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Abstract: LiDAR technology is rapidly evolving as various new systems emerge, providing unprece-
dented data to characterize forest vertical structure. Data from different LiDAR systems present
distinct characteristics owing to a combined effect of sensor specifications, data acquisition strate-
gies, as well as forest conditions such as tree density and canopy cover. Comparative analysis of
multi-platform, multi-resolution, and multi-temporal LiDAR data provides guidelines for selecting
appropriate LiDAR systems and data processing tools for different research questions, and thus is
of crucial importance. This study presents a comprehensive comparison of point clouds from four
systems, linear and Geiger-mode LiDAR from manned aircraft and multi-beam LiDAR on unmanned
aerial vehicle (UAV), and in-house developed Backpack, with the consideration of different forest
canopy cover scenarios. The results suggest that the proximal Backpack LiDAR can provide the
finest level of information, followed by UAV LiDAR, Geiger-mode LiDAR, and linear LiDAR. The
emerging Geiger-mode LiDAR can capture a significantly higher level of detail while operating at a
higher altitude as compared to the traditional linear LiDAR. The results also show: (1) canopy cover
percentage has a critical impact on the ability of aerial and terrestrial systems to acquire information
corresponding to the lower and upper portions of the tree canopy, respectively; (2) all the systems
can obtain adequate ground points for digital terrain model generation irrespective of canopy cover
conditions; and (3) point clouds from different systems are in agreement within a ±3 cm and ±7 cm
range along the vertical and planimetric directions, respectively.

Keywords: LiDAR; Geiger-mode; unmanned aerial vehicles (UAV); backpack; forest inventory;
relative accuracy; point density

1. Introduction

Global forest ecosystems, covering around 30% of the land surface, can provide various
critical ecosystem services such as maintaining global carbon balance, mitigating climate
change, and promoting economic and social development [1,2]. Accurate inventory is
essential for better understanding and for the management of forest ecosystems from
local to global scales. Along with the development of platforms, sensors, and processing
technologies, remote sensing has been widely used for forest mapping and inventory. For
example, Landsat scenes are used for forest mapping at a regional scale [3,4]; multispectral
Sentinel-2 imagery are adopted to estimate nation-wide canopy height [5]; and very high-
resolution satellite, aerial, and unmanned aerial vehicle (UAV) imagery are acquired for
tree counting and localization [6,7]. Because satellite and aerial imagery only provides the
top view perspective, it is more challenging to use such data to investigate forest vertical
structure for the derivation of inventory metrics such as tree height and crown depth.
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LiDAR, on the other hand, is effective for deriving such metrics because it provides direct
3D measurements [8–10].

As various technologies evolve, airborne LiDAR, UAV LiDAR, and proximal (e.g.,
static terrestrial and Backpack) LiDAR are becoming increasingly available; thus, expanding
its applications in forest inventory. Airborne LiDAR—including conventional linear LiDAR
and emerging Geiger-mode LiDAR—is commonly used for derivation of forest metrics such
as digital terrain model (DTM), tree height, and crown structure at a regional scale [11–13].
In spite of its limited spatial coverage, UAV LiDAR provides a higher resolution than its
manned, airborne counterpart at a lower cost. The close sensor-to-object distance allows
for higher penetration ability, facilitating fine-scale forest inventory (e.g., tree counting
and segmentation) [14]. Compared to the above modalities, proximal, in-canopy LiDAR
mapping is time-consuming but provides a higher level of detail of internal forest structure
(e.g., individual tree detection and localization, stem segmentation, and diameter measure-
ment) [15,16]. Each of the above LiDAR modalities has its own advantages and limitations.
Down-looking airborne and UAV LiDAR systems provide highly accurate data for tree
canopy description but lack tree trunk information [17]. Terrestrial laser scanning (TLS)
provides very high-resolution data below the canopy; however, it suffers from occlusions,
which require the acquisition of multiple overlapping scans that have to be registered.
Therefore, TLS data acquisition is highly time-consuming and not easily scalable [18,19].
Proximal, mobile LiDAR systems (e.g., Backpack-mounted LiDAR) capture detailed tree
trunk information with high efficiency. However, deriving accurate trajectory for such
systems remains challenging due to the intermittent access to Global Navigation Satellite
System (GNSS) signal under the canopy. In addition, the limited vertical field of view and
measurement range of proximal systems may result in missing the upper canopy [16,20].

The varying characteristics of multi-platform, multi-resolution, and multi-temporal
LiDAR data underline the need to perform comparative analysis for forest inventory.
LiDAR systems with large spatial coverage (e.g., satellite and manned aircraft systems) are
ideal for regional canopy height model generation, while small footprint LiDAR from low-
altitude flights provides fine resolution for individual tree isolation [21–23]. Yu et al. [24]
compared two airborne LiDAR systems (ALS)—single-photon Geiger-mode LiDAR and
multi-photon linear LiDAR—in terms of their potential in characterizing ground and
forest attributes. They concluded that the Geiger-mode LiDAR can deliver forest attribute
estimates with accuracy comparable to those from linear LiDAR while operating at a much
higher altitude, thus enabling forest mapping at a national scale. Several studies compared
ALS and TLS and demonstrated their comparable capacity to derive forest measurements
such as canopy height, canopy cover, and leaf area [20,25]. Prior research also highlighted
the complementary nature of ALS and TLS data in forest inventory: the former delineates
upper-canopy structure with a broad spatial extent while the latter provides fine resolution
measurements for characterizing forest vertical structure at a stand level [25,26]. Crespo-
Peremarch et al. [27] studied the use of full-waveform and discrete airborne as well as
discrete terrestrial laser scanning data for studying forest vertical distribution; they stated
that full-waveform airborne LiDAR have better capability in representing tree vertical
structure than discrete airborne LiDAR, leading to very similar results to TLS. UAV LiDAR
was also compared to ALS and TLS in terms of the quality of derived point cloud data [28].
The main advantage of UAV LiDAR when compared to TLS is the more homogenous
point distribution and top perspective of the former, leading to more accurate canopy
height estimation [29]. However, UAV flights under full-leaf cover limit the level of
detail at the lower canopy level. Therefore, flying over forests under leaf-off conditions
is still favorable when DTM or wood volume are the variables of interest [30]. Hyyppä
et al. [31] evaluated the comparative performance of Backpack, handheld, under-canopy
UAV, and above-canopy UAV LiDAR systems. Their study revealed that ground-based
and under-canopy mobile LiDAR systems provide promising results for individual tree
parameters derivation; whereas the accuracy of above-canopy UAV LiDAR systems is not
yet sufficient for predicting stem attributes of individual trees for forest inventory with a
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high accuracy. Regardless of the used modality, multi-temporal LiDAR data are essential
for understanding the dynamics of forests, such as forest structure, tree growth, species
mapping, and carbon monitoring [32–34]. Although many studies have investigated
multi-platform, multi-resolution, and multi-temporal LiDAR systems, comprehensive
comparative analysis that includes a wide range of remote sensing modalities, discusses
the impact of canopy cover, and focuses on forest inventory capabilities, has not been
sufficiently covered.

