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Abstract: Feature-point matching between two images is a fundamental process in remote-sensing
applications, such as image registration. However, mismatching is inevitable, and it needs to be
removed. It is difficult for existing methods to remove a high ratio of mismatches. To address
this issue, a robust method, called triangular topology probability sampling consensus (TSAC), is
proposed, which combines the topology network and resampling methods. The proposed method
constructs the triangular topology of the feature points of two images, quantifies the mismatching
probability for each point pair, and then weights the probability into the random process of RANSAC
by calculating the optimal homography matrix between the two images so that the mismatches
can be detected and removed. Compared with the state-of-the-art methods, TSAC has superior
performances in accuracy and robustness.

Keywords: feature-point matching; remote sensing; triangular topology; mismatching removal;
probability sampling consensus; optimized RANSAC

1. Introduction

Feature-point matching is an important component of image processing, and it is
widely used in remote sensing, including in target recognition, image registration, object
tracking, pose estimation, etc. With the applications of image feature-point matching
becoming more diverse, its accuracy and robustness are of vital importance.

Therefore, there have been many types of research conducted on the optimization
of feature-point matching recently. Generally, this kind of research can be divided into
feature extraction and feature-point matching. As for feature extraction, traditionally, many
kinds of feature descriptors have been proposed, such as SIFT (scale-invariant feature
transform) [1], BRIEF (binary robust independent elementary features) [2], etc. There are
also many improved feature points, such as CSIFT [3], SURF [4], and some others that are
based on deep neural networks, such as LIFT (learned invariant feature transform) [5],
SuperPoint [6], etc., which improve the accuracy and precision to some degree. Feature-
point matching calculates the similarities between the feature points in different images and
matches them. Many of the feature points are similar in some applications, so mismatches
that have a great influence on the accuracy for following the progress, such as image
registration or pose estimation, do occur.

Generally, the method of feature extraction is fixed in a certain application after being
selected at the start. On the other hand, no matter what feature-point extraction method
is employed, there still exists a high ratio of mismatches in some situations. Therefore,
the detection and removal of mismatching is an important task for precise and robust
feature-point matching.
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As for the removal of mismatching, a variety of studies have been carried out. The
most famous method is RANSAC (random sample consensus) [7], proposed by Fischler
in 1981. Subsequently, many new methods based on RANSAC have been proposed from
different perspectives. Generally, these methods for mismatching removal improve the
efficiency and accuracy of feature-point matching and perform well in applications with
low ratios of mismatching. Nevertheless, there remain difficulties in the applications
with high ratios of mismatching. The detailed related works will be introduced in the
following sections.

Here, we briefly review the methods for the removal of mismatching, which can be di-
vided into three categories, according to different principles: regression-based, resampling-
based, and geometry-based.

1.1. Regression-Based Mismatching Removal

The methods based on regression assume that all correct matching conforms to a
specific function model, and they calculate the parameters of the model by regression using
each feature-point pair, and finally, they judge each matching, whether it is mismatched or
not, by calculating the error in the function model.

The popular method based on regression uses the least squares method, which mini-
mizes the sum of the square errors to find an optimal parameter of the model so that as
many matches as possible can satisfy it. Then, it calculates the error of the putative matches
in this model, and finally, it makes judgments according to this error.

The process of this method is relatively simple, and the speed of regression is also
fast. However, some mismatches with large errors will have an impact on the accuracies
of the regression model parameters, which seriously affects the result of the mismatching
removal. Moreover, the method needs to provide the regression model manually, and the
regression model will affect the accuracy of the mismatching detection.

There are also some optimized methods that have been proposed in recent decades.
Li et al. propose subregion least squares iterative fitting [8], which regresses the model and
removes the mismatches continuously until the errors of all the matching points meet the
threshold. This method improves the matching accuracy. As for regression models, there
are also some methods that have been developed, such as polynomial regression, proposed
by Niu et al., which performs well in color image mismatching removal [9].

Even though these methods improve the efficiency, the regression-based methods
are easily affected by the mismatches with large errors, which makes it difficult to detect
mismatches. Therefore, the methods based on regression are not so widely used.

1.2. Geometry-Based Mismatching Removal

In recent years, many studies have focused on combining feature-point matching with
the geometries of the feature points to construct the geometric or topological relationships
between the feature points to remove mismatching.

