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Abstract: SAR data have a longer wavelength and stronger penetrating power compared with
traditional optical remote sensing. Therefore, SAR data are more suitable for the estimation of the
above-ground biomass (AGB) of forests. This study was aimed at evaluating the sensitivity of L-band
full polarization data to AGB. L-band data were improved to estimate the saturation point produced
by AGB, and were found to be suitable for estimating a wide range of AGB. This study extracted
backscattering coefficients, polarization decomposition variables, and terrain factors. New parameters
were constructed from these variables, and their performance in predicting AGB was evaluated.
Significant variables found with AGB were added to the multivariate linear model. A statistical
analysis showed the presence of multicollinearity between the variables. Therefore, ridge regression,
random forest method (RF), and principal component analysis (PCA) were introduced to solve the
problem of collinearity. In all the three methods, the saturation of the ridge regression model was
low, reaching it at 150 t/ha. Better accuracy was obtained with the RF model. No obvious saturation
incident was detected in the model established using the principal component analysis. This could be
attributed to the low biomass levels observed in our study area. This model provided accurate results
(adjusted r2 = 0.90 rmse = 14.24 t/ha), indicating that L-band data have the potential to estimate
AGB. Additionally, suitable variables and models were selected in this study, with the principal
component analysis being more helpful in combining various SAR parameters. The achievement of
these accurate results could be attributed to the synergy among variables.

Keywords: backscatter coefficients; polarization decomposition; collinearity; ridge regression; RF; PCA

1. Introduction

Carbon sequestration capacity is an important manifestation of forest functions. Forest
above-ground biomass (AGB) is a consequential evaluation index of carbon sequestration
capacity. Therefore, it is necessary to estimate AGB to understand the carbon sequestration
capacity in a particular area [1]. Previous studies have shown that the use of the backscatter
coefficient of airborne L-band SAR data could not significantly improve the ability to
estimate AGB [2]. In large survey areas, the AGB root mean square error (RMSE) estimated
from HH polarization has been found to be about 30% [3,4]. Similarly, the use of L-band
data to predict the Indian tropical forest had a higher accuracy with RMSE = 16.06 t/ha [5].
Previous studies have used the random forest (RF) method to estimate the AGB with
RMSE = 18.9 t/ha. Additionally, a regression model was built to estimate the boreal forest
AGB with RMSE = 37.3 t/ha [6,7]. These studies obtained tree height by laminar analysis
of SAR data and then calculated AGB with RMSE = 36.3 t/ha [8]. However, different AGB
estimation methods have been found to provide discordant results even when the same SAR
data are analyzed. Meanwhile, variability of forests has been found to be among the factors
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affecting the accuracy of AGB estimation. Several studies have estimated the forest biomass
of tree trunks using radar backscatter coefficients. The sensitivity of the radar backscatter
coefficients to AGB depends on the wavelength; the longer the wavelength, the higher
the sensitivity [9,10]. A National Aeronautics and Space Administration (NASA) study in
Landers Pine Forest showed that the dynamic range of the radar backscatter coefficient
was greater in the P-band, followed by the L-band, which had the highest HV polarization
and VH polarization sensitivity [11,12]. HH polarization has been found to be suitable for
sparse areas, while HV polarization is suitable for dense areas [13]. The use of radar data
to estimate the AGB of planted forests tends to have more accurate estimations than in
other forest types [14,15]. However, the applicability of this method in natural forests is
still uncertain. Previous studies have estimated a saturation point when using backscatter
coefficients to estimate forest biomass, and reasonable results have been achieved when the
biomass is less than 150 t/ha [16]. Lower saturation points have been recorded in AGB of
complex tropical forests and different forest types, while pure forests and swampy areas
have shown higher saturation points [17,18]. This suggests that the difference in estimated
AGB saturation point is affected by area, forest density, and tree species composition. The
ratio combination of different polarization channels increased the saturation point when
estimating AGB, leading to more accurate results [19,20]. Meanwhile, the ability to estimate
AGB using radar backscatter coefficients has been found to be limited [21]. In addition, this
method of estimating AGB has a lower saturation point, which limits its application.

