 0.0% 0.0%
Woody Wetlands |~ 0.1% 0.1% 0.0% 0.0% 43% 14% 1.0% 0.1% 0.4% 1.1%
Emergent Herbaceous Wetlands | 0.3% 0.0% 0.0% 0.0% 06% 0.0% 0.0% 0.1% 0.4% 0.1% 0.0%
Predicted Class
(a)
Open Water ! 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1%
Developed-Open Space | 0.2% 3.9% 1.4% 0.3% 0.0% 18% 0.1% 0.6% 0.4% 1.0% 0.1% 0.0%
Developed-Low Intensity |~ 0.3% 1.7% 32% 14% 0.2% 0.5% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0%
Developed-Medium Intensity [ 0.2% 0.1% 0.5% 16% 0.4% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0%
Developed-High Intensity |~ 0.1% 0.0% 0.0% 19% 0.4% 0.0% 0.0% 0.0% 12% 0.0%
Barrenland | 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
Deciduous Forest|  0.1% 1.0% 0.1% 0.0% 0.0% 01% 26% 0.3% 0.4% 0.1% 0.0%
Evergreen Forest|  0.0% 0.2% 0.0% 0.0% 0.2% 2.0% 1.1% 0.0% 0.1% 0.1% 0.0%
g Mixed Forest|  0.1% 0.6% 0.0% 0.0% 43% 0.1% 2.7% 0.2% 0.2% 0.0% 0.0%
o
g
= Shrup-Scrub | 0.0% 0.2% 0.0% 0.0% 0.3% 0.1% 0.2% 0.1% 0.1% 0.0% 0.0% 100.0%
Grassland-Herbaceous|  0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.3% 0.2% 0.0% 0.0% 100.0%
Pasture-Hay | 0.0% 1.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.2% 3.3% 12% 0.0% 0.0%
Cultivated Crops |~ 0.1% 11% 0.1% 0.0% 0.0% 0.2% 0.1% 04% 08% - 0.0% 0.0%
Woody Wetlands | 0.1% 0.5% 0.0% 0.0% 24% 23% 25% 0.0% 0.2% 0.3% 0.1%
Emergent Herbaceous Wetlands | 0.3% 0.2% 0.0% 0.0% 0.3% 0.0% 0.0% 0.1% 0.1% 0.1% 0.5%
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Figure 10. Confusion matrices for the methods FCN and FCN + LSTM [39]. The two models are
comparable in accuracy, precision and recall metrics, with the FCN + LSTM model being slightly better.
(a) Confusion matrix for the Comparison-FCN model [39]. (b) Confusion matrix for the FCN + LSTM
model [39].
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Figure 11. Actual and predicted labels corresponding to four distinct test set tiles, obtained via
FCN + LSTM and 4D U-Net. The proposed 4D model captures better the texture of the map as well
as more of its actual labels/values. (a) Actual labels—Tile 3522. (b) Predicted labels—Tile 3522-
FCN + LSTM. (c) Predicted labels—Tile 3522-4D U-Net. (d) Actual labels—Tile 3976. (e) Predicted
labels—Tile 3976-FCN + LSTM. (f) Predicted labels—Tile 3976-4D U-Net. (g) Actual labels—Tile 4478.
(h) Predicted labels—Tile 4478-FCN + LSTM. (j) Predicted labels—Tile 4478-4D U-Net. (j) Actual
labels—Tile 4960. (k) Predicted labels—Tile 4960-FCN + LSTM. (1) Predicted labels—Tile 4960-4D
U-Net.

4. Discussion

In this section, we discuss the results derived in Section 3. We present a comprehensive
discussion concerning the performance of the models as a function of the size of the
available training data in an attempt to quantify each model’s needs for efficient pixel-level
classification. We highlight the strengths and limitations of each employed model in order
for their comparison to be clear and complete.
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4.1. Effect of Training Set Size on Classification Accuracy

In order to assess the performance of the proposed 4D U-Net model with respect to
its needs in terms of available training data, we doubled the number of samples used for
training the models (from 60 to 120 MT-RS images) while the validation and test samples
remained the same (i.e., 20 MT-RS images each). We performed the same ablation studies
for all lower dimensional U-Net variants, as well as the FCN and FCN + LSTM methods. We
summarise the obtained results in Table 7. We observe that increasing the training samples
has a minor effect on all U-Net models, with the highest performance improvement being
observed for 3D U-Net-S. On the other hand, the FCN and FCN + LSTM enjoy a higher
accuracy when trained with more samples. The 4D U-Net does not seem to improve when
trained with more samples but still outperforms the second best method by approximately
3%, indicating the robustness of the proposed approach.

Table 7. Classification accuracy and respective training time (minutes) w.r.t. the number of training
samples for the best U-Net and comparison models. Employing more samples slightly improves
the performance of the lower-order models and the comparison ones but not enough to surpass the
proposed 4D architecture.

Model #Training Samples Accuracy Time
0.2202 19.68
2D U-Net [37] 60
120 0.2256 34.52
60 0.2652 4476
3D U-Net-T
120 0.2742 86.91
0.4877 76.40
3D U-Net-S 60
120 0.5768 154.48
0.5004 26.54
FCN [39] 60
120 0.5753 47.2813
0.5457 64.06
FCN + LSTM [39] 60
120 0.5810 121.77
0.6156 542.14
4D U-Net-Proposed 60
120 0.6094 1129.05

4.2. Proposed Method Failure Cases

Even if the proposed method performs quite well under the aforementioned experi-
mental scenarios, it is deemed appropriate to report those cases in which it seems to have a
hard time.