In this paper, multi-platform, multi-resolution, and multi-temporal LiDAR datasets
over a forest plantation are analyzed for better understanding of their characteristics and
the impact of data quality on forest inventory results. Comparative analysis of available and
acquired datasets is performed in terms of point cloud characteristics, point cloud quality,
and ability to derive forest inventory metrics. The key contributions are summarized
as follows:

• A wide range of LiDAR modalities, including linear and Geiger-mode LiDAR from
manned aircraft systems, and multi-beam LiDAR from UAV and Backpack systems,
are analyzed.

• A comprehensive investigation of point cloud characteristics and geolocation accuracy
is conducted, laying the foundations of multi-platform, multi-resolution, and multi-
temporal data fusion.

• A comparative analysis that focuses on forest inventory capabilities and discusses
the effect of canopy cover is presented, providing directions for selecting appropriate
LiDAR modalities and data processing tools for different applications.

The remainder of this paper is structured as follows: first, different LiDAR modalities
and acquired data descriptions are provided; then, the adopted methodology used for
the comparative analysis of the characteristics of different LiDAR datasets is discussed;
detailed analysis of the investigated characteristics as derived from the LiDAR datasets are
covered afterwards; finally, discussions and study conclusions are presented.

2. Data Acquisition Systems and Datasets Description

Several datasets were acquired for this study using different LiDAR systems; namely,
linear and Geiger-mode (single-photon or flash) LiDAR from manned aircraft systems, and
multi-beam LiDAR from UAV and proximal Backpack systems. The Geiger-mode LiDAR
data were provided by VeriDaas Corporation (Denver, CO, USA), while the linear LiDAR
data were available through the state-wide coverage of the United States Geological Survey
(USGS) 3-D Elevation Program (3DEP). The UAV and proximal LiDAR data were captured
by in-house developed systems within the Digital Photogrammetry Research Group at
Purdue University. This section starts with introducing the different LiDAR modalities and
platforms. It then describes the study site and datasets used in this study.

2.1. Mobile LiDAR Systems
2.1.1. Linear LiDAR

Linear LiDAR, which is used by the majority of airborne systems, is based on emitted
laser pulses of some nanosecond pulse width at wavelengths from 500 nm (for bathymetric
LiDAR) to 1.5 µm (for topographic LiDAR), and the echo returns are then digitized. The
output current of the Avalanche Photodiode (APD) detector is proportional to the input
optical power. Survey-grade systems use a single laser. To discriminate between signal
return and noise, traditional linear LiDAR utilizes a single detector that requires a flux of
500 to 1000 photons to detect the return signal. To provide coverage across the swath, a
deflecting mirror is used. Depending on the type of the mirror used, the LiDAR would be
scanning in either elliptical, parallel, zigzag, or sinusoidal pattern, as depicted in Figure 1a.
To derive point clouds in the mapping coordinate system, a linear LiDAR system is also
equipped with a position and orientation unit—an integrated Global Navigation Satellite
System/Inertial Navigation System (GNSS/INS) unit. The majority of LiDAR data captured
for national coverage (e.g., the USGS 3DEP data) are based on linear LiDAR systems.
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Figure 1. Scanning patterns of a: (a) linear LiDAR and (b) Palmer scanner for the Geiger-
mode LiDAR.

2.1.2. VeriDaaS Geiger-Mode LiDAR System

The VeriDaaS system [35] uses a Geiger-mode LiDAR sensor in conjunction with an
Applanix POS AV 610 for direct georeferencing. The Geiger-mode LiDAR is a relatively new
technology as compared to the traditional linear LiDAR. The Geiger-mode LiDAR sensor
consists of arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors. Each of the
GmAPD detectors is capable of detecting the return signal with a few photons [36]. The
extreme sensitivity of GmAPD detectors allows the design of LiDAR systems that operate
at a lower energy, higher altitude, and faster flying speed, and acquire measurements in a
much higher density compared to linear LiDAR systems [37,38]. The VeriDaaS system has
an array of 32 by 128 GmAPD detectors, which effectively collects 204,800,000 observations
per second with a pulse repetition rate of 50 kHz. The use of a Palmer scanner, together
with a 15-degree scan angle of the laser and scan pattern of a 50% swath overlap, enables
multi-view data collection, which aids in minimizing occlusions and shadowing, as shown
in Figure 1b.

2.1.3. UAV and Backpack Systems

There were two in-house developed mobile LiDAR systems—UAV and Backpack
systems (as shown in Figure 2)—used in this study. Both systems are equipped with a
multi-beam spinning laser scanner, camera, and GNSS/INS unit for direct georeferencing.
Unlike linear LiDAR systems onboard most manned airborne mapping systems, multi-
beam spinning laser scanners have several beams that could be radially aligned in a vertical
plane. The beams are mechanically rotated around the scanner’s vertical axis to provide
a larger area coverage (see Figure 2a). Figure 2b,c show the UAV and Backpack systems,
respectively, together with the onboard sensors. The specifications of the LiDAR [39,40] and
georeferencing [41,42] units for each system are listed in Table 1. System calibration was
conducted using the in-situ calibration procedure proposed by Ravi et al. [43]. The expected
accuracy of the point cloud was estimated based on the individual sensor specifications
and system calibration accuracy using the LiDAR Error Propagation calculator [44], and
the results are reported in Table 1.
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Table 1. Flight configuration for datasets used in this study.