Other reasons that affect the accuracy of AGB estimates include model variability
and different parameters. Some previous studies have not discussed the synergistic ef-
fects when estimating AGB using backscattering coefficients or decomposition parameters.
Improving the saturation point of the estimated AGB has also been difficult. However,
some polarization decomposition methods have proved suitable for estimating the AGB
of forests. Three simple scattering mechanisms have been used to describe SAR obser-
vation results. These mechanisms achieved acceptable accuracy, which proved that the
decomposition method is suitable for estimating vegetation biomass [22,23]. The azimuth
offset compensation of SAR data before polarization decomposition partially improves the
accuracy of AGB estimation [24]. In addition, the VanZyl three-component decomposition
and Yamaguchi three-component decomposition obtain more accurate results [25,26]. The
polarization decomposition method estimated a higher saturation point for AGB than
the backscatter coefficient. Most researchers have used linear and nonlinear regression
models to predict AGB [27–31]. Although these studies have optimized the model, there
has been limited focus on the parameters. Meanwhile, the accuracy obtained by using
different decomposition methods to estimate AGB varies greatly [32–34]. This shows that
different polarization decomposition methods are suitable for different types of ground
features. However, combining the polarization decomposition parameters and the water
cloud model to predict AGB achieves better results [35]. Additionally, the use of multiple
polarization decomposition parameters to establish a multivariate model could slightly im-
prove accuracy [36]. The RF method has been found to obtain accurate results in estimating
AGB [37–39]. However, its applicability to small sample sizes remains uncertain. Therefore,
the choice of the model is an important factor affecting accuracy.

Previous studies did not select the most suitable variables for forest AGB estimation.
In addition, there is still lack of in-depth studies on the relationships between variables,
making it difficult to reasonably utilize SAR data. As such, it is difficult to improve the
saturation point of the estimated AGB.

At present, AGB can be estimated using long-band SAR data, although the saturation
points and estimation accuracy can still be improved. The present study not only estimated
the AGB based on backscatter coefficient and polarization decomposition parameters, but
also combined the two to establish the potential of long-wavelength full-polarization data
to estimate forest biomass. Unlike previous studies, this study used variables from SAR
data to construct parameters that were more sensitive to AGB. All variables that were
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significantly related to AGB were combined. A model that was more suitable for the
estimation of AGB was also selected.

Specifically, this study was aimed at:

(1) Using the original channel backscatter coefficients to establish a univariate model to
estimate AGB. The ratio of backscatter coefficients was calculated and a univariate
model established. The impact of topographical factors on AGB was also analyzed.

(2) Selecting the most suitable polarization decomposition method and polarization
decomposition parameters. Polarization decomposition parameters were used to
construct a stronger estimation ability for the new parameters, and a model was
established with AGB.

(3) Comparing the ability of ridge regression, RF and the PCA method to resolve a high-
dimensional variable set. The focus was on establishing a model, and predicting the
AGB at the regional scale by using all the relevant parameters.

2. Study Area and Data
2.1. SAR Data

The SAR data used in this study were the ALOS-2 PALSAR full-polarization ob-
servation data obtained on 8 August 2020. The selected image covered northern China
(Figure 1). The image is from a 1.1-level L-band radar developed by the Japan Aerospace
Exploration Agency (JAXA). The average zenith angle was 27.8◦, the radar center frequency
was 1.27 × 103 MHz, the range resolution was 5.66 m, and the azimuth resolution was
2.86 m. The pixel size was16.19 m2. The overall observation area was 4494.62 km2, and the
average height of the sensor from the Earth’s surface was 634.24 km2.
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Figure 1. SAR data illustration of sample sites.

2.2. Field Data

The study area was a typical temperate forest in northern China. The forest is located
in Hebei Province, North China (117E, 42N). This area is located in the transition zone from
Yanshan Mountain to Inner Mongolia. Except for the mountain, the rest of the area consists
of plains and cities. Altitude ranges from 1171 m to 1960 m asl. This area is characterized
by a mixed forest of coniferous and broad-leaved trees, with North China larch (Larix
principis-rupperchtii Mayr) and white birch (Betula platyphylla Suk) being the main species.
A total of 38 fixed plots were used in the image. The field data used in this study were
obtained through field surveys in 2020. In order to avoid interference, the measurements
were carried out at a distance of more than 30 m from non-forest areas. Field surveys
included measuring tree species composition, and measuring diameter at breast height
(DBH) at a distance of 1.3 m from the ground. All trees with a DBH of less than 2.5 cm
were eliminated. Tree height was measured using Vertex IV and Transponder T3. The
coordinates of the center point of the plot were determined using the Unistreng RTK-G10.
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We ensured that the center point coordinate error of the sample plot was within 10 cm. The
individual allometry equation of local tree species was used to calculate the AGB of the
forest for each sample [40,41]. Based on the measured results, the minimum biomass above
the forest was 4.24 t/ha and the maximum was 185.08 t/ha. The plots were separated at
equal intervals, and each plot had an area of 0.06 ha. The shape of each set of field data
was a rhombus, with a diagonal length of 17.3 m. The area of the plot was 149.645 m2. The
AGB level in this area was found to be more suitable for this study. Meanwhile, microwave
remote sensing observation methods were more suitable for forest biomass estimation,
considering the complex geological and climatic conditions in the area. The actual biomass
is shown in Table 1.

