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Abstract: In recent years, the deep learning-based hyperspectral image (HSI) classification method
has achieved great success, and the convolutional neural network (CNN) method has achieved good
classification performance in the HSI classification task. However, the convolutional operation only
works with local neighborhoods, and is effective in extracting local features. It is difficult to capture
interactive features over long distances, which affects the accuracy of classification to some extent.
At the same time, the data from HSI have the characteristics of three-dimensionality, redundancy,
and noise. To solve these problems, we propose a 3D self-attention multiscale feature fusion network
(3DSA-MFN) that integrates 3D multi-head self-attention. 3DSA-MFN first uses different sized
convolution kernels to extract multiscale features, samples the different granularities of the feature
map, and effectively fuses the spatial and spectral features of the feature map. Then, we propose
an improved 3D multi-head self-attention mechanism that provides local feature details for the
self-attention branch, and fully exploits the context of the input matrix. To verify the performance
of the proposed method, we compare it with six current methods on three public datasets. The
experimental results show that the proposed 3DSA-MFN achieves competitive classification and
highlights the HSI classification task.

Keywords: 3D multi-head self-attention; convolutional neural network; hyperspectral image (HSI)
classification; long-distance dependence; multi-scale feature fusion

1. Introduction

A hyperspectral image is a combination of imaging and spectroscopy to obtain high-
dimensional spatial and spectral information simultaneously. Since ground features have
different characteristics in different dimensions, their dense spectral dimensions provide
good conditions for the accurate classification of ground features. Therefore, hyperspectral
images have a wide range of applications in agricultural production, environmental and
climate detection, urban development, and military security [1–8]. In the early days,
conventional machine learning classification methods were used to classify hyperspectral
images [9–16], such as the K-nearest neighbor algorithm (KNN) [9], support vector machine
(SVM) [10,11], and random forest (RF) [12], which are unable to automatically learn deep
features and rely on prior expert knowledge, making effective feature extraction difficult
for datasets with high-order nonlinear distributions.

In recent years, HSI classification methods based on deep learning have become in-
creasingly popular. Because deep learning can extract deep abstract features effectively, it
has gradually replaced the previous classification model with manually created features.
Deep learning uses an end-to-end learning strategy which greatly improves the perfor-
mance of HSI classification. Chen et al. [17] proposed a deep belief network (DBN), that
combines spectrum-space finite elements and classification to improve the accuracy of HSI
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classification. Zhao et al. [18] constructed a spatial-spectral joint feature set and used a
stacked sparse autoencoder (SAE) to extract image features. Deng et al. [19] proposed a
unified deep network using a hierarchical stacked sparse autoencoder (SSAE) network to
extract the deep joint spectral features. Since these methods compress the spatial dimension
into a vector, they ignore the spatial correlation and local consistency of the HSI, which
often results in the loss of spatial information.

Subsequently, two-dimensional convolutional neural networks have been introduced
to the HSI task. Cao et al. [20] integrated spectral and spatial information into a unified
Bayesian framework and used convolutional neural networks to learn the posterior distri-
bution. Hao et al. [21] used a three-layer Super Resolution convolutional neural network to
create high-resolution images and then constructed an unsupervised triple convolutional
network (TCNN). Pan et al. [22] proposed an end-to-end segmentation method that can
directly label each pixel. Li et al. [23] used two two-dimensional convolutional neural
networks to extract spectral, local spatial, and global spatial features simultaneously. To
adaptively learn the fusion weights of spectral spatial features from two parallel streams, a
fusion scheme with hierarchic regularization and smooth normalization fusion was pro-
posed. Yang et al. [24] proposed an HSI classification model using spatial background
and spectral correlation. These methods improve the classification performance of HSI to
a certain extent; however, since the two-dimensional convolution kernel cannot use the
context between the spectral cores, spectral spatial information is easily lost.