UAV Backpack

LiDAR sensors Velodyne VLP-32C Velodyne VLP-16 High-Res
Sensor weight 0.925 kg 0.830 kg

No. of channels 32 16

Pulse repetition rate 600,000 point/s
(single return)

300,000 point/s
(single return)

Maximum range 200 m 100 m
Range accuracy ±3 cm ±3 cm

GNSS/INS sensors Applanix APX15v3 NovAtel SPAN-CPT
Sensor weight 0.06 kg 2.28 kg

Positional accuracy 2–5 cm 1–2 cm
Attitude accuracy (roll/pitch) 0.025◦ 0.015◦

Attitude accuracy (heading) 0.08◦ 0.03◦

Expected accuracy at 50 m
(sensor-to-object distance) ±5–6 cm ±3–4 cm

2.2. Study Site and Dataset Description
2.2.1. Study Site

LiDAR data were acquired in Martell Forest, a research forest owned and managed by
Purdue University, in West Lafayette, Indiana, USA. A forest plantation, Plot 115, as shown
in Figure 3, is selected as the study area for this research. The plot was planted in 2007,
following a grid pattern: 22 rows with 50 trees per row. Between-row and between-tree
spacing values are approximately 5 m and 2.5 m, respectively. Tree height in the plot
ranges from 10 to 12 m at measurement year 13 and the average DBH is 12.7 cm. Cross-
sectional profiles P1 and P2 are used in the qualitative analysis (as will be discussed later in
Section 4.1). Figure 4 displays images captured by the UAV and Backpack systems under
leaf-off and leaf-on conditions. The dense foliage and under-canopy vegetation under
leaf-on condition can be clearly seen in Figure 4b,d.
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2.2.2. USGS Statewide LiDAR Data

Several temporal LiDAR datasets over Martell Forest are publicly available through
the USGS 3D elevation program at 3DEP LidarExplorer [45]. The most recent dataset,
acquired in spring 2018 under the leaf-off condition, is used for the comparative analysis
in this study [46]. According to the metadata, this dataset was acquired using a linear
LiDAR system at a height of approximately 2000 m above ground. The data acquisition and
processing met the QL2 requirement specified in the USGS LiDAR base specification [47];
namely, better than 10 cm vertical accuracy and nominal pulse spacing less than 70 cm (i.e.,
nominal pulse density of more than two points per square meter).

2.2.3. VeriDaaS Geiger-Mode LiDAR Data

The Geiger-mode LiDAR dataset was collected and processed independently by
VeriDaaS Corporation following the USGS QL1 specifications; namely, better than 10 cm
vertical accuracy and nominal pulse spacing less than 35 cm (i.e., nominal pulse density of
more than 8 points per square meter). The data were acquired on 3 September 2021 (leaf-on)
at a height of approximately 3700 m above ground. Data processing started with an initial
refinement via a voxel process to achieve a desired point density of 50 points per square
meter in this study. A block adjustment procedure was conducted to spatially reposition
the point cloud by aligning points within overlapping flight lines. This block adjustment
procedure can improve the point cloud quality by compensating for inherent georeferencing
errors from the GNSS/INS system. Post-processed point clouds are expected to have 5 cm
accuracy along the vertical direction (i.e., meeting the USGS QL0 specifications).

2.2.4. UAV LiDAR Data

The two datasets were captured by the UAV system: 13 March 2021 (leaf-off) and 2
August 2021 (leaf-on). The UAV was flown at a flying height of 40 m above ground and
ground speed of 3.5 m/s, and the lateral distance between neighboring flight lines was
11 m. The point clouds were reconstructed with a 140◦ field of view (FOV) across the flying
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direction (±70◦ from nadir), resulting in a sidelap percentage of about 95%. The large
FOV was chosen to mitigate occlusions because an object can be captured by multiple laser
beams from different view angles at various times. As has been mentioned in Table 1, the
accuracy of derived point clouds is expected to be in the 5 cm to 6 cm range.

2.2.5. Backpack LiDAR Data

The two datasets were acquired using the Backpack system: 1 April 2021 (leaf-off) and
5 August 2021 (leaf-on). The Backpack was carried by an operator while walking under
the forest canopy between individual tree rows. The initially derived point clouds from
the Backpack system show a misalignment ranging from 0.5 m to 2 m within points from
neighboring tracks. This misalignment is attributed to the intermittent access to GNSS
signal under forest canopy, which leads to a deterioration in the trajectory quality. To
mitigate the negative impact of GNSS signal outage and produce high-precision point
clouds, the trajectory enhancement approach, as described in Section 3.1, was applied to
the Backpack datasets. The UAV leaf-off dataset was used as a reference in this process, i.e.,
the Backpack datasets after trajectory enhancement would be aligned with the UAV leaf-off
dataset. Following the trajectory enhancement, the accuracy of the Backpack LiDAR data is
expected to be in the 3 cm to 4 cm range.

3. Methodology

This section starts with introducing the trajectory enhancement approach that mitigates
the impact of GNSS signal outages and improves point cloud quality for the Backpack
data. Comprehensive comparative analysis of different datasets was then carried out to
evaluate point cloud characteristics and quality as well as the ability to derive various
forest inventory metrics. The workflow has three main components: (1) ground filtering
and height normalization, (2) point cloud characterization and quality assessment, and
(3) forest inventory, as outlined in Figure 5.
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3.1. Trajectory Enhancement for Backpack Data

Point cloud misalignment caused by inaccurate trajectory owing to GNSS signal
outages is a major challenge for under-canopy Backpack surveys. This study proposed
a novel strategy that enhances the trajectory quality using automatically extracted and
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matched features from point clouds captured in different tracks (i.e., straight portions of
the trajectory). The features used in this study include tree trunks (cylindrical features) and
terrain patches (planar features). The conceptual basis of the proposed approach is that
any inaccuracy in trajectory parameters would manifest in the point cloud as discrepancies
among conjugate features. Therefore, corrections to the trajectory parameters can be
estimated by minimizing the normal distance between the LiDAR points and the best-fitted
cylinder or plane using least-squares adjustment (LSA).