Table 1. Statistical data of the plots.

Number AGB (t/ha) Number AGB (t/ha) Number AGB (t/ha) Number AGB (t/ha)

01 129.252 11 80.171 21 172.128 31 54.836
02 142.776 12 174.936 22 166.592 32 167.011
03 139.653 13 147.477 23 98.417 33 165.710
04 58.508 14 153.008 24 104.223 34 144.930
05 166.223 15 185.083 25 151.198 35 109.724
06 4.248 16 177.771 26 164.641 36 95.931
07 113.727 17 163.469 27 180.735 37 24.281
08 79.486 18 157.807 28 102.843 38 33.292
09 29.471 19 65.888 29 150.238
10 132.427 20 90.952 30 114.632

3. Methods

The processing steps for field inventory and ALOS-2 PALSAR-2 data are shown in
Figure 2.
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3.1. SAR Data Processing

Calibration: Conversion of the amplitude data record in the original image into a
backscatter coefficient was not affected by changes in surface parameters. In order to
expand the dynamic range of the scattering coefficient, the amplitude data record was
expressed in decibels, as follows:

σ0
i,j = 10·lg

(
DN2

i,j

)
+ CF1. (1)

where σ0
i,j is backscatter coefficients, DNi,j is the gray value of the pixel, and CF1 is the

calibration factor [42].
The four backscatter coefficients (σHH, σHV, σVH, and σVV) were obtained by radia-

tion calibration.
Filter denoising: Given that SAR is a coherent system, speckle noise becomes an

inherent feature that interferes with image readings. The present experiment used a refined
Lee filter [43]. At the same time, multi-look processing also had a noise suppressing effect.
Multi-look processing improved the effectiveness of feature information extraction by
averaging the pixels of the SAR image azimuth and distance. A 4 × 9 multi-look process
was performed on the original image to ensure that the pixels closed to the square and
matched the area in the plot. The above process was run in the Gamma software [44].

Decomposition parameter acquisition: Since the research object was a distributed
target, it was found suitable for incoherent decomposition. Three polarization decompo-
sition methods suitable for forests were selected [45,46]. These methods included Yam-
aguchi three-component decomposition, eigenvalue-based H/A/alpha decomposition, and
eigenvector-based H/A/alpha decomposition [47–53]. The Yamaguchi three-component
decomposition method decomposes the echo signal into three scattering mechanisms, and
volume scattering in the layered random medium provides good results [51]. H/A/alpha
decomposition contains information about the dominance relationship between scattering
mechanisms. Among them, the scattering entropy (H) not only represents the specific grav-
ity of different scattering mechanisms in the whole scattering process, but also describes the
randomness of the scattering process. The degree of heterogeneity in different directions
(A) characterizes the degree of influence of the other two scattering mechanisms, which
do not dominate the result when H increases. Scattering angle (α) describes the degree
of freedom inside the target [54–56]. The polarization decomposition parameters were
obtained using PolSARpro 6.0.2 [57].

Geocoding: Since SAR is a side-view system, it causes nonlinear distortion in areas
with large terrain undulations. Therefore, SAR images cannot transform into a reference
coordinate system by polynomial correction or affine transformation. The present study
combined the imaging characteristics of the sensor and the ground morphology. It exploited
external DEM data (SRTM V2 30 m resolution) and used a strict-range Doppler to geocode
SAR image data. This process was run using Gamma software.

Thirty-five original polarization decomposition parameters were obtained through
three polarization decompositions shown in Table 2 [49,50].

3.2. Backscatter Coefficient and Its Combination

The correlations between backscatter coefficients (σHH, σHV, σVH, σVV) and AGB
were analyzed. The radar satisfied the reciprocity of a single station, thus the cross-
polarization channels were averaged (σX replaces σ(HV+VH)/2). Each variable was used to
establish univariate linear models with AGB. The model was built using Matlab-2014b [58].
Meanwhile, different combinations of backscatter coefficients had different sensitivities
to AGB [19]. We combined the backscatter coefficients to find the parameters with more
significant correlations. A total of 26 different combinations were created using backscatter
coefficients, and correlation analysis was performed for the 26 combinations. Significant
variables were selected to establish univariate linear models with AGB.
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Table 2. Decomposition parameters.

