Enhanced Ecosystem Services in China’s Xilingol Steppe during 2000–2015: Towards Sustainable Agropastoralism Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Satellite Observation Data
2.2.2. Meteorological Station and Reanalysis Data
2.2.3. Socioeconomic and Other Data
2.3. Quantification of Ecosystem Services (ESs)
2.4. Other Methods
2.4.1. Estimating Vegetation Cover
2.4.2. Grazing Pressure Index (GPI) Calculation
2.4.3. Trend and Correlation Analysis
3. Results
3.1. The Climate Showed a Trend of Humidification
3.2. Spatial Heterogeneity in Land Use Conversion
3.3. GPI Showed a Decrease in Grassland Grazing Pressure
3.4. An Increase in Vegetation Greenness Indicated by FVC
3.5. Benefits of ES Improved with the Greening Trend
3.6. Response of ES Dynamics to Environmental Drivers
4. Discussion
4.1. Win-Win Gains of ES Benefits and Livelihood Output
4.2. Impacts of Climate Change on Dryland ESs
4.3. Diverse Policies Leading to Contrasting Impacts on Agropastoralism Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 1–125. [Google Scholar]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Weil, C.; Bennett, E.M.; Pascual, U.; Arkema, K.K.; Brauman, K.A.; Bryant, B.P.; Guerry, A.D.; Haddad, N.M.; et al. Global modeling of nature’s contributions to people. Science 2019, 366, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth. Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Kemp, D.R.; Guodong, H.; Xiangyang, H.; Michalk, D.L.; Fujiang, H.; Jianping, W.; Yingjun, Z. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth. Environ. 2021, 1–16. [Google Scholar] [CrossRef]
- Reed, M.S.; Stringer, L.C.; Dougill, A.J.; Perkins, J.S.; Atlhopheng, J.R.; Mulale, K.; Favretto, N. Reorienting land degradation towards sustainable land management: Linking sustainable livelihoods with ecosystem services in rangeland systems. J. Environ. Manag. 2015, 151, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land. Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, X.; Zhao, Y.; Zheng, S.; Bai, Y. Ecosystem structure, functioning and stability under climate change and grazing in grasslands: Current status and future prospects. Curr. Opin. Environ. Sustain. 2018, 33, 124–135. [Google Scholar] [CrossRef]
- Fan, F.; Liang, C.; Tang, Y.; Harker-Schuch, I.; Porter, J.R. Effects and relationships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe. Sci. Total Environ. 2019, 675, 642–650. [Google Scholar] [CrossRef]
- Wan, H.; Bai, Y.; Hooper, D.U.; Schönbach, P.; Gierus, M.; Schiborra, A.; Taube, F. Selective grazing and seasonal precipitation play key roles in shaping plant community structure of semi-arid grasslands. Landsc. Ecol. 2015, 30, 1767–1782. [Google Scholar] [CrossRef]
- Peng, F.; Xue, X.; You, Q.; Sun, J.; Zhou, J.; Wang, T.; Tsunekawa, A. Change in the trade-off between aboveground and belowground biomass of alpine grassland: Implications for the land degradation process. Land. Degrad. Dev. 2020, 31, 105–117. [Google Scholar] [CrossRef]
- Ramirez-Reyes, C.; Brauman, K.A.; Chaplin-Kramer, R.; Galford, G.L.; Adamo, S.B.; Anderson, C.B.; Anderson, C.; Allington, G.R.H.; Bagstad, K.J.; Coe, M.T.; et al. Reimagining the potential of Earth observations for ecosystem service assessments. Sci. Total Environ. 2019, 665, 1053–1063. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Braun, D.; Damm, A.; Hein, L.; Petchey, O.L.; Schaepman, M.E. Spatio-temporal trends and trade-offs in ecosystem services: An Earth observation based assessment for Switzerland between 2004 and 2014. Ecol. Indic. 2018, 89, 828–839. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Zhang, X.; Niu, B.; Li, M.; Zhang, Y.; Wang, X.; Wang, Z. Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. J. Environ. Manag. 2019, 238, 352–359. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Chen, A.; Wang, H.; Wang, Q. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest Region in China. Remote Sens. 2015, 7, 9998–10016. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Zhuang, D.F.; Luo, D.; Xiao, X. Land-cover classification of China: Integrated analysis of AVHRR imagery and geophysical data. Int. J. Remote. Sens. 2003, 24, 2485–2500. [Google Scholar] [CrossRef]
- Tabari, H.; Aeini, A.; Talaee, P.H.; Some’e, B.S. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol. Process 2012, 26, 500–512. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture of the People’s Republic of China. Agricultural Industry Standard of the People’s Republic of China: Calculation of Grassland Carrying Capacity (NY/T 635-2015). 2015. Available online: http://www.jgj.moa.gov.cn/nybz/ (accessed on 23 November 2021).