Assuming that the trajectory is precise, the coordinates of the LiDAR point, I, captured
at time, t, in the mapping frame can be written as per Equation (1), which is graphically
illustrated in Figure 6. Here, rm

b(t) and Rm
b(t) are the trajectory position and orientation

parameters; rb
lu and Rb

lu are the LiDAR mounting parameters estimated from the system

calibration; rlu(t)
I is the point coordinates in the laser unit frame. The point positioning

equation can be expressed symbolically as per Equation (2). For scenarios with GNSS signal
outages, corrections to the trajectory parameters are required to precisely reconstruct the
LiDAR point. The adjusted coordinates of the LiDAR point, rm

I (adjusted), are expressed
symbolically in Equation (3), where δrm

b(t) and δRm
b(t) are the corrections to the trajectory

position and orientation parameters, respectively.

rm
I = rm

b(t) + Rm
b(t)r

b
lu + Rm

b(t)R
b
lurlu(t)

I (1)

rm
I = f

(
rm

b(t), Rm
b(t), rb

lu, Rb
lu, rlu(t)

I

)
(2)

rm
I (adjusted) = f

(
rm

b(t), Rm
b(t), δrm

b(t), δRm
b(t), rb

lu, Rb
lu, rlu(t)

I

)
(3)
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The mathematical model of the LSA involves two sets of observation equations. The
first set of observation equations (Equation (4)) comes from cylindrical and planar fea-
tures. The corresponding target function (Equation (5)) minimizes the squared sum of
the weighted normal distances between each LiDAR point and its corresponding para-
metric model, as illustrated in Figure 7. Here, f tm

k is the feature parameters for the kth
feature; nd

(
rm

I (adjusted), f tm
k
)

denotes the normal distance between the LiDAR point and
its corresponding feature; w f tm

k
is the weight of the feature parameters, which is assigned

based on the expected accuracy of the feature. The second set of observation equations
(Equation (6)) incorporates prior information from the trajectory. The corresponding tar-
get function (Equation (7)) ensures that the corrections to the trajectory parameters are
estimated while considering the initial accuracy of the respective parameters reported by
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the GNSS/INS post-processing software. Here, the weight wrm
b(t)

and wRm
b(t)

are assigned
based on the standard deviation of the respective trajectory parameters. One thing to note
is that the proposed approach essentially solves the corrections to the trajectory parameters,
and is therefore more applicable as compared to previous work that assumes a rigid body
transformation between tracks [48]. Figure 8 presents a sample trajectory enhancement
result. The initial misalignment between tracks that results in different versions of the tree
trunks is eliminated after trajectory enhancement.

nd(rm
I (adjusted), f tm

k ) = 0 (4)

argmin
δrm

b(t), δRm
b(t), f tm

k

∑
∀ points and features

(nd(rm
I (adjusted), f tm

k ))
2w f tm

k
(5)

rm
b(t)(adjusted) = rm

b(t) + δrm
b(t)

Rm
b(t)(adjusted) = Rm

b(t)δRm
b(t)

(6)

argmin
δrm

b(t)

∑
∀ trajectory points

(
δrm

b(t)

)2
wrm

b(t)

argmin
δRm

b(t)

∑
∀ trajectory points

(
δRm

b(t)

)2
wRm

b(t)

(7)
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3.2. Ground Filtering and Height Normalization

Prior to the comparative analysis, a ground filtering algorithm, the adaptive cloth
simulation [49], is applied to generate a DTM and separate ground points from the above-
ground points. The original cloth simulation strategy uses a cloth, with pre-defined
homogeneous rigidity, which is draped on top of an inverted point cloud to generate
a DTM and isolate ground points [50]. To mitigate the impact of uneven, sparse point
cloud distribution along the lower canopy, which is the case for captured aerial LiDAR
data under leaf-on conditions, the adaptive approach redefines the cloth rigidity based
on the derived bare earth from the original cloth simulation approach [49]. The DTM is
then used to normalize the point cloud so that its height would be relative to the ground
level. Figure 9 shows sample ground filtering and height normalization results using the
VeriDaaS dataset. A closer inspection of Figure 9a reveals that the adaptive cloth simulation
approach provides a more realistic representation of the terrain model. However, a slight
increase in the elevation of the generated terrain model is inevitable, given the sparse nature
of the ground points. In Figure 9b, the elevation values before and after normalization are
the ellipsoidal height (relative to a reference ellipsoid that approximates the Earth surface)
and height above ground, respectively.
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3.3. Point Cloud Characterization and Quality Assessment

The comparative analysis starts with investigating the distribution within the acquired
point clouds from different systems. First, the numbers of points in the entire, bare earth,
and above-ground point clouds within the study area captured by each system are listed.
Next, planimetric point density (point per square meter, ppsm) over the study area is
reported for both the entire point cloud as well as ground points, providing another
indication of the amount of information captured by different systems along the terrain and
canopy. The point distribution along the vertical direction is quantified using a histogram,
showing the number of points at different elevations. Cross-sectional profiles are extracted
from the point clouds to examine the overall representation of tree structure and alignment
between different datasets.

Quantitative assessment of the relative accuracy between different datasets is con-
ducted using the feature-based approach described Lin and Habib [51] and Lin et al. [14],
where estimates of the relative vertical and planimetric accuracy are established using ter-
rain patches, and tree and tree row locations, respectively. For the relative vertical accuracy
assessment, separation between extracted terrain patches from different datasets along their
surface normal direction are evaluated. In addition, a histogram of the elevation differences
between conjugate DTM cells is presented to illustrate the nature of agreement between
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terrain models derived from different datasets. For planimetric accuracy, horizontal shifts
between derived tree or tree row locations from different datasets are reported.

3.4. Forest Inventory

Having verified the point cloud quality, individual tree and tree row locations are
identified using the peak detection-based approach outlined in Lin and Habib [51] and Lin
et al. [14]. The conceptual basis of this approach is that higher point density and higher
elevation correspond to tree or tree row locations. For plantations, tree rows are represented
as 2D lines along the XY plane, assuming they are planted along straight lines. Tree row
localization starts with rotating the normalized height point cloud to a local coordinate
system (UV) so that tree rows are along the V axis, as shown in Figure 10. Next, 2D cells
along the UV plane are created and tree row locations are identified by detecting local
peaks of the column sum of the metric—the sum of elevations of all points in a cell. Unlike
tree rows, trees are represented as 2D points along the XY plane. Depending on whether
tree trunks are visible in the point cloud, a bottom-up or top-down strategy is adopted
for tree localization, as illustrated in Figure 11. The bottom-up strategy detects tree trunks
by evaluating point density and elevation distribution of the lower canopy. User-defined
minimum and maximum height thresholds (hmax and hmin) are applied to the normalized
height point cloud to extract segments that roughly correspond to the trunks. The metric
used for peak detection is the sum of elevations of all points in a cell. The top-down strategy,
on the other hand, identifies tree locations by finding local maxima in the normalized height
point cloud. The 90th percentile elevation of each cell is evaluated and used as the metric
for peak detection. As can be seen in Figure 11, the top-down approach is more likely to
miss small trees.
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Figure 11. Bottom-up (left) and top-down (right) tree localization approaches showing the normal-
ized height point clouds, height thresholds (hmax and hmin), and detected tree locations (the left and
right figures correspond to the same location under leaf-off and leaf-on conditions).