More specifically, observing more closely the respective confusion matrix in Figure 7b,
there exist some classes which our proposed method predicts with very low accuracy rate
(e.g., developed-medium intensity, developed-high intensity), whereas others cannot be
predicted correctly at all (e.g., barren land, shrub-scrub, grassland-herbaceous). In order
to explain the reasoning of such failures, in Figure 12, we visualise two test-set’s tiles in
which our proposed model did not perform so well (i.e., tile 3112 with 39.24%, and tile
3772 with 40.95%), along with the respective predictions and histograms. Interpreting
those predictions, we observe that classes with similar characteristics (i.e., developed-
open space, developed-low intensity, developed-medium intensity, and developed-high
intensity) seem to confuse the proposed model, a fact that can be attributed exactly to the
slight differentiation among them. Moreover, the fact that some classes cannot be predicted
correctly at all (e.g., barren land) can be attributed to their extremely low frequency in the
whole dataset.
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On the other hand, classes whose characteristics can change throughout the years
(e.g., deciduous forest, cultivated crops) are predicted correctly by the proposed method
with high accuracy rates. The reasoning behind this is based on the fact that our 4D U-Net
model better captures the temporal variability of those classes across the spectral bands of
the data, ending up with analogous increased performance.

4.3. Models” Quality Evaluation

A final comparison between all employed methods is shown in Figure 13, which
depicts the classification accuracy obtained in the test set by the four considered U-Net
models, together with the FCN and FCN + LSTM methods. Among the U-Net variants, our
proposed 4D model achieves the best classification accuracy (61.56%) among all, followed
by the 3D U-Net-S model (48.77%), the 3D U-Net-T model (26.52%), and finally the 2D
U-Net model (22.02%). Moreover, both the FCN and FCN + LSTM outperform the lower-
order U-Nets as they achieve a classification accuracy of 50.04% and 54.57%, respectively.
Still, they remain at least 7% below the proposed 4D U-Net model. All in all, the designed
higher-order architecture clearly outperforms all its competitors in every experimental
scenario examined.

Of course, this significant performance improvement does not come for free, as shown
by the model training times shown in Table 8. Training a 4D U-Net takes approximately
7 times longer than the second competing lower-order method (3D U-Net-5) and approx-
imately 8.5 times longer than the second best competing method (FCN + LSTM). The
number of parameters employed by each model are also shown in Table 8. Notice that
the proposed 4D architecture contains approximately 25 times fewer parameters than the
FCN + LSTMV, its second best competitor. Of course the operations in higher-dimensional
spaces are more time consuming. However, a smaller number of parameters to be learned
implies that optimized (instead of customized) higher-order operations could drastically
diminish the training-time gap between the architectures. In addition, this weakness of
the proposed method could be alleviated if better hardware (e.g., GPUs) were employed.
All in all, the results presented throughout the present study clearly demonstrate that the
proposed higher-order U-Net architecture outperforms the lower-order counterparts as
well as state-of-the-art methods in every examined case, at the cost of longer training time.

Table 8. Number of parameters and respective training times (minutes) for the best employed models.
The higher-dimensional processing requires more computational time, even if this is not translated
into accordingly more parameters to be learned.

Model #Parameters Time

2D U-Net [37] 80,699 19.32
3D U-Net-T 936,631 4476
3D U-Net-S 350,583 76.40
FCN [39] 29,067,455 26.54
FCN + LSTM [39] 29,099,975 64.06

4D U-Net-Proposed 1,181,087 542.14
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Figure 12. Actual, predicted labels, and respective histograms corresponding to two distinct test set tiles
obtained via the proposed 4D U-Net model. Extremely improbable classes as well as slightly different
ones lead to poor prediction accuracy. (a) Actual labels—Tile 3112. (b) Actual labels—Tile 3112-Histogram.
(c) Predicted labels—Tile 3112-4D U-Net. (d) Predicted labels—Tile 3112-4D U-Net-Histogram. (e) Actual
labels—Tile 3772. (f) Actual labels—Tile 3772-Histogram. (g) Predicted labels—Tile 3772-4D U-Net.
(h) Predicted labels—Tile 3772-4D U-Net-Histogram.
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Figure 13. Classification accuracy for the best employed models. The performance improvement
between the proposed 4D U-Net model and the second best lower-order 3D U-Net-S reaches 12.79%.
Moreover, the proposed 4D U-Net model outperforms both FCN and FCN + LSTM by at least 6.99%.

5. Conclusions

In this work, we proposed a 4D U-Net architecture for the problem of classifying
MT-RS data. The approach is based on generalizing conventional U-Net models to their
high-dimensional analogues, by customizing and modifying every functionality of them
in each of their paths. Furthermore, we designed, tested, and evaluated with real-world
data various network configurations in order to determine the best one for the problem
at hand. Based on our experimental findings on a recently released MT-RS dataset, we
demonstrated that clearly improved classification accuracy, with respect to lower-order
and state-of-the-art methods, is feasible if feature learning is performed in the nominal
domain of the data.
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Abbreviations

The following abbreviations are used in this manuscript:

RS Remote Sensing
MT Multi-Temporal
MS Multi-Spectral

NDVI  Normalized Difference Vegetation Index
ML Machine Learning

DL Deep Learning

SVM Support Vector Machines

kNN k-Nearest Neighbours

DT Decision Tree

RF Random Forest

ANN Artificial Neural Network

CNN Convolutional Neural Network

HS Hyper-Spectral

TCNN  Temporal Convolutional Neural Network
RNN Recurrent Neural Network

LSTM  Long Short-Term Memory

FCN Fully Convolutional Network

NLCD National Land Cover Database

NAIP  National Agriculture Imagery Program

TP True Positive
FP False Positive
FN False Negative
TN True Negative
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