GTM (graph transformation matching) [10], proposed by Aguilar et al., is the typical
method based on geometry, which constructs the KNN undirected graph on the basis of
feature points to remove the mismatches. In our previous work [11], a robust method was
proposed, which is based on comparing the triangular topologies of the feature points.
Zhu et al. put forward the method, based on the similar structure constraints of the feature
points [12]. Luo et al. analyze the relationship of the Euclidean distance between the feature
points and then corrects the mismatch on the basis of the angular cosine [13]. Zhao et al.
removed the mismatches according to the constraint that the matching distances tend to be
consistent [14].

The methods based on geometry constraints or topology can detect mismatches effi-
ciently, and they also have high accuracy, while being not easily affected by mismatches,
theoretically. Therefore, these methods have been used on many occasions.
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1.3. Resampling-Based Mismatching Removal

The method based on resampling finds the model that makes the maximum number
of matches meet the error threshold. In the area of mismatching removal, the most popular
method is using RANSAC to calculate the basic matrix, or the homography matrix [15,16],
and estimating the optimal matrix of the two images; the outliers of the matrix model are
considered the mismatches. However, on account of the uncertain iteration number of
RANSAC, the efficiency will be reduced when there are a large number of mismatches.
Therefore, more and more methods to improve RANSAC are being proposed, which
include the optimization of the sampling, the optimization of the loss function, and the
optimization of the model estimation.

The optimization of sampling, such as PROSAC (progressive sampling consensus), first
obtains the probability of each piece of data being an inlier, and then preferentially extracts
the data with high probabilities in the random process [17]. GroupSAC first groups all the
matches, and the group with more matching points is preferred for the sampling [18]. The
optimization of the loss function, such as MLESAC (maximum likelihood SAC), proposes
a new loss function instead of the function of RANSAC, and enhances the accuracy of
the calculation [19]. The optimization of the model estimation, such as R-RANSAC and
SPRT-RANSAC, will first judge whether it is the correct model, and will continue to sample
and iterate if is not [20,21].

Recently, more improved methods based on resampling have been put forward. USAC
(universal RANSAC) is a new universal framework for RANSAC [22]. DL-RANSAC (de-
scendant likelihood RANSAC) introduces descending likelihood to reduce the randomness
so that it converges faster than the conventional RANSAC [23]. GMS-RANSAC (grid-based
motion RANSAC) divides the initial point sets and removes mismatching for image regis-
tration [24]. PCA-SIFT uses PCA to obtain new feature descriptors, sorts them according to
the KNN algorithm, and then uses the RANSAC to remove the mismatching [25]. SESAC
(sequential evaluation on sample consensus), which performs better than PROSAC, sorts
the matches on the basis of the similarities of the corresponding features, and then selects
the samples sequentially and obtains the model by the least squares method. [26]. Gao et al.
improve the RANSAC by taking prevalidation and resampling during iterations, which
accelerates the efficiency [27].

Compared with the method based on regression, the mismatches with large errors
have little influence on RANSAC or the other resampling methods. That is, a mismatch
with a large error will affect the results calculated by the regression-based method a lot,
while influencing the results obtained by the resampling-based method a little, because not
all points are required to conform to the model in the resampling-based method. Moreover,
at the same time, the method is also adapted to the dataset containing many mismatches.
Therefore, the method based on resampling is the most widely used at present.

In conclusion, geometry-based methods and resampling-based methods, and espe-
cially the latter one, generally have good results and perform well in the case of a nonhigh
ratio of mismatching.

However, in many complex applications, which contain a high ratio of mismatching,
the existing methods still cannot work well. The more mismatches that exist, the harder it
is to calculate the correct model. Specifically, RANSAC calculates the model by randomly
selecting a set of matches and validating it; the correct model can be obtained only when
an entirely proper set of matches is selected. When the ratio of mismatches is too high, it is
difficult for RANSAC to select the correct point sets randomly.

As for remote-sensing images, they are generally images of the ground landscape taken
by satellites at certain altitudes. Usually, the landscape, especially the urban landscape,
has a high similarity and repeatability, which results in a lot of mismatches in remote-
sensing images.

In this paper, we propose a robust method for mismatching removal, namely, triangu-
lar topology probability sampling consensus (TSAC), which adapts to a high mismatching
ratio. The contributions of our work can be summarized as follows:
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1. We propose a mismatching-probability-calculating method based on feature-point
triangular topology. The method constructs a topological network of the feature points
on the image and then calculates the mismatching probability;

2. We propose a new sampling method—probability sampling consensus—which weights
the probability calculated above to the random process of the RANSAC so that the
mismatches can be detected and removed.