Tree heights are estimated using the detected tree locations and normalized height
above-ground point cloud. For reliable height estimation, a statistical outlier removal
strategy [52] is applied to the point cloud to filter scattered points. The algorithm first
computes the mean and standard deviation of the distances between each point to its
k nearest neighbors. It then trims points which fall outside the average distance plus a
user-defined multiplication factor times the standard deviation. Next, neighboring points
within a 2D search radius for each tree location are identified and the highest elevation
among these points is used to represent the tree height. An example of outlier removal and
tree height estimation is shown in Figure 12.
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after outlier removal (individual trees are colored by their estimated heights).

4. Experimental Results

This section presents the experimental results of the comparative analysis, including
point cloud characteristics, quality assessment, and forest inventory metrics. The six
datasets acquired from different LiDAR systems, hereafter denoted as the USGS-3DEP,
VeriDaaS, UAV leaf-on, UAV leaf-off, Backpack leaf-on, and Backpack leaf-off datasets,
were used for the experiments.
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4.1. Point Cloud Characteristics

A thorough investigation of the level of information acquired by multi-platform, multi-
resolution, and multi-temporal datasets forms the basis of understanding the capability and
limitations of different LiDAR systems and the potential to derive forest inventory metrics
at various scales. Point cloud covering Plot 115 in the forest plantation was extracted from
each dataset. The adaptive cloth simulation algorithm was then applied to separate ground
and above-ground points and generate DTMs at 1 m resolution (the 1 m cell size is chosen
to accommodate the sparse nature of the USGS-3DEP data). The height of the point cloud
was then normalized by subtracting the terrain elevation.

The number of points captured by the USGS-3DEP, VeriDaaS, UAV leaf-on, UAV
leaf-off, Backpack leaf-on, and Backpack leaf-off datasets and the percentage of ground and
above-ground points are reported in Table 2. The huge variation in number of points can
be clearly seen—the proximal Backpack system acquired roughly 15,000 times more points
than the aerial linear system (873 million for the Backpack leaf-off datasets vs. 0.06 million
for the USGS-3DEP dataset). The number of points captured by the Geiger-mode LiDAR
(3 million for the VeriDaaS dataset) is around 50 times more than that captured by the
traditional linear LiDAR (0.06 million for the USGS-3DEP dataset). For the aerial systems
(linear, Geiger-mode, and UAV LiDAR), canopy cover has a critical impact on the LiDAR
penetration, resulting in a striking contrast in ground point percentage between leaf-on
and leaf-off datasets. The proximal Backpack system has a more balanced ground and
above-ground point distribution under different canopy cover conditions.

Table 2. Number of points and percentages of ground and above-ground points for different datasets.

Dataset Number of Points
(Million)

Ground Point
Percentage (%)

Above-Ground
Point Percentage (%)

USGS-3DEP (leaf-off) 0.06 83 17
VeriDaaS (leaf-on) 3 5 95

UAV leaf-off 79 87 13
UAV leaf-on 56 4 96

Backpack leaf-off 873 57 43
Backpack leaf-on 583 38 62

To gain insight into planimetric point distribution, Figures 13 and 14 visualize the
entire and bare earth point clouds before height normalization (colored by ellipsoidal
height), respectively, along with the corresponding point density maps (with 1 m cell
size). The 25th percentile, median, and 75th percentile of the point density of the entire
and bare earth point clouds for each dataset are reported in Table 3. Looking into the
entire point clouds, the five datasets acquired during 2021 (Figure 13b–f) show similar
altitudes ranging from 169 m to 184 m. The foliage growth can be observed in the leaf-on
datasets (Figure 13b,d,f). The USGS-3DEP dataset (Figure 13a) displays a lower altitude
(the maximum altitude in this dataset is about 181 m) because it was collected four years
prior to other datasets, and thus the trees are shorter. For the entire point clouds, the
point density maps reveal obvious dissimilarity between data from different systems. The
Backpack LiDAR provides the highest point density, followed by the UAV LiDAR, Geiger-
mode LiDAR, and linear LiDAR. Examining the bare earth provides an understanding of
the ability of the LiDAR systems to penetrate through vegetation and capture the terrain
under different canopy cover scenarios. In Figure 14, the bare earth point clouds from
the six datasets exhibit a comparable spatial pattern. This finding suggests that all the
systems were able to capture some ground points, which can be reliably extracted using
the adaptive cloth simulation algorithm. It also indicates that the terrain elevation remains
stable regardless of which LiDAR dataset was used. The relative low point density together
with observable gaps in the point clouds under leaf-on condition, in particular for the
aerial systems (see Figure 14b,d and Table 3), reveal the limited LiDAR penetration under
the dense canopy. In contrast, owing to the leaf-off condition during data acquisition,
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the ground points from the USGS-3DEP dataset have a uniform spatial distribution even
though the point density is the lowest.
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Table 3. Statistics of the planimetric point density (points per square meter, ppsm) of the entire and
bare earth point clouds for different datasets.