To solve this problem, some studies introduced the attention mechanism into the HSI
classification task, and chose to extract the spectral and spatial features separately. Sun
et al. [25] proposed a spectral-spatial attention network (SSAN), used to extract the infor-
mation from the HSI. In this approach, characteristic spectral-spatial features are captured
in the attention area of the cube while the influence of interfering pixels is suppressed.
Zhu et al. [26] proposed a dual-attention boost residual frequency-doubling network. In
feature extraction, the high -and low-frequency components are convolved separately, and
dual self-attention is used to output the feature map. It is improved to obtain a refined
feature map. Zhu et al. [27] proposed an end-to-end residual spectrum and spatial atten-
tion network, that directly processed the original three-dimensional data, and used dual
attention modules for adaptive feature refinement for spectral spatial feature learning. Li
et al. [28] designed a spatial-spectral attention block (S2A) to simultaneously capture the
long-term interdependence of spatial and spectral data through similarity assessment. Qing
et al. [29] proposed a multiscale residual network model with an attention mechanism
(MSRN). The model uses an improved residual network and a spatial–spectral attention
module to extract hyperspectral image information from different scales multiple times
and fully integrate and extract the spatial spectral features of the image. In addition,
some studies have used 3-dimensional convolutional nerves, which can better utilize the
contextual information of the bands between spectra for HSI classification [30–35]. Lu
et al. [30] proposed a new multi-scale spatial spectrum residual network (CSMS-SSRN)
based on three-dimensional channels and spatial attention, which continuously learns the
spectrum and space from the respective residual blocks through different three-dimensional
convolution kernels features. Tang et al. [32] proposed a three-dimensional convolutional
frequency multiplication space-spectral attention network (3DOC-SSAN) that can simulta-
neously mine spatial information from both high and low frequencies and simultaneously
acquire spectral information. Farooque et al. [33] proposed a residual network (SSCRN)
based on end-to-end spectral space three-dimensional ConvLSTM-CNN, that combines
three-dimensional ConvLSTM and three-dimensional CNN to process spectral and spatial
information, respectively. Lu et al. [34] proposed a three-dimensional cascaded spectrum-
spatial element attention network (3D-CSSEAN), in which two attention modules can
focus on the main spectral features and meaningful spatial features. Yin et al. [35] used a
three-dimensional convolutional neural network and bidirectional long short-term memory
network (Bi-LSTM) based on band grouping for HSI classification.
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Although the convolution operation has the advantages of spatial locality and shared
weights, it has also achieved great advantages in the HSI classification task. However, it
is difficult to model long-distance dependencies using the convolutional neural network,
and is difficult to capture the global feature representation. Since multi-head self-attention
can capture long-distance interactions well, the transformer module with multi-head self-
attention has been applied to the HSI classification task in many works. He et al. [36]
proposed a HSI-BERT model with a global receptive domain. This model supports dynamic
input regions without considering the spatial distance between pixels, and directly captures
the global dependencies between pixels. Qing et al. [37] proposed an end-to-end trans-
former model called SAT-Net, which uses a spectral attention and self-attention mechanism
to extract the spectral and spatial features of HSI and capture the long-distance continuous
spectrum relation. He et al. [38] explored the spatial transformation network (STN), and
Zhong et al. [39] proposed a spectrum-spatial transformer network (SSTN) consisting of a
spatial attention module and spectrum correlation module. Gao et al. [40] combined the
transformer and CNN and used the stage model to extract coarse -and fine-grained feature
representations at different scales of implication.

Inspired by the above methods, to fully exploit the joint spectral-spatial information
essential for the HSI classification, we propose a multiscale feature fusion network that
incorporates 3D self-attention for HSI classification tasks. The network first uses convolu-
tion kernels of different sizes for multiscale feature extraction and adds the feature results
extracted from different branches to perform effective feature fusion. Then, the proposed
3DCOV_attention block is used multiple times to improve the feature extraction of the
obtained feature map, while modeling the global dependency relationship, performing
comprehensive feature extraction from local to global, and improving the local receptive
field while capturing long-distance interactions. At the end, the output feature map is
flattened and converted into a one-dimensional vector, successively passed through several
fully connected layers, to finally output the classification result.

The main contributions of this work are as follows:

1. We propose a multiscale feature fusion module to sample the different granularities of
the feature map and effectively fuse the spatial and spectral features of the feature map.

2. We propose an improved 3D multi-head self-attention module that provides local
feature details for self-attention branches while fully utilizing the context of the
input matrix.

3. We propose a 3DCOV_attention block which combines convolutional mapping that
extracts local features, with self-attention feature mapping that can be globally depen-
dent, and improving the feature extraction capabilities of the entire network.

4. Experimental evaluation of the HSI classification against six current methods high-
lights the effectiveness of the proposed 3DSA-MFN model.

The remainder of this study is organized as follows. In the second section the
proposed 3DSA-MFN, multi-scale feature fusion module, improved 3D self-attention,
3DCOV_attention, and other modules, and the corresponding loss function are presented
in detail. The third section presents the ablation and comparative experiments. The fourth
section summarizes this article.