The remainder of this paper is organized as follows: Section 2 describes the related
works; Section 3 presents the proposed TSAC method in detail; Section 4 presents the
results and an analysis of the experiments; and finally, we draw conclusions in Section 5.

2. Materials and Methods
2.1. Motivation and Main Idea

Here, we analyze the disadvantages of the geometry-based and resampling-based
methods. Geometry-based methods have high accuracy for judging whether a pair of
matching points correctly correspond or not. Even so, there remain many errors when
directly selecting mismatches via the geometry-based method. As for resampling-based
methods, they sample four pairs of matching points to calculate the homography matrix
and verify it. These methods make full use of the affine invariance that two photos of the
same area taken from different poses conform to an affine transformation, which can be
concluded as a homography matrix; therefore, they obtain better results. However, when
there are too many mismatches, selecting a set of four correct pairs of matching points
by a random process is difficult. Therefore, our main idea is to analyze the geometric
topologies of feature points to calculate the mismatching probability of a point pair, rather
than directly determining whether it is a mismatch. Then, instead of selecting matching
points with equal probabilities indiscriminately, we import the mismatching probabilities
to the random process of RANSAC, which should improve the success rate.

As is shown in Figure 1, the proposed TSAC method includes two stages: first,
the construction of a topological network, and then the calculation of the mismatching
probability for each point pair, according to the network. There are several types of
topological networks, and the triangular topology was chosen in the proposed method. In
our previous work [11], it was first used for image mismatching removal. However, we
used it to remove mismatches directly in [11], where it is hard to achieve high accuracy in
the case of a high mismatching ratio, so we added lots of criteria to find the mismatching,
such as the topological constraint and the length constraint, which makes the process of
judgment very complex. In this paper, instead of making a direct judgment as to whether a
match is incorrect, we calculate the mismatching probability, which does not decrease the
mismatches. Therefore, here, we simplify them into a single and simple condition that the
mismatching points will lead to the distortion of the topological network, which means
that the lines of the network will cross. This is much simpler and more efficient.

Then, we import the probability to the random process of RANSAC. The matches
with low mismatching possibilities will have a higher probability of being selected in
each random process; thus, we can select the matching points and calculate the correct
homography matrix more efficiently so as to remove the mismatching. Although some of
the existing methods, e.g., PROSAC [17], obtain the mismatching probability on the basis
of the matching scores and import them into the RANSAC, this is actually a reuse of the
results of the feature-point matching. This means that little new information is imported,
and, thus, the improvement is limited. As for the proposed method, the mismatching
possibility from the constructed topological network is totally new information, which is
different from the initial matching process.
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2.2. Triangular Topological Network

After the initial feature-point matching, we construct a triangular topology network
for the feature points in the template image, and then connect the network in the test image,
according to the network constructed in the template image.

According to affine invariance, when all feature points are correctly matched, the
feature-point topological network of the two images should be similar, as is shown in
Figure 2a–c. On the contrary, assuming that some feature points are matched incorrectly
when connecting the network in the test image, abnormal points and edges, which we
call “distortion”, will appear, as is shown in Figure 2d,e. These abnormal points in the
reconnected network are likely to be mismatch points, as is shown in Figure 2f. We detect
mismatching on the basis of the above principle.

The details of the method are as follows: For the template image, P, and the test image,
Q, we conduct feature extraction and feature-point matching. Let P = {P1, P2 . . . Pn} be the
set of feature points in Image P, and let Q = {Q1, Q2 . . . Qn} be the set of feature points in
Image Q, where P(i) and Q(i), (i ∈ {1, 2 . . . n}) are a matched pair by the feature detector.

We construct a triangular topology network for the feature points in Image P. Here,
we choose Delaunay triangulation [28], which consists of a simple data structure so that it
is easy to update and so that it can also be used in any polygon of any contour shape, and,
therefore, it has good performance in the network construction. Then, the results of the
triangulation in Image P can be described as a matrix, T:

T =


t11 t12 t13
t21 t22 t23

...
tm1 tm2 tm3

 (1)

where m is the number of triangles, for any integer; i ∈ {1, 2 . . . m}, P(ti1), P(ti2), P(ti3)
are the three vertices of a triangle in the triangular topological network.
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Figure 2. The relationship between the matching and the triangular topologies. If all matches are
correct, the topologic networks of the feature points in the two images are similar, while, if there is a
mismatch, there is distortion around it: (a) the triangular topological network of the template image;
(b) the triangular topological network of the test image, which is connected according to (a); (c) all
feature matches are corresponding correctly; (d) triangular topological network of feature points, the
same as (a); (e) there is distortion in the topological network of the test image, which is connected
according to (d); (f) there are some mismatches, which are colored in red.
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In Image Q, we construct the corresponding feature-point network according to the
connection relation between the feature points in the topological network in Image P.
That is, according to the matrix, T, the triangles in Picture P are reconnected in Pic-
ture Q in turn; thus, for any i ∈ {1, 2 . . . m}, we connect the feature points in Picture
Q, Q(ti1), Q(ti2), Q(ti3), to form a triangle.