Dataset Point Density (ppsm)
25th Percentage Median 75th Percentage

Entire point cloud

USGS-3DEP (leaf-off) 3 4 5
VeriDaaS (leaf-on) 210 248 284

UAV leaf-off 3963 5265 6283
UAV leaf-on 2498 3837 5156

Backpack leaf-off 44,487 54,559 65,603
Backpack leaf-on 28,821 38,472 47,347

Bare earth point cloud

USGS-3DEP (leaf-off) 3 4 4
VeriDaaS (leaf-on) 3 9 28

UAV leaf-off 3525 4498 5491
UAV leaf-on 21 45 113

Backpack leaf-off 28,058 34,646 41,627
Backpack leaf-on 9679 15,430 20,613

The vertical point distribution is examined using a histogram of the number of points
at different heights above ground for the entire point clouds, as shown in Figure 15.
Regardless of the clear disparity in the number of points, the peaks around the height
of 0 m above ground for all datasets indicate that all the systems were able to capture a
considerable number of ground points. The above-ground points from the USGS-3DEP
dataset are extremely sparse. The UAV leaf-off dataset captures a reasonable number
of points from top to lower-middle of the canopy. The leaf-on datasets from the aerial
systems (VeriDaaS and UAV) attain their peaks in the upper canopy and the numbers of
points drop significantly in the lower-middle canopy comprising the tree trunks. For the
Backpack leaf-off and leaf-on datasets, the majority of the above-ground points captures
the lower-middle canopy. The dense foliage under the leaf-on condition limits the amount
of Backpack LiDAR penetration, leading to the obvious decline in the number of points in
the top canopy area (over 11 m above ground).
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The two cross-sectional profiles, P1 (along tree rows) and P2 (across tree rows), whose
locations are shown in Figure 3, were extracted to investigate the level of detail captured
by different systems as well as the point cloud alignment. Figure 16 shows the side view
of the two profiles. The combined point clouds (Figure 16a,b—top) depict the alignment
quality. Because the tree rows in the plantation are mainly along the Y direction, the
profiles along (P1) and across (P2) tree rows would provide information to assess the point
cloud alignment along the X/Z and Y/Z directions, respectively. In general, profiles from
different datasets exhibit good overall alignment in all directions. The individual point
clouds (Figure 16a,b—bottom) provide a glimpse of the level of information captured. The
USGS-3DEP dataset, despite being extremely sparse, provides adequate information for
terrain representation and tree height estimation. However, such sparse information is not
adequate to describe tree structure. Both the VeriDaaS and UAV leaf-on datasets capture
the upper canopy and terrain in spite of the latter having a much higher point density and
better degree of penetration. The lower-middle canopy portion is barely captured for the
leaf-on datasets due to the heavy foliage that inhibits the aerial LiDAR penetration. Under
the leaf-off condition, the UAV obtained information from the canopy top all the way to the
ground, where individual trees can be clearly identified from the point cloud. However, the
precision and level of detail from the UAV-based point clouds are not comparable to those
from the Backpack system. Point clouds from the Backpack have the best point density
and precision among all the datasets, as can be seen by the better definition of tree trunks
and structures. The Backpack leaf-off dataset has a more balanced vertical distribution
whereas the leaf-on dataset acquires negligible points near the top canopy due to the limited
LiDAR penetration.

4.2. Quantitative Assessment of Relative Data Quality

In this section, the alignment between multi-platform, multi-resolution, and multi-
temporal datasets was evaluated quantitatively using features that can be automatically
identified from the plantation. The relative accuracy is assessed between two point clouds
at a time, using the UAV datasets as references. The USGS-3DEP and VeriDaaS datasets
were compared against UAV leaf-off and leaf-on datasets, respectively, because they were
acquired under similar canopy cover scenarios. The comparison between the two UAV
datasets would be an indication of any changes in the plantation between leaf-off and
leaf-on conditions. The Backpack leaf-off and leaf-on datasets were compared against the
UAV leaf-off dataset because the latter served as the reference for trajectory enhancement.
To summarize, the relative quality between point clouds listed below are reported in this
section (A through E will be used as identifiers for these comparison pairs):

A. UAV leaf-off vs. USGS-3DEP (leaf-off) datasets;
B. UAV leaf-on vs. VeriDaaS (leaf-on) datasets;
C. UAV leaf-off vs. UAV leaf-on datasets;
D. UAV leaf-off vs. Backpack leaf-off datasets;
E. UAV leaf-off vs. Backpack leaf-on datasets.

The relative vertical discrepancy was evaluated using terrain patches extracted from
the bare earth point clouds. The terrain patches are planar features with normal vectors
mainly along the Z direction, and thus provide information for vertical discrepancy esti-
mation. Table 4 reports the square root of a posteriori variance factor (σ̂0), an indication
of the noise level of the point clouds, and estimated vertical shift (dz). The discrepancy
estimation between UAV leaf-off and UAV leaf-on datasets suggests an 8 cm shift, which
could be attributed to the growth of under-canopy vegetation (see Figure 4d). The estimated
discrepancies between other datasets reveal that point clouds under similar canopy cover
scenarios are in good agreement within a ±3 cm range along the vertical direction.
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Table 4. Estimated Z shift (dz) and square root of a posteriori variance (σ̂0) based on terrain patches.

ID Reference Data Source Data Number of
Observations

σ̂0 (m)
dz (m)

Parameter Std. Dev.

A UAV leaf-off USGS-3DEP 3888 0.015 −0.029 2.39 × 10−4

B UAV leaf-on VeriDaaS 2946 0.075 −0.015 1.39 × 10−3

C UAV leaf-off UAV leaf-on 10,466 0.065 0.084 6.45 × 10−4

D UAV leaf-off Backpack leaf-off 15,894 0.016 −0.001 1.25 × 10−4

E UAV leaf-off Backpack leaf-on 14,601 0.028 0.025 2.33 × 10−4

The elevations difference between DTMs derived from different datasets are also
visualized using histograms, as shown in Figure 17, depicting the relative accuracy of
the terrain models. The median of the elevation difference for Group A, B, C, D, and
E is 0.008 m, 0.028 m, 0.059 m, 0.018 m, and 0.015 m, respectively. The slightly larger
difference between DTMs from the VeriDaaS and UAV leaf-on datasets (Figure 17b) is
mainly attributed to the sparse ground points in the VeriDaaS dataset that lead to artifacts
in the DTM generation process. As mentioned earlier, the adaptive cloth simulation still
produces terrain with slightly higher elevation when dealing with extremely sparse points.
The positive bias between the UAV leaf-off and leaf-on datasets (Figure 17c) reveals the
impact of understory vegetation growth. Overall, DTMs derived from all datasets are of
comparable accuracy irrespective of point density and canopy cover conditions.
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Figure 17. Histograms of elevation differences between DTMs derived from different datasets
(a) UAV leaf-off vs. USGS-3DEP, (b) UAV leaf-on vs. VeriDaaS, (c) UAV leaf-off vs. UAV leaf-on,
(d) UAV leaf-off vs. Backpack leaf-off, and (e) UAV leaf-off vs. Backpack leaf-on.