Method Parameter

Yamaguchi three-component
decomposition

Odd scattering component of Yamaguchi 3 decomposition
(YamaguchiOdd)

Even scattering component of Yamaguchi 3 decomposition
(YamaguchiDbl)

Scattering component of Yamaguchi 3 decomposition volume
(YamaguchiVol)

H/A/alpha eigenvalue set
decomposition Eigenvalue

anisotropy,
ansiotropy_lueneburg,

anisotropy 12
asymetry, derd, derd_norm,

entropysh,
entropy 1

entropy 2, entropy 3, entropy
4, entropy 5, I1, I2, I3, p1, p2,

p3, prdestal,
polarisation_fraction
rvi, serd, serd_norm

H/A/alpha eigenvector set
decomposition Eigenvector

alpha, alpha1, alpha 2, alpha 3
beta, beta 1, beta 2, beta 3

delta, delta 1, delta 2, delta 3
gamma, gamma1, gamma 2,

gamma 3

3.3. Terrain Factors

Topography is an important factor that affects AGB [59–61]. This study obtained
slope, aspect, and elevation using DEM, which were combined in Arcmap 10.7 as shown
in Figure 3 [62]. The correlation between the extracted terrain factors and AGB was
also analyzed.
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3.4. Constructing New Parameters

Previous studies have shown that the proportional combination of volume scatter-
ing, secondary scattering, and surface scattering has a certain sensitivity to forest canopy
structure [63]. They derived a relationship between the growing stock volume (GSV) and
polarimetric decomposition powers. In addition, these studies have found that the volu-
metric scattering power and GSV in different samples were all positively correlated, while
the surface scattering and GSV were all negatively correlated. Therefore, it was concluded
that the GSV and ratio of the three scattering powers have a certain sensitivity [64]. In
the present study, there was a close relationship between AGB and GSV. The products of
the different scattering mechanisms of the Yamaguchi three-component decomposition
and the other two scattering mechanisms were found to possess a ratio relationship. This
study established new parameters with reference to the above-mentioned study. Each
new parameter with AGB was used to build a linear model. The construction of the new
parameters was as follows:

• Ground scattering—scattering parameter ratio;

R1 =
YamaguchiOdd

YamaguchiDbl × YamaguchiVol

• Even-scattering molecular parameters;

R2 =
YamaguchiDbl

YamaguchiOdd × YamaguchiVol

• Volume-scattering molecular parameters.

R3 =
YamaguchiVol

YamaguchiDbl × YamaguchiOdd

3.5. Multivariate Linear Model

The parameters obtained through the three polarization decomposition methods
were not all applicable to the study of the forest. Therefore, we analyzed the correlation
between decomposition variables and AGB to obtain significant correlation variables. A
multivariate linear model with all the significant correlation variables was set up to predict
AGB. The model variance inflation factor (VIF) test showed that the variables had significant
multicollinearity.

3.6. Ridge Regression

Due to the complexity of the radar signal, there was a degree of information overlap
between the variables, resulting in collinearity. This study attempted to use the ridge
regression model to solve the collinearity problem. Ridge regression is a regularization
method for the regression analysis of ill-posed problems.

3.7. Random Forest

The RF method is a classifier that consists of multiple decision trees. It belongs to
the Bagging ensemble learning algorithm. This method was used to collect multiple sub-
datasets from the original dataset and train multiple different decision trees. The prediction
results of multiple decision trees were then averaged to obtain the final result. This method
was not affected by collinearity between variables.

3.8. Principal Component Analysis

Principal component analysis (PCA) is suitable for populations of high-dimensional
variables with a certain correlation between samples. There was collinearity in the above
parameter set. Nevertheless, PCA is more suitable for removing collinearity [65]. The
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principal components express the additive combination with the variance of each sample.
The linear combination is added when the current component is not enough to represent
the information of the original parameter set. The principal component was calculated
as follows:

FP = a1i × Zx1 + a2i × Zx2 + · · ·+ api × Zxp (2)

A =
(
aij
)
p × m = (a1, a2, · · · am), Rai = γiai. (3)

The eigenvector corresponding to the covariance matrix is a1i, a2i · · · api(i = 1, · · ·m).
Zx1, ZX2Zx2,· · · , Zxp are the standard variables, R is the correlation coefficient matrix, and
γi, ai are the corresponding eigenvalue and eigenvectors.

We used IBM-SPSS 23.0 to perform principal component analysis on the dataset [66].
The two principal components were used to build a multivariate model to estimate AGB.

3.9. Verification and Prediction

Due to the small number of samples in this study, the cross-leave-one-out method
was used for verification [67]. In total, 37 samples were used to model, and one sample
was used for verification, resulting in 38 models. Through this method, the predicted AGB
of SAR variables was obtained. Some of the evaluation indicators were used to describe
the difference between the true AGB and the predicted AGB. The indicators selected in
this study were goodness of fit (R2), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MARE), mean error (ME), and mean relative error
(MRE) [68]. The best model was selected based on these indicators. The predicted biomass
map was then obtained. The accuracy of the final model was referred to as the accuracy of
the biomass map.