The left image of Figure 3 shows the topological network of Image P. If all of the feature
points of Images P and Q are correctly matched, their networks will be similar, as is shown
in the middle image of Figure 3. Supposing that a feature point is matched incorrectly, for
example, Q′4 is a point of mismatch, there is distortion near this point, which leads to the
cross between the edge extracted by Q4 and other edges of the network, as is shown in
Image Q′ in Figure 3.
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Figure 3. An example of the triangular topology networks of feature points in the two matched
images, P, Q, and Q′.

On the basis of the affine invariance, the topological relationships of the points in the
images of one object or scene are invariable. In the reconnected network, if the matching
is correct, the matching point will maintain its topological relationship, so there will be
no crossing in the reconnected network. If the matching is incorrect, the relationship of
the matching point to the surrounding points will change, which will produce crossings
between some edges of the network. The status of the crossing of edges around the feature
point reflects its mismatching possibility. The more crossings that exist, the higher the
mismatch possibility. The status of this can be measured by the number of crossings of the
edges around the feature point, and the calculation of the crossing between two edges can
be described as follows: Let Qa

(
ax, ay

)
Qb
(
bx, by

)
be the two endpoints of one edge, and let

Qc
(
cx, cy

)
Qd
(
dx, dy

)
be the two endpoints of another edge. The judgment can be divided

into two steps:

(i) Quick judgment: if it satisfies any of the conditions (a–d), the two edges can be judged
as a disjoint, as Figure 4a–d shows. If not, we categorize it to Condition (e), which
cannot be judged directly, as Figure 4e shows.



Remote Sens. 2022, 14, 706 8 of 19
Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

   
(a) (b) (c) 

 
 

 

(d) (e)  

Figure 4. Five different situations when judging the crossing of two edges in Image Q: (a–d) are the 
conditions of quick judgments; (e) shows the condition of an example that needs main judgments. 

⎩⎪⎨
⎪⎧ 𝑚𝑎𝑥(𝑎௫, 𝑏௫) < 𝑚𝑖𝑛(𝑐௫, 𝑑௫)    (𝑎)𝑚𝑎𝑥(𝑐௫, 𝑑௫) < 𝑚𝑖𝑛(𝑎௫, 𝑏௫)    (𝑏)𝑚𝑎𝑥൫𝑎௬, 𝑏௬൯ < 𝑚𝑖𝑛൫𝑐௬, 𝑑௬൯    (𝑐)𝑚𝑎𝑥൫𝑐௬, 𝑑௬൯ < 𝑚𝑖𝑛൫𝑎௬, 𝑏௬൯    (𝑑)       𝑜𝑡ℎ𝑒𝑟               (𝑒)  (2) 

(ii) The main judgment: in Condition (e), each edge can be represented by a vector, such 
as 𝑄𝑄ሬሬሬሬሬሬሬሬሬሬ⃗ . If it satisfies both of the following conditions, the two edges can be judged 
as crossed: 

ቊ(𝑄𝑄ሬሬሬሬሬሬሬሬሬሬ⃗ ×𝑄𝑄ሬሬሬሬሬሬሬሬሬሬ⃗ ) ∙ (𝑄𝑄ሬሬሬሬሬሬሬሬሬሬ⃗ ×𝑄𝑄ௗሬሬሬሬሬሬሬሬሬሬ⃗ ) ≤ 0(𝑄𝑄ௗሬሬሬሬሬሬሬሬሬሬ⃗ ×𝑄𝑄ሬሬሬሬሬሬሬሬሬሬ⃗ ) ∙ (𝑄𝑄ௗሬሬሬሬሬሬሬሬሬሬ⃗ ×𝑄𝑄ሬሬሬሬሬሬሬሬሬሬ⃗ ) ≤ 0    (3) 

We establish a function on the basis of the judgments above: 𝐶𝑅𝑂𝑆𝑆𝐽𝑈𝐷𝐺𝐸(𝑄𝑄, 𝑄𝑄)= ൜ 1                          𝑓𝑜𝑟𝑚𝑢𝑙𝑎(3) 𝑖𝑠 𝑇𝑟𝑢𝑒 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑒)0      𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑎)(𝑏)(𝑐)(𝑑), 𝑓𝑜𝑟𝑚𝑢𝑙𝑎(3) 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑒)  (4) 