The relative planimetric discrepancy was evaluated using tree row and individual
tree locations. In this study, tree rows are linear features whose line directions are mainly
along the Y direction, and thus provide discrepancy information for estimating the X shift.
Table 5 reports the square root of a posteriori variance factor (σ̂0) and the estimated X shift
(dx) using tree row locations. Tree locations, on the other hand, are 2D points that can be
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used to evaluate the X and Y shifts. The square root of a posteriori variance factor (σ̂0) and
the estimated X and Y shifts (dx and dy) using tree locations are shown in Table 6. The
point cloud from the USGS-3DEP dataset is adequate for tree row detection, yet too sparse
for distinguishing individual trees. Therefore, the USGS-3DEP dataset is not included
in the planimetric discrepancy estimation using tree locations. According to the tables,
Group A, C, D, and E suggest point clouds from different datasets are compatible within a
±7 cm range along the planimetric directions, irrespective of the canopy cover conditions.
Although Group B shows a larger X discrepancy, it should be noted that the tree row and
tree detection under leaf-on condition is less accurate because tree trunks were not captured
in the point clouds. Therefore, it is believed that the relative planimetric accuracy between
different datasets is in a ±7 cm range (once again, this is reflective of the tree and tree row
detection strategies rather than the actual quality of the point clouds).

Table 5. Estimated X shift (dx) and square root of a posteriori variance (σ̂0) based on tree row locations.

ID Reference Data Source Data Number of
Observations

σ̂0 (m) dx (m)
Parameter Std. Dev.

A UAV leaf-off USGS-3DEP 22 0.133 0.041 0.028
B UAV leaf-on VeriDaaS 22 0.151 −0.150 0.034
C UAV leaf-off UAV leaf-on 22 0.218 0.050 0.047
D UAV leaf-off Backpack leaf-off 22 0.054 −0.009 0.011
E UAV leaf-off Backpack leaf-on 22 0.055 −0.010 0.012

Table 6. Estimated X and Y shifts (dx and dy) and square root of a posteriori variance (σ̂0) based on
individual tree locations.

ID Reference Data Source Data Number of
Observations

σ̂0 (m) dx (m) dy (m)
Parameter Std. Dev. Parameter Std. Dev.

B UAV leaf-on VeriDaaS 732 0.215 −0.138 0.008 0.026 0.008
C UAV leaf-off UAV leaf-on 759 0.345 −0.009 0.013 0.051 0.013
D UAV leaf-off Backpack leaf-off 994 0.128 0.028 0.004 0.065 0.004
E UAV leaf-off Backpack leaf-on 914 0.150 0.028 0.005 0.072 0.005

4.3. Forest Inventory Metrics

In this section, forest inventory metrics, including individual tree counts, tree lo-
cations, and tree heights, were derived from the multi-platform, multi-resolution, and
multi-temporal datasets. Individual tree locations in the forest plantation were identified
using either a top-down or bottom-up peak detection approach. The USGS-3DEP dataset
was not included in this analysis because the point cloud was too sparse to capture individ-
ual trees. The bottom-up approach was adopted for the UAV leaf-off, Backpack leaf-off,
and Backpack leaf-on datasets whereas the top-down approach was used for the VeriDaaS
and UAV leaf-on datasets. The cell size for evaluating the metrics for peak detection was set
to 10 cm. The performance of tree detection from different datasets was evaluated against
manually digitized reference data and the precision, recall, and F1-score are reported in
Table 7. In the table, the number of true positives indicates the tree counts detected from
each dataset. The datasets that utilized the bottom-up approach all achieve an F1-score
higher than 0.90. The slightly worse performance for the Backpack leaf-on dataset is mainly
related to the understory plant growth and dense foliage. The datasets that adopted the
top-down approach yield a lower performance (F1-score lower than 0.8). The recall rate of
around 0.7 in the top-down approach is substantially lower as compared to the bottom-up
approach. This is reasonable because the top-down approach is essentially finding the local
maxima (based on the normalized height) within the point cloud and thus it is less effective
in detecting small trees (see Figure 11).
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Table 7. Tree detection performance for the VeriDaaS, UAV leaf-off, UAV leaf-on, Backpack leaf-off,
and Backpack leaf-on datasets.

VeriDaaS UAV Leaf-Off UAV Leaf-On Backpack
Leaf-Off

Backpack
Leaf-On

Approach Top-down Bottom-up Top-down Bottom-up Bottom-up

Number of trees 1080 1080 1080 1080 1080

True positive 730 1056 764 1014 932
False positive 105 0 86 1 32
False negative 350 24 316 66 146

Precision 0.87 1.00 0.90 1.00 0.97
Recall 0.68 0.98 0.71 0.94 0.86

F1 score 0.76 0.99 0.79 0.97 0.91

Individual tree heights were estimated based on the detected tree locations from the
UAV leaf-off dataset (1056 trees) using the normalized height point clouds from different
datasets. The radius for defining a local neighborhood for each tree location was set to
0.5 m. Table 8 reports the mean, standard deviation, and root-mean-square error (RMSE)
of the difference between tree heights from different datasets. According to the table, tree
height estimation based on the datasets acquired over a similar period (Groups B and D in
Table 8) are in good agreement with an RMSE smaller than 0.3 m. The difference of−4.95 m
between tree height estimation from the USGS-3DEP and UAV leaf-off datasets could be a
result of tree growth over time because the former was collected during 2018 whereas the
latter was acquired in 2021. The increased height of 0.48 m between the UAV leaf-off and
leaf-on datasets could be attributed to tree growth as well as additional height due to the
foliage in the leaf-on condition. The Backpack leaf-on dataset consistently underestimates
the tree height (−0.33 m as compared to the estimation from the UAV leaf-off dataset)
because the dense foliage restricts the LiDAR penetration to reach the treetops.

Table 8. Statistics of tree height difference between estimations from different LiDAR datasets and
the reference data (UAV leaf-off or leaf-on LiDAR data).

ID Reference Data Source Data Number of Trees
Height Difference

Mean (m) Std. Dev. (m) RMSE (m)

A UAV leaf-off USGS-3DEP 1056 −4.95 2.04 5.35
B UAV leaf-on VeriDaaS 1056 −0.17 0.23 0.29
C UAV leaf-off UAV leaf-on 1052 0.48 0.30 0.57
D UAV leaf-off Backpack leaf-off 1056 0.06 0.20 0.21
E UAV leaf-off Backpack leaf-on 1050 −0.33 0.80 0.87

5. Discussion

Comparative analysis of multi-platform, multi-resolution, and multi-temporal LiDAR
data is critical because it provides guidelines for selecting appropriate LiDAR systems
and data processing tools for different research questions. Although several previous
studies have compared different LiDAR systems [20,24,26–31], this study presents a more
comprehensive investigation of data from linear LiDAR (leaf-off), Geiger-mode LiDAR
(leaf-on), UAV multi-beam LiDAR (leaf-off and leaf-on), and Backpack multi-beam LiDAR
(leaf-off and leaf-on). Qualitative and quantitative evaluations were conducted to determine
the point cloud quality and level of information for forest inventory at various scales.