4. Results
4.1. Backscatter Coefficient and Its Combination

The correlation analysis between the backscatter coefficient and AGB (Table 3) showed
that the horizontal cross-polarization in this region was more sensitive to AGB [9,11].
A univariate linear model was established between the backscatter coefficient and AGB
(Figure 4). The accuracy of the model was low, and there were large deviations in es-
timating low-level AGB. The backscatter coefficient estimation of AGB was found to
produce a saturation point, which led to greater limitations in the estimation results.
The most accurate linear models were the σX and AGB. The formula of this model was
AGB = 280.394 + 12.591 × σX.

Table 3. AGB backscatter coefficients correlation analysis.

Correlation
Coefficient

Backscatter Coefficients

σHH σX σVV

Person coefficient 0.497 ** 0.680 ** 0.425 **
** Statistical significance: Statistical significance represents a significant correlation between the variables.

The backscatter coefficients were combined to determine whether they had the poten-
tial to improve AGB estimation (Table 4).

In this study, the combination of poorly correlated backscatter coefficients was not sig-
nificant. The correlation of the three significantly correlated and newly combined variables
(σHH×VV, σHH×X and σHH×X×VV) was better than the σHH and σVV polarization channels.
A univariate model with AGB was established for the three new variables (Figure 5). The
most accurate were the σHH×X×VV and AGB linear models. The formula of this model was
AGB = 152.822 + 0.039 × σHH×X×VV. However, it was found that the accuracy of these
models was the same as that of the backscatter coefficient model. The saturation point of
this model was about 125 t/ha.
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Table 4. AGB backscatter coefficients correlation analysis.

Parameter Pearson
Coefficient Parameter Pearson

Coefficient Parameter Pearson
Coefficient

σHH/VV −0.154 σ(VV+X)/HH −0.060 σVV+X 0.102
σHH/X −0.200 σ(VV+X)/X −0.093 σHH−VV −0.217
σVV/X −0.093 σ(VV+X)/VV 0.144 σHH−X 0.243

σ(HH+VV)/HH 0.043 σ(HH+VV+X)/HH −0.060 σX−VV −0.263
σ(HH+VV)/VV −0.154 σ(HH+VV+X)/X 0.143 σHH−VV−X −0.232
σ(HH+VV)/X −0.148 σ(HH+VV+X)/VV −0.148 σHH×VV −0.637 **
σ(HH+X)X −0.200 σHH+VV 0.285 σX×HH −0.631 **

σ(HH+X)/HH −0.066 σHH+X 0.117 σHH×X×VV 0.666 **
σ(HH+X)/VV 0.143 σHH+VV+X 0.244

** Statistical significance: Statistical significance represents a significant correlation between the variables.
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4.2. Influence of Topographical Factors

Correlation analysis revealed that slope was the most important factor affecting AGB
in this study (Table 5). During the field investigation, the slope of the study area was found
to change greatly. However, the effect of aspect on AGB was not obvious, possibly due to
the small number of samples.

Table 5. Topographical factors—AGB correlation analysis.

Parameters
Topographical Factors

Slope Elevation Aspect

Pearson coefficient 0.417 ** 0.162 0.223
** Statistical significance: Statistical significance represents a significant correlation between the variables.

4.3. New Parameters and AGB Estimation

The correlation between the three newly constructed parameters and AGB was de-
termined, and it is illustrated in Table 6. The univariate model with R1 as the indepen-
dent variable produced better AGB estimation results. The formula of this model was
AGB = 181.427 − 3.822 × R1. This model achieved the highest accuracy among all uni-
variate models. The new parameters R2 and R3 predicted that the AGB results were poor
(Figure 6). The saturation point of the model was relatively high (140 t/ha) when compared
to the backscattering coefficient model.
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Table 6. Parameter correlation analysis.

Correlation
Coefficient

New Parameter

R1 R2 R3

Pearson coefficient −0.756 ** −0.322 0.190
** Statistical significance: Statistical significance represents a significant correlation between the variables.
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4.4. Multivariate Linear Model

A correlation analysis of the polarization decomposition variables and AGB was per-
formed, and it is summarized in Table 7 (only relevant significant variables are displayed).
The variable R1 had a stronger correlation with AGB compared to the Yamaguchi scattering
mechanism. This showed that there was still a relationship between the mechanisms of
polarization decomposition.

Table 7. AGB decomposition parameter correlation analysis.

Correlation
Coefficient

Decomposition Parameter

Entropysh Entropy 1 Entropy 2 Entropy 3 Gamma 3

Pearson
coefficient 0.672 ** 0.596 ** 0.617 ** 0.696 ** 0.439 **

I2 I3 YamaguchiVol YamaguchiDbl

Pearson
coefficient 0.667 ** 0.635 ** 0.623 ** 0.697 **

** Statistical significance: Statistical significance represents a significant correlation between the variables.
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All the variables that were significantly correlated with AGB were used to build a
multivariate linear model (Figure 7). These variables included three original backscatter
coefficients, three combined backscatter coefficients, slope, nine polarization decompo-
sition variables, and R1. However, the VIF test proved that there was multicollinear-
ity between them (Table 8). The joint hypothesis F value of the model was 17.536, and
there was no significant saturation point (sig) ≤ 0.001. This model provided poor resid-
ual test results (Figure 7). Meanwhile, existing studies have showed that AGB can-
not be estimated with a simple multivariate model [69,70]. Although this model pro-
vided reasonable results, it could not predict AGB in large areas. The formula of this
model was AGB = −412.481 − 1.992 × σHH×VV − 612.789 × Yamaguchivol + 279.684 ×
YamaguchiDbl − 819.198×Entropy 2+ 1359.506× I3+ 1693.609× I2+ 1051.944×Entropy 3
+ 123.159 × Entropy 1 − 196.097 × Entropysh − 1.167 × R1 + 0.062 × Gamma 3 − 3.714 ×
σHH×X − 49.921 × σHH − 5.658 × σX − 412.481 × σVV − 0.154 × σHH×X×VV.
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Table 8. Collinearity analysis.

Variable Dimension Sig Vif

σHH 1 0.607 84.422
σX 2 0.251 689.347
σVV 3 0.925 150.481

σHH×VV 4 0.150 346.537
σHH×X 5 0.448 2571.564

σHH×X×VV 6 0.126 444.793
entropysh 7 0.656 1798.225
entropy 1 8 0.648 218.010
entropy 22 9 0.070 335.184
entropy 33 10 0.015 153.786
gamma 3 11 0.648 1.585

I2 12 0.535 295.838
I3 13 0.935 792.565
R1 14 0.999 17.052

YamaguchiVol 15 0.898 1125.782
YamaguchiDbl 16 0.531 59.219

4.5. Ridge Regression Model

Ridge regression was used to estimate AGB and solve the collinearity problem.
Variables in the ridge regression model were consistent with the multivariate model.
The variables were standardized before ridge regression. However, the ridge regres-
sion model was found to have a poor fitting effect (Figure 8). This method solved the
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collinearity between the variables. However, the normality of the residuals of the model
was poor. Based on these results, the model estimated that the AGB saturation point
was low (~145 t/ha). We determined the ridge parameter (K) = 0.141 based on the
variance expansion factor method. The formula of this model was AGB = 83.396 −
0.161×σHH×VV − 12.726×Yamaguchivol + 405.828×YamaguchiDbl + 2.125×Entropy 2−
13.587 × I3 + 78.432 × I2 + 50.428 × Entropy 3 − 1.316 × Entropy 1 + 0.805 × Entropysh −
1.737×R1 + 0.077×Gamma 3− 0.065×σHH×X − 1.446×σHH + 1.366×σX − 2.56×σVV +
0.009 × σHH×X×VV.
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4.6. Random Forest

There were 200 decision trees in this dataset. In order to reduce the result volatility
caused by bootstrap sampling, all the models were trained 50 times and the average was
obtained. We obtained the predicted AGB and computed the residuals (Figure 9). The
saturation point of this model was about 155 t/ha.
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4.7. Principal Component Analysis

Although the above results showed that multiple variables had the ability to improve
AGB estimation, obtaining a stable model was still a challenge. However, the problem of
collinearity can be solved through PCA. This method uses the same variable set as ridge
regression. PCA processing was performed on the new parameter set. In addition, the
Kaiser–Meyer–Olkin and Bartlett’s tests were performed (Table 9), and the suitability of
Kaiser–Meyer–Olkin sampling was between 0 and 1. A larger value indicated that it was



Remote Sens. 2022, 14, 669 14 of 20

convenient for PCA. Bartlett’s spherical significance test showed that the selection of the
parameter population was suitable for PCA. We calculated the principal components by
the principal component coefficients (Table 10). Two principal component variables were
extracted by default. The cumulative variance described 80.606% of the original parameters
(Table 11). Additionally, the AGB was estimated using a multivariate model (Figure 10).
The formula of this model was AGB = 120.895 + 36.028 × Factor1 − 31.266 × Factor2. The
F value of the multiple regressions model was 164.421, sig ≤ 0.001 (Table 12), and it passed
the significance test, indicating a significant improvement in accuracy when compared
with other multivariate models. PCA solved the problem of collinearity and the residuals
of the model were normal. The residuals were evenly distributed, and thus the variance
was considered to be homogeneous (Figure 9). All the results obtained through this model
were acceptable.