2. Materials and Methods

In this section, we first introduce the proposed 3DSA-MFN network, then explain the
multiscale feature fusion module and the improved 3D multi-head self-attention module,
and then present the 3DCOV_attention module in detail and explain the formula derivation.
Finally, the loss function and optimization method of the network framework are presented.

2.1. Overview of the Proposed Model

Since hyperspectral data is three-dimensional, and the number of spectra is usually
tens or hundreds, extremely high resolution can better determine the characteristics of
ground objects. However, the collection of extremely high-resolution images often con-
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tains a large amount of noise, and redundant data will affect the results of hyperspectral
classification. We first applied the Principal Component Analysis (PCA) algorithm to the
original hyperspectral data. Following a linear transformation strategy, the noise and
redundant bands were removed while reducing the dimensionality of the data. Then, a
9 × 9 size window was used to process the reduced data. Data of the corresponding size
were obtained as a sample, and the sample was randomly divided into a training set, a
test set, and a verification set. We first passed the processed data samples through two
multiscale feature fusion modules to extract the features of the hyperspectral image while
reducing the shape of the feature map and increasing the number of feature maps. Then,
we continuously passed the output feature map through three 3DCOV_attention modules
to further extract the hyperspectral image features while modeling the global dependencies.
At the same time, we used the 3D convolution from step 2 in different 3DCOV_attention
modules to change the feature map shape. Finally, the output feature map was passed
through multiple fully connected layers to output the final classification result. These parts
are presented in detail in later sections. The overall process is shown in Figure 1.

Remote Sens. 2022, 14, 742 4 of 23 
 

 

2.1. Overview of the Proposed Model 
Since hyperspectral data is three-dimensional, and the number of spectra is usually 

tens or hundreds, extremely high resolution can better determine the characteristics of 
ground objects. However, the collection of extremely high-resolution images often con-
tains a large amount of noise, and redundant data will affect the results of hyperspectral 
classification. We first applied the Principal Component Analysis (PCA) algorithm to the 
original hyperspectral data. Following a linear transformation strategy, the noise and re-
dundant bands were removed while reducing the dimensionality of the data. Then, a 9 × 
9 size window was used to process the reduced data. Data of the corresponding size were 
obtained as a sample, and the sample was randomly divided into a training set, a test set, 
and a verification set. We first passed the processed data samples through two multiscale 
feature fusion modules to extract the features of the hyperspectral image while reducing 
the shape of the feature map and increasing the number of feature maps. Then, we con-
tinuously passed the output feature map through three 3DCOV_attention modules to fur-
ther extract the hyperspectral image features while modeling the global dependencies. At 
the same time, we used the 3D convolution from step 2 in different 3DCOV_attention 
modules to change the feature map shape. Finally, the output feature map was passed 
through multiple fully connected layers to output the final classification result. These 
parts are presented in detail in later sections. The overall process is shown in Figure 1. 

Q

 
K

 

V

 

PosEmb

[9,9,96,8] 

3DCA_B
lock

3DCA_B
lock

3DMHSA
X

3DCov_attention block

3DCA_B
lock

F1 F2

F3

F4

F5
F6F7F8

C

Flatten Cov3D BatchNorm Relu

3DCA_
Block

DenseDropout LayerNorm

3DMHSA

3DCov_attention 
block

PCA

[9,9,96,8] [5,5,48,32] 

[5,5,48,64] [5,5,48,128] [3,3,24,192] [3,3,12,256] 

Reshape

[9,9,96] 

Class 1

…

Class 2

Class 3

Class 4

Class h-1

Class h

…

[9,9,96,16] 

 
Figure 1. Proposed 3DSA-MFN network framework. The proposed method preprocesses the origi-
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outputs the classification results over multiple fully connected layers. 
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Figure 1. Proposed 3DSA-MFN network framework. The proposed method preprocesses the original
data through dimensionality reduction and window clipping, then sends the processed data to
multiscale feature fusion, 3DCOV_attention and other modules for feature extraction, and finally
outputs the classification results over multiple fully connected layers.

Specifically, after processing the original data by the PCA algorithm and a 9 × 9 win-
dow, multiple data with a size of {9, 9, 96} were obtained. We first expand the dimensions
to fit the data format to the 3D volume-product neural network; the size of the expanded
feature