Figure 4. Five different situations when judging the crossing of two edges in Image Q: (a–d) are the
conditions of quick judgments; (e) shows the condition of an example that needs main judgments.


max(ax, bx) < min(cx, dx) (a)
max(cx, dx) < min(ax, bx) (b)
max

(
ay, by

)
< min

(
cy, dy

)
(c)

max
(
cy, dy

)
< min

(
ay, by

)
(d)

other (e)

(2)

(ii) The main judgment: in Condition (e), each edge can be represented by a vector, such

as
−−−→
QaQb . If it satisfies both of the following conditions, the two edges can be judged

as crossed: 
(−−−→

QaQb ×
−−−→
QaQc

)
·
(−−−→

QaQb ×
−−−→
QaQd

)
≤ 0(−−−→

QcQd ×
−−−→
QcQa

)
·
(−−−→

QcQd ×
−−−→
QcQb

)
≤ 0

(3)

We establish a function on the basis of the judgments above:

CROSSJUDGE(QaQb, QaQb)

=

{
1 f ormula(3) is True in condition(e)

0 condition(a)(b)(c)(d), f ormula(3) is False in condition(e)
(4)
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2.3. Quantify the Mismatching Probability

In order to quantify the mismatching probability of each feature point pair, we calculate
the number of crossing edges around the feature points. Let Cij be the number of crossings
between the edge, QiQj, and other edges:

Cij = ∑m ∑n CROSSJUDGE
(
QiQj, QmQn

)
(5)

Moreover, we define the Ci to reflect the cross status of the feature point, Qi, which
will be used to quantify the probability of mismatching. Here, we propose a quantization
method based on the crossing times.

For the feature point, Qi, in Picture Q, we calculate the average crossing times of all
the edges around it. The higher the value is, the higher the mismatching probability. The
number of the cross status, Ci, can be calculated as follows:

Ci =
1
j ∑j Cij (6)

Finally, we obtain the mismatching probability of each feature point pair. As for each
feature point, Qi, in Image Q, and its corresponding crossing time, Ci, we can calculate a
mismatching probability, pi, for each match, Pi−Qi, as follows. The relationship is based on
Gaussian distribution, where σ is the second-order moment. The mean of the distribution
is zero, so if the value of Ci is small, the match, Pi −Qi, has a small mismatching probability.
In addition, σ is used to adapt variable situations: when a network is abnormal with lots of
crossings, the value of σ is high, and when a network contains few matching points that
cause few crossings, the value of σ is low:

pi = 1− e−
(Ci)

2

2σ2 (7)

where = 2

√
1
n

n

∑
i

Ci
2

2.4. Probability Sampling Consensus and Mismatching Removal

Contrary to the conventional RANSAC, probability sampling consensus is more likely
to select feature matches with low mismatching probabilities. For each pair of matching
points, Pi −Qi, the relationship between the probability selected by random process, p′ i,
and the mismatching probability, pi, can be described as follows:

p′ i = (1− pi)/
n

∑
j

(
1− pj

)
(8)

The higher the mismatching probability, the lower the probability of being selected.
All matching points have a probability of being selected, but the probability of each match
is different, and is negatively correlated with its mismatching probability.

Then, we sample the feature matches according to this probability, and, each time,
four matching point pairs are selected to calculate the homography matrix of Image P and
Image Q. By calculating the reprojection error [16], we can obtain an optimal homography
matrix of the two images.

Finally, combined with this homography matrix, the match with a small reprojection
error, that is, the inlier of the homography matrix model, is the correct match. To the
contrary, the matches with large reprojection errors, that is, the outliers of the model, are
considered as mismatches that need to be removed.
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3. Results

We conducted two experiments in this section to evaluate the proposed method. In
the first experiment, we used the existing feature-point-matching dataset to verify the
effectiveness of this method. In the second experiment, we compared TSAC with state-of-
the-art methods, such as RANSAC, PROSAC [17], GTM [10], GMS [24], and LPM [29], in
different proportions of mismatches, which were produced randomly. The experiments
were performed on the Windows 10 operating system of a Macbook Air (13-inch, 2017)
computer, with an Intel Core i5-5350K processor and an 8-GB RAM. All the algorithms in
this paper are written in Python. In addition, in all the experiments, the correspondences
were computed from the SIFT keypoints, which are included in the package, OPENCV-
python (4.5.3).