Table 9. Kaiser–Meyer–Olkin and Bartlett’s test.

Kaiser–Meyer–Olkin Sampling Suitability 0.746

Bartlett’s Test
Approximated chi-square 1753.496

Degree of freedom 136
Significance 0.000

Table 10. Principal component coefficient.

Variable
Principal Component Coefficient

Factor 1 Factor 2

σHH 0.904 −0.310
σX 0.962 −0.305
σVV 0.900 −0.331

σHH×VV −0.915 0.237
σHH×X −0.933 0.209

σHH×X×VV 0.877 −0.185
entropysh 0.982 0.053
entropy 1 0.972 −0.056
entropy 22 0.966 0.082
entropy 33 0.953 −0.002
gamma 3 0.227 0.458

I2 0.924 0.240
I3 0.905 0.239
R1 −0.349 −0.795

YamaguchiVol 0.900 0.229
YamaguchiDbl 0.847 0.287

Table 11. Illustration of the total variance.

Component
Eigenvalue Cumulative

Aggregate Variance (%) Total (%) Aggregate Variance (%) Total (%)

Factor 1 12.161 71.538 71.538 12.161 71.538 71.538
Factor 2 1.541 9.068 80.606 1.541 9.068 80.606

Table 12. Regression coefficients of the model.

Parameter Unstandardized
Coefficient

Student’s Test
Value Sig Vif

Constant 112.635 39.083 0.000
Factor 1 34.427 10.982 0.000 1.000
Factor 2 −29.648 −9.458 0.000 1.000
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4.8. Model Selection and Prediction of the Study Area AGB

We evaluated the relationship between the predicted AGB of each model and the real
AGB (Table 13). This study concluded that the principal component model was the best
model when compared with the evaluation indexes of the models. As such, the principal
component model was used to predict the AGB in the study area (Figure 11). All the
variable matrices required by the principal components were entered in Matlab2014b. All
the matrices were additively combined according to the principal component coefficients
to obtain the principal components. Finally, large-area AGB prediction was based on the
multivariate model formula of the principal component. The accuracy of the biomass map
was 88%.

Table 13. Model evaluation index.

Type Model

Evaluation Index

Adjusted r2 RMSE (t/ha) ME (t/ha) MAE
(t/ha) MARE (%) MRE (%)

Unary model
σX and AGB model 0.45 38.45 1.17 37.22 45.51 17.71

σHH×X×VV and AGB model 0.42 39.04 3.15 32.94 44.30 21.25
R1 and AGB model 0.56 32.17 1.82 25.69 39.17 8.77

Multivariate model 0.87 17.42 −0.12 14.82 27.35 15.25
Ridge regression model 0.63 30.25 −0.04 23.18 36.22 17.32

Principal component model 0.90 14.24 −0.023 10.96 18.92 5.03
Random forest model 0.70 27.94 −1.99 23.04 23.21 17.44
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5. Discussion

The use of large-scale remote sensing analyses to accurately estimate AGB is of great
significance to global carbon-neutrality research. This study used a combination of backscat-
ter coefficients, terrain parameters, and polarization decomposition parameters to estimate
AGB. The adjusted r2 increased from 0.45 to 0.90 through different processes. The accu-
racy of the processing results increased with the progress in various steps. The RMSE
was 14.24 t/ha, as shown in step 4.6. Meanwhile, the ground information carried by the
backscatter coefficient was limited. Therefore, AGB could not be accurately estimated. It
was found that the combination of backscatter coefficients was more effective than HH
and VV polarizations. Given that the topography of the study area was relatively complex,
the slope was considered as an important factor affecting AGB. This study selected the
polarization decomposition parameters that were suitable for forest AGB estimation. The
univariate and the multivariate models were then compared. The results showed that the
multivariate model estimates a high saturation point of the AGB. The saturation point of
the backscattering coefficient was about 120 t/ha, and no obvious saturation point was
estimated by the multivariate model. The saturation point of the variable R1 was about
160 t/ha, which was higher than the backscattering coefficient model. This showed that the
polarization decomposition parameters carried more ground information. The principal
component analysis was found to be more suitable for the collinearity variable sets. As
such, we used two principal components to build a multivariate model for estimating AGB
without collinearity. No saturation point was found in this model, suggesting that the satu-
ration point had been effectively improved. Finally, the principal component multivariate
model was used to predict the AGB in our study area.