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B. Understanding the impacts of climate and landuse change on water yield. Curr. Opin. Environ. Sustain. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- Gu, Q.; Wei, J.; Luo, S.; Ma, M.; Tang, X. Potential and environmental control of carbon sequestration in major ecosystems across arid and semi-arid regions in China. Sci. Total Environ. 2018, 645, 796–805. [Google Scholar] [CrossRef]
- Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Von Döhren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Fryrcar, D.W.; Chen, W.; Lester, C. Revised wind erosion equation. Ann. Arid Zone 2001, 40, 265–279. [Google Scholar]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Ivits, E.; Cherlet, M.; Sommer, S.; Mehl, W. Addressing the complexity in non-linear evolution of vegetation phenological change with time-series of remote sensing images. Ecol. Indic. 2013, 26, 49–60. [Google Scholar] [CrossRef]
- Bastin, G.; Scarth, P.; Chewings, V.; Sparrow, A.; Denham, R.; Schmidt, M.; O’Reagain, P.; Shepherd, R.; Abbott, B. Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method. Remote Sens. Environ. 2012, 121, 443–457. [Google Scholar] [CrossRef]
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol Grassland, China, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2013. Available online: http://www.R-project.org/ (accessed on 23 November 2021).
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.J.; Kareiva, P.; Ruckelshaus, M.; Arkema, K.; Geller, G.; Girvetz, E.; Goodrich, D.; Matzek, V.; Pinsky, M.; Reid, W.; et al. Climate change’s impact on key ecosystem services and the human well-being they support in the US. Front. Ecol. Environ. 2013, 11, 483–893. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607–608, 633–646. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Wang, Z.; Li, L.; Ma, W. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China. Ecol. Indic. 2014, 41, 40–48. [Google Scholar] [CrossRef]
- Zhang, J. A new ecological-wind erosion model to simulate the impacts of aeolian transport on dryland vegetation patterns. Acta Ecol. Sin. 2020. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svenning, J.C. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020. [Google Scholar] [CrossRef]
- Robinson, B.E.; Li, P.; Hou, X. Institutional change in social-ecological systems: The evolution of grassland management in Inner Mongolia. Glob. Environ. Chang. 2017, 47, 64–75. [Google Scholar] [CrossRef]
- Tang, Y.; Shao, Q.; Liu, J.; Zhang, H.; Yang, F.; Cao, W.; Wu, D.; Gong, G. Did ecological restoration hit its mark? Monitoring and assessing ecological changes in the Grain for Green Program region using multi-source satellite images. Remote Sens. 2019, 11, 358. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhao, Y.; Yu, C.; Luo, L.; Pan, Y. Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China. J. Environ. Manag. 2017, 193, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China. Implementation Plan of Grain to Feed Policy. 2017. Available online: http://www.moa.gov.cn/nybgb/ (accessed on 23 November 2021).
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The impact of ecological construction programs on grassland conservation in Inner Mongolia, China. Land. Degrad. Dev. 2018, 29, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Huang, J.; Hou, L. Impacts of the grassland ecological compensation policy on household livestock production in China: An empirical study in Inner Mongolia. Ecol. Econ. 2019, 161, 248–256. [Google Scholar] [CrossRef]
- Dou, H.; Li, X.; Li, S.; Dang, D.; Li, X.; Lyu, X.; Li, M.; Liu, S. Mapping ecosystem services bundles for analyzing spatial trade-offs in inner Mongolia, China. J. Clean. Prod. 2020, 256, 120444. [Google Scholar] [CrossRef]
- Gang, Y.; Xiaochuan, G. Grassland grazing contracts and degradation: Relationship and mechanism. Can. Soc. Sci. 2013, 9, 126–133. [Google Scholar] [CrossRef]
Type | Dataset | Data Description | Spatial Resolution | Time Scale | Data Source |
---|---|---|---|---|---|
Satellite data | Normalized Difference Vegetation Index (NDVI) | Raster data based on MOD13Q1 at a time resolution of 16 days from Moderate Resolution Imaging Spectroradiometer (MODIS) | 250 m | 2000–2015 | Land Processes Distributed Active Archive Center (LPDAAC) (https://lpdaac.usgs.gov/, accessed on 23 November 2021) |
Digital Elevation Model (DEM) | Advanced Spaceborne Thermal Emission and Reflection Radiometer, Global Digital Elevation Model (ASTER GDEM) | 30 m | 2009 | Geospatial Data Cloud, Chinese Academy of Sciences (http://www.gscloud.cn/, accessed on 23 November 2021) | |