The investigation of point cloud characteristics shows that Backpack multi-beam Li-
DAR provides the highest point count and point density, followed by UAV multi-beam
LiDAR, airborne Geiger-mode LiDAR, and airborne linear LiDAR. Despite the stark con-
trast in point density, all the systems provide adequate ground points (irrespective of the
canopy cover conditions) from which DTMs could be reliably derived. In terms of point
vertical distribution, the aerial and terrestrial systems provide more information of the up-
per and lower canopy, respectively, due to their different view angles—this observation is
consistent with previous research findings [20,26]. The dense canopy would restrict LiDAR
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penetration and result in a low point percentage on the ground and lower canopy for the
aerial systems, and upper canopy for the terrestrial system. Yu et al. [24] reported that the
Geiger-mode LiDAR provides denser point clouds while operating at a higher altitude
as compared to the conventional linear LiDAR. This study further shows that the Geiger-
mode LiDAR can capture similar information as compared to UAV with a lower point
density and degree of penetration. The relative accuracy assessment results suggest that the
multi-platform, multi-resolution, and multi-temporal datasets are in agreement within a
±3 cm and ±7 cm range along the vertical and planimetric directions, respectively. Precise
point cloud alignment provides the foundation of multi-platform, multi-resolution data
fusion as well as change detection and forest monitoring using multi-temporal datasets.

Forest inventory metrics including tree locations and tree heights are derived from
different datasets. The results suggest that all the systems can be utilized for tree and canopy
height estimation. The Geiger-mode LiDAR, UAV LiDAR, and Backpack LiDAR capture
adequate information for individual tree identification. The bottom-up tree detection
approach achieves better performance as compared to the top-down strategy; however, it
requires the tree trunks to be captured in the point cloud. In general, data acquisition under
a leaf-off condition is favorable because it results in a more uniform vertical distribution of
the point cloud that can better capture forest vertical structure. The qualitative analysis
shown in Figure 16 reveals that only the Backpack LiDAR provides high precision point
clouds that allow for direct measurements of DBH. For the aerial systems, DBH can be
inferred based on other forest inventory metrics such as crown size.

The emerging Geiger-mode LiDAR is compared against traditional linear LiDAR to
assess its capability of mapping forest environments. The main findings are as follows:

• The Geiger-mode LiDAR provides denser point clouds while operating at a higher
altitude. In this study, the median of the planimetric point density for Geiger-mode
and linear LiDAR datasets is 248 ppsm and 4 ppsm, respectively. The flying height
of the Geiger-mode and linear LiDAR systems is approximately 3700 m and 2000 m
above ground, respectively.

• The Geiger-mode LiDAR captures a much higher level of information as compared to
linear LiDAR. In fact, the level of information obtained by the Geiger-mode LiDAR is
found to be close to that captured by the UAV LiDAR (refer to Figure 16).

• Both the Geiger-mode and linear LiDAR effectively characterize the terrain in the study
site. The Geiger-mode LiDAR is able to deliver forest attributes including individual
tree counts, tree locations, and tree heights with accuracy comparable to those from
the UAV LiDAR. The linear LiDAR, on the other hand, fails to capture individual trees,
and it is unclear from this study whether it can reliably derive canopy height.

Although the investigation is conducted in a forest plantation, some of our findings
including planimetric point density and relative accuracy are expected to be valid in natural
forest environments. To provide an example, Figure 18 illustrates a cross-sectional profile
in a natural forest, showing the USGS-3DEP, VeriDaaS, and UAV data (no Backpack LiDAR
data have been acquired for this area). According to the figure, the UAV LiDAR has the
highest point density, followed by Geiger-mode LiDAR and linear LiDAR. Looking into the
UAV datasets, one can see that the vertical distribution of the point cloud is more uniform
under the leaf-off condition. Under the leaf-on condition, most of the LiDAR points capture
the upper canopy and shrubs; the tree trunks, on the other hand, are barely captured.
Finally, point clouds from different systems exhibit good horizontal and vertical alignment.
The above-mentioned observations are in line with the findings of this study, paving the
way for future studies under complex natural forest environments.
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6. Conclusions and Future Work

This study investigated multi-platform, multi-resolution, and multi-temporal LiDAR
data over a forest plantation to determine the point cloud quality and capture the level
of information for deriving different forest inventory metrics. The LiDAR datasets used
in this study were acquired using airborne linear LiDAR, airborne Geiger-mode LiDAR,
UAV multi-beam LiDAR, and Backpack multi-beam LiDAR under leaf-off and leaf-on
conditions. The results suggest that the terrain representations from all the systems are in
good agreement (the median of the elevation difference ranges from 1 to 6 cm) irrespective
of the canopy cover conditions. The proximal Backpack LiDAR captured the finest level
of detail with high precision, allowing for the derivation of forest inventory metrics at
stand level. The UAV LiDAR and Geiger-mode LiDAR were found to be adequate for
individual tree localization and tree height estimation; although the former had higher
point density and better penetration capability, the latter was capable of deriving accurate
point clouds with reasonable resolution over much larger areas. The data from conventional
airborne linear LiDAR, USGS 3DEP, could be used for tree and canopy height estimation;
nevertheless, the data were inadequate for deriving forest inventory metrics at stem level.
Canopy cover percentage had a major impact on the captured vertical information. Dense
foliage would hinder the ability of aerial and ground systems to capture information from
lower and upper canopy portions, respectively. The relative accuracy of the multi-platform,
multi-resolution, and multi-temporal LiDAR point clouds is in a ±3 cm and ±7 cm range
along the vertical and planimetric directions, respectively. The findings of the comparative
analysis would facilitate the selection of LiDAR systems and data processing tools for
a given research question and data. The complementary nature of data from different
systems also highlights the potential of data fusion techniques for obtaining a complete
description of forest structures.



Remote Sens. 2022, 14, 649 25 of 27

In the future, we will expand this study to include other forest metrics such as DBH and
stem curve as well as investigate more complex natural forest environments. The potential
of machine learning and deep learning techniques for multi-scale and resolution data fusion
and accurate forest inventory will be explored. Ultimately, we will develop a framework for
the synergistic integration of multi-platform, multi-resolution, and multi-temporal LiDAR
and imaging data to obtain forest structural and spectral information.
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