Previous reports have shown that the accuracy of the non-parametric model and the
linear model is consistent in estimating AGB [71]. The accuracy of the multivariate model
was proved to be higher than that of the univariate model [2]. Our findings were consistent
with these previous findings. In the backscatter coefficient, cross-polarization had the
strongest correlation with AGB [9,11]. The backscatter coefficient previously estimated the
saturation point of AGB to be about 100 t/ha [17,18]. However, the saturation point of the
backscattering coefficients in this study was higher than that previously reported. Many
factors have been found to affect the saturation point of AGB [21]. For instance, variation
in environmental conditions in a given study area was found to play a key role in causing
variation in the saturation point [19]. Therefore, the different environments in our study
area could have affected the saturation point. Reports have shown that the ratio of polariza-
tion backscattering coefficients has a high correlation with AGB [11]. However, the present
study could not verify this finding. There is a possibility that no suitable combination of
backscattering coefficients was found. Among several polarization decomposition methods,
the most relevant parameter was YamaguchiDbl. YamaguchiDbl represented the secondary
scattering between forest trunks, and 90% of the forest AGB was tree trunks. These results
are consistent with previously reported L-band characteristics [72]. Meanwhile, the Ya-
maguchi three-component decomposition corresponded to the physical model. In some
aspects, the performance was better than the characteristic decomposition parameters. The
several scattering mechanisms of the Yamaguchi three-component decomposition make
it impossible to correctly distinguish land units. However, H/A/alpha decomposition
provides a different decomposition method. The H/A/alpha polarization decomposition
theorem is based on the coherence matrix analysis of eigenvalues and eigenvectors. The
decomposed parameters describe the main relationship between the scattering mecha-
nisms [45]. This suggests a lack of conflict between the two polarization decomposition
methods. Previous studies showed a certain connection between the scattering mecha-
nisms [64]. This finding is supported by the variable R1 reported in the present study. In
the present study, the RF method was found to be less effective and unsuitable for small
sample studies. This was consistent with previous reports [39]. The additive model was
found to be suitable for estimating AGB, as previously reported [27–29].
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The L-band was used to obtain higher accuracy. This study showed that SAR data
have the potential to estimate AGB, and are not limited by the saturation point of the
estimated AGB. The unary model proved to be unsuitable for accurately estimating AGB.
The multivariate model was proved to have a higher saturation point. However, the results
estimated by principal component analysis were the closest to the real AGB. This study
showed that AGB could be accurately estimated by one SAR image. However, the present
research did not achieve such results; the obtained results were more suitable for the
prediction of AGB in large areas.

Future studies could, however, use more penetrating P-band data, and select study
areas with high biomass levels, such as tropical rain forests. Such studies may therefore
enhance the ability to estimate AGB based on model selection. The present study employed
an estimation technique that obtains better accuracy at the biomass level. It proved that
estimating AGB using a combination of long-wave SAR data parameters and non-remote
sensing factors can address actual needs. Although previous studies investigated polariza-
tion decomposition methods, the present study obtained better results due to the choice of
images and reasonable processing methods used.

6. Conclusions

This study investigated the effectiveness of using an L-band image to estimate AGB.
The obtained results could be widely applied to estimate AGB. The problem of complex
radar signals that generate high-dimensional parameter sets was also addressed, further
emphasizing the wide applicability of the method. The key findings of this study were
as follows:

(1) The use of the backscatter coefficient to estimate AGB was more limited. The mul-
tivariate model provided better estimation capabilities than the univariate model.
However, there was collinearity among the variables.

(2) The backscatter coefficient estimated that the AGB saturation point was low. The
variable R1 improved the estimation of the saturation point.

(3) The Earth-scattering ratio was more suitable for estimating AGB. This indicated
that there was a degree of information complementarity between the variables. The
combined backscatter coefficient was weak at estimating AGB.

(4) The model established by combining the backscatter coefficients, terrain factors,
and polarization decomposition parameters achieved high accuracy. The principal
component analysis method was suitable for analyzing SAR data to estimate AGB.
The final model effectively improved the saturation point of AGB.

It is noteworthy that the study did not require a large amount of SAR data to accurately
estimate AGB. L-band PALSAR data can be used in most areas of the world, making this
research widely applicable to the estimation of AGB in forest-covered areas. However, the
level of AGB in this study was not among the highest recorded in the world. Therefore, the
applicability of this method in areas with high biomass levels is still uncertain.
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