The experimental results were evaluated by three common evaluation indicators: the
recall, the precision, and the F-score, where the precision, recall, and F-score are defined
as follows:

precision =
the number o f con f irmed true matches

the number o f con f irmed matches

recall =
the number o f con f irmed true matches

the total number o f true matches

F− score =
2 ∗ precision ∗ recall

precision + recall

In addition, before carrying out the experiment, we also performed experiments on
the settings of the experimental parameters. The main parameter of TSAC is the threshold
of the reprojection error. Generally, the commonly used values of this parameter are from
1–10 pixels. We compared the performances of the values in the range of 1–10 pixels. With
the increase in the value, the recall of the result increases, but the accuracy decreases. More
specifically, the accuracy decreases by about 2–3% initially, and it decreases slowly when
the value is larger than 4 pixels. The recall rises quickly in the beginning, and then rises
very slowly when the value is larger than 4 pixels. The F-score remains almost unchanged
when the value is in the range of 4–10 pixels, with a difference of less than 0.5%. Therefore,
the parameter has no great influence on the performance of our method. In the following
experiment, we chose 4 pixels.

3.1. Experiment on Datasets

To test our method, WorldView-2 (WV-2), TerraSAR remote-sensing images, and
Mikolajczyk VGG [30] images were used.

A. WV-2 and TerraSAR
Here, we carried out the experiments on remote-sensing images from WV-2 and

TerraSAR in the area of Hangzhou (120.2◦E, 30.2◦N), which is a typical area containing a
wide range of urban and natural landscapes. The area we studied is shown in Figure 5.
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The remote-sensing images of TerraSAR were divided into two groups, one consisting
of mainly urban landscapes, including buildings and streets, and another one consissting
of mainly natural landscapes, including mountains, lakes, rivers, and farmland, which
will produce more mismatches because of the similarities of the features. Since there is
no ground truth directly from the datasets, here, we match two images, select the correct
matches manually, and then calculate the homography matrix between the two images as
the ground truth. The results are shown in Tables 1 and 2. Since precision is negatively
related to recall, the F-score can better reflect the detection ability here.

Table 1. Precisions, recalls, and F-scores of different mismatching removal methods for remote
sensing of TerraSAR.

Type Indicators RANSAC GTM TSAC PROSAC GMS LPM

Urban
landscape

Precision 0.986 (0.028) 1 0.903 0.997 (0.006) 0.990 (0.007) 0.504 0.911
Recall 0.823 (0.152) 0.959 0.961 (0.046) 0.959 (0.045) 0.715 0.976
F-score 0.897 (0.110) 0.930 0.979 (0.034) 0.972 (0.036) 0.591 0.942

Natural
landscape

Precision 0.922 (0.122) 0.796 0.978 (0.043) 0.959 (0.057) 0.438 0.789
Recall 0.660 (0.171) 0.726 0.878 (0.053) 0.823 (0.066) 0.711 0.899
F-score 0.769 (0.140) 0.759 0.925 (0.052) 0.886 (0.067) 0.542 0.840

1 The values in parentheses represent the standard deviations. Because the results of RANSAC, PROSAC, and
TSAC are random, we added standard deviation to compare their stability.

Table 2. Precisions, recalls, and F-scores of different mismatching removal methods for remote
sensing of WV-2.

Indicators RANSAC GTM TSAC PROSAC GMS LPM

Precision 0.757 (0.054) 0.851 0.762 (0.032) 0.814 (0.033) 0.489 0.660
Recall 0.947 (0.072) 0.448 0.951 (0.048) 0.798 (0.055) 0.646 0.967
F-score 0.841 (0.077) 0.587 0.846 (0.059) 0.805 (0.062) 0.557 0.785

From the results in the tables, we can observe that, compared with urban landscapes,
it is difficult to remove the mismatches for the images of natural landscapes and WV-2. We
can also conclude that RANSAC, PROSAC, and TSAC have high precision, while GMS
does not perform well. As for the recalls, LPM performs best, and TSAC also shows a good
result. With high precision and good recall, TSAC has the highest F-score, which means
it has a higher performance on these occasions. The standard deviation of our method is
smaller than RANSAC and PROSAC, which indicates that TSAC has a good performance
for stability.