Land use/land cover (LULC) | Land use/cover maps interpreted from Landsat TM/ETM images | 30 m | 2000, 2005, 2010 and 2015 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 23 November 2021) | |
Meteorological data | Daily weather station data | Daily observation data from 102 meteorological stations as interpolated by ANUSPLIN: temperature, precipitation, wind speed, sunshine duration | 250 m | 2000–2015 | China Meteorological Sharing Service System (http://data.cma.cn/data/, accessed on 23 November 2021) |
Palmer Drought Severity Index (PDSI) | A standardized index that generally spans −10 (dry) to +10 (wet) to estimate relative dryness | 1/24° | 2000–2015 | TerraClimate dataset (http://www.climatologylab.org/terraclimate.html, accessed on 23 November 2021) | |
Soil moisture (SMO) | Soil moisture content stored in shallow layer (10–40 cm) | 0.25° | 2000–2015 | Global Land Data Assimilation System (https://ldas.gsfc.nasa.gov/gldas/, accessed on 23 November 2021) | |
Socioeconomic data | Statistical panel data | Annual statistical data for each county: grain production, meat production, number of livestock | - | 2000–2015 | Inner Mongolia statistical yearbook (http://tj.nmg.gov.cn/, accessed on 23 November 2021) |
Basic geographic information | Boundary data of administrative regions at all levels and ecological protection projects | - | 2015 | National Basic Geographic Information Center (http://ngcc.sbsm.gov.cn/, accessed on 23 November 2021) | |
Boundary of ecological projects | Implementation boundary data of several ecological restoration projects in China, such as GTGP | - | 2015 | National Forestry and grassland administration (http://www.forestry.gov.cn/, accessed on 23 November 2021) | |
Other data | Soil properties | Version 1.2 of the Harmonized World Soil Database (HWSD): Soil texture, soil particle size, and organic carbon content of topsoil | 1 km | 2014 | FAO Geonetwork (https://data.apps.fao.org/map/catalog/, accessed on 23 November 2021) |
Biome Subregions | Land Use Type in 2015 | ||||||
---|---|---|---|---|---|---|---|
Meadow Steppe | Cropland | Forestland | Grassland | Wetland | Built-up land | Barren land | |
Land use type in 2000 | Cropland | 3742.00 | 18.95 | 747.47 | 36.93 | 44.85 | 14.60 |
Forestland | 13.62 | 1524.41 | 156.52 | 3.66 | 2.77 | 4.08 | |
Grassland | 682.48 | 160.33 | 19,289.06 | 165.52 | 97.02 | 474.49 | |
Wetland | 41.62 | 2.88 | 195.80 | 1822.76 | 8.37 | 18.59 | |
Built-up land | 31.51 | 1.10 | 36.65 | 2.39 | 170.73 | 2.10 | |
Barren land | 10.23 | 2.83 | 523.56 | 17.05 | 6.53 | 1378.46 | |
Typical Steppe | Cropland | Forestland | Grassland | Wetland | Built-up land | Barren land | |
Land use type in 2000 | Cropland | 797.59 | 2.74 | 269.09 | 6.79 | 3.50 | 1.67 |
Forestland | 2.61 | 872.14 | 133.94 | 1.72 | 0.95 | 2.64 | |
Grassland | 335.31 | 166.18 | 114,599.29 | 462.05 | 448.17 | 1757.22 | |
Wetland | 6.01 | 1.73 | 507.02 | 3587.27 | 14.72 | 575.99 | |
Built-up land | 1.67 | 0.83 | 35.55 | 1.85 | 155.20 | 1.52 | |
Barren land | 1.02 | 4.30 | 1616.31 | 213.98 | 37.50 | 9015.46 | |
Desert Steppe | Cropland | Forestland | Grassland | Wetland | Built-up land | Barren land | |
Land use type in 2000 | Cropland | 2.07 | 0.00 | 0.82 | 0.00 | 0.02 | 0.00 |
Forestland | 0.00 | 12.44 | 1.06 | 0.69 | 0.11 | 0.81 | |
Grassland | 11.02 | 16.38 | 27,645.45 | 45.43 | 48.60 | 604.23 | |
Wetland | 0.53 | 0.30 | 46.29 | 319.94 | 0.00 | 21.86 | |
Built-up land | 0.05 | 0.16 | 4.53 | 0.06 | 31.37 | 0.32 | |
Barren land | 0.00 | 1.76 | 551.84 | 14.78 | 3.98 | 2495.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, H.; Li, X.; Gong, J.; Wang, H.; Tian, Y.; Xuan, X.; Wang, K. Enhanced Ecosystem Services in China’s Xilingol Steppe during 2000–2015: Towards Sustainable Agropastoralism Management. Remote Sens. 2022, 14, 738. https://doi.org/10.3390/rs14030738
Dou H, Li X, Gong J, Wang H, Tian Y, Xuan X, Wang K. Enhanced Ecosystem Services in China’s Xilingol Steppe during 2000–2015: Towards Sustainable Agropastoralism Management. Remote Sensing. 2022; 14(3):738. https://doi.org/10.3390/rs14030738
Chicago/Turabian StyleDou, Huashun, Xiaobing Li, Jirui Gong, Hong Wang, Yuqiang Tian, Xiaojing Xuan, and Kai Wang. 2022. "Enhanced Ecosystem Services in China’s Xilingol Steppe during 2000–2015: Towards Sustainable Agropastoralism Management" Remote Sensing 14, no. 3: 738. https://doi.org/10.3390/rs14030738
APA StyleDou, H., Li, X., Gong, J., Wang, H., Tian, Y., Xuan, X., & Wang, K. (2022). Enhanced Ecosystem Services in China’s Xilingol Steppe during 2000–2015: Towards Sustainable Agropastoralism Management. Remote Sensing, 14(3), 738. https://doi.org/10.3390/rs14030738