Figure 6 shows the results of the mismatching removal of some images. These images,
which range from urban to natural landscapes, contain a high proportion of mismatches
and were selected to verify the results. The red lines in the matching diagram are the
mismatches, while the green lines are the correct matches. Figure 7 shows the results of the
mismatching removals of different conditions. The images contain the differences in the
rotations and scales. It is obvious that TSAC can effectively remove the mismatches with
high accuracy.
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Figure 6. Examples of mismatching removal results in different conditions: (a) an example of an urban
landscape; (b) an example of a lake; (c) an example of farmland; (d) an example of a mountain. In each
subfigure image, there are 3 images: the top one shows the origin images, the middle one shows the
feature matches before removal, and the bottom one shows the matches after mismatching removal.
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Figure 7. Examples of mismatching removal results in different conditions: (a) an example of different
rotations; (b) an example of scale change; and (c) and (d) present examples containing the differences
in both scale and rotation.

B. Mikolajczyk VGG
We also used the database of Mikolajczyk VGG [30] to test the result under more types

of conditions, and the dataset contains 40 image pairs. The image pairs in this dataset
always obey homography, and the dataset supplies the ground truth homography. We
divided the dataset into five groups, which represent the conditions of rotation, blur, change
of viewpoints, light, and image compression. We tested each group and obtained the results
in Table 3.
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Table 3. Precisions, recalls, and F-scores of different mismatching removal methods, with Mikolajczyk
VGG.

Group Inlier
Ratio Indicators RANSAC TSAC PROSAC GTM GMS LPM

Rotation

0.382

Precision 0.821
(0.074)

0.877
(0.033)

0.758
(0.062) 0.721 0.444 0.787

(bark and
boat)

Recall 0.636
(0.084)

0.860
(0.046)

0.721
(0.041) 0.566 0.659 0.807

F-score 0.708
(0.080)

0.859
(0.044)

0.736
(0.052) 0.628 0.509 0.789

Blur

0.367

Precision 0.706
(0.064)

0.805
(0.046)

0.737
(0.066) 0.663 0.361 0.672

(trees and
bikes)

Recall 0.600
(0.082)

0.720
(0.061)

0.655
(0.043) 0.500 0.629 0.700

F-score 0.638
(0.084)

0.753
(0.059)

0.691
(0.056) 0.561 0.432 0.680

Viewpoints

0.419

Precision 0.722
(0.050)

0.763
(0.045)

0.734
(0.057) 0.627 0.479 0.683

(wall and
graf)

Recall 0.685
(0.063)

0.731
(0.051)

0.678
(0.039) 0.514 0.879 0.763

F-score 0.675
(0.054)

0.721
(0.047)

0.675
(0.046) 0.537 0.565 0.703

Light

0.570

Precision 0.980
(0.014)

0.983
(0.013)

0.968
(0.018) 0.931 0.598 0.892

(leuven)
Recall 0.954

(0.027)
0.950

(0.028)
0.938

(0.034) 0.598 0.675 0.975

F-score 0.965
(0.026)

0.965
(0.026)

0.952
(0.031) 0.698 0.628 0.931

JPG Com-
pression

0.649

Precision 0.993
(0.004)

0.998
(0.002)

0.975
(0.009) 0.907 0.703 0.818

Recall 0.936
(0.019)

0.938
(0.019)

0.947
(0.012) 0.705 0.846 0.116

(ubc) F-score 0.961
(0.014)

0.963
(0.012)

0.960
(0.011) 0.763 0.764 0.198

Average 0.446

Precision 0.821
(0.049)

0.877
(0.032)

0.823
(0.049) 0.721 0.444 0.787

Recall 0.636
(0.063)

0.860
(0.047)

0.771
(0.036) 0.566 0.659 0.807

F-score 0.708
(0.059)

0.859
(0.042)

0.786
(0.044) 0.628 0.509 0.789

Here, we compare the performance of two quantization methods for the probability
that the feature match is mismatched. In order to reduce the contingency of random
processes, we conducted the experiments ten times on each pair of images. The results of
each group of the dataset are shown in Table 3.

From the results, we can observe that GMS does not perform accurately because of its
low precision, while RANSAC has a better performance for precision, but it tends to have a
low recall. GTM performs a little better than GMS, and LPM always performs well and has
a high recall, especially in terms of the change of viewpoints, and except for the condition
of image compression. By comparison, TSAC is not easily impacted by these problems,
which shows its high accuracy and robustness.

3.2. Experiments on Different Mismatching Ratios

In this section, our method is compared with some state-of-the-art methods, such
as GMS (proposed in 2017), LPM (proposed in 2019), GTM (proposed in 2009), and also
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with a traditional method, RANSAC. To compare the robustness of these methods, the
experiments were carried out in different proportions of mismatches.

We first selected several representative pairs of images in the dataset of Mikolajczyk
VGG [27] and TerraSAR, and we then removed all of the mismatches according to the
ground truth so that all of the remaining matches were correct. To obtain a certain pro-
portion of mismatches, we set the coordinates of a certain proportion of matching points
to random values; thus, these matches were no longer correctly corresponded, and they
became mismatches, with different cases of severity. In this way, we can produce a certain
proportion of mismatches.

Figure 8 presents the results of the comparisons of different algorithms in terms of the
precision, recall, and F-score. The horizontal axis represents the ratios of the mismatches,
which ranged from 30 to 90%.
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Generally, the higher the precision, the lower the recall. When the proportion of
mismatches increases, the recall of GMS remains high, but its precision decreases rapidly,
which shows that GMS aims to extract more but has low accuracy. As for RANSAC,
it performs well in terms of precision when the proportion of mismatches is not very
high, but as the proportion exceeds 60%, it performs worse in precision, and the recall of
RANSAC is also low, which shows the lower robustness of RANSAC in situations of a
high proportion of mismatching. Compared with GMS, GTM, and RANSAC, LPM shows
higher performances, which remain high for the precision, recall, and F-score, with an
increasing proportion of mismatches. Regardless of the precision, recall, or F-score, our
method, TSAC, declines more slowly and performs better than other methods, except for
GMS in the recall, but with low precision.

These experimental results show that, whether it is a high mismatching ratio or a low
mismatching ratio, TSAC can remove the mismatches effectively, and the performance can
be well maintained. When the mismatching is increasing, the performance of TSAC tends
to decrease more slowly. Compared with existing methods, this proves that TSAC greatly
improves the robustness of the algorithm.

4. Discussion

From the results of the experiments above, we can observe the robustness and accuracy
of the proposed TSAC method, as well as other state-of-the-art methods. For matching
between remote-sensing images, it is easy to have mismatches because of the many similar
patterns and, thus, it has a high ratio of mismatches (about 75%). In this case, TSAC has
the highest precision and a high recall, and it performs best, followed by LPM. As for
the images in the database, VGG, there are more types of transformation compared with
remote-sensing images, e.g., viewpoints, blur. The TSAC also performs best in different
types of conditions, which shows its high stability. On the other hand, with an increasing
ratio of mismatching, TSAC maintains high performance and has a slower tendency to
decrease. In summary, our method is significantly superior in accuracy and robustness
compared with other state-of-the-art methods.

In terms of the execution time of the algorithm, as for TSAC, RANSAC, and PROSAC,
which are resampling-based methods, their execution times are directly related to the
numbers of iterations, while the execution times of LPM, GMS, and GTM are fixed. The
average execution times of TSAC, RANSAC, PROSAC, LPM, GMS, and GTM are 0.333,
0.315, 0.296, 0.245, 0.415, and 0.601 s, respectively. TSAC is about 5% slower than RANSAC,



Remote Sens. 2022, 14, 706 17 of 19

and 12% slower than PROSAC. This is because our method includes the time of triangu-
lation and the calculation of the cross, in addition to the process of iteration. Therefore,
our method can adapt to applications where RANSAC and PROSAC can be used, with a
better performance.

Therefore, our method not only works well in remote-sensing applications, but it is
also a good approach to the broader image processing of computer vision, e.g., the pose
estimation, biometrics.

However, our method, TSAC, will lose effectiveness when the error of mismatched
points is so small that the topological network structure does not change. In this case, the
mismatches cannot be detected from the cross status of the edges, so our method will fail
when calculating the mismatching probability. Assuming that all mismatches have such
small errors, in this case, the probability of mismatches calculated for all pairs of points is
similar, and the result is the same as for RANSAC.

5. Conclusions

In this paper, a robust method, called TSAC, for the mismatching removal of feature-
point matching is proposed. It calculates the mismatching probability on the basis of
feature-point triangular topology, and it imports this probability into the random process
of the RANSAC so that the mismatches can be detected and removed. The experimental
results demonstrate that TSAC can not only improve the correct rate, but can also enhance
the precision, especially in situations where there are high ratios of mismatching. Therefore,
TSAC has the potential to work in various and complex applications.

As TSAC has achieved good results in the improvement of the RANSAC algorithm, it
can also be used to improve some of the methods of RANSAC, such as MLESAC (maximum
likelihood sampling consensus), etc. It is also applicable to some regression-based methods,
where each matching point can be weighted by the process of the least squares method so
that the model will be less affected by the points with large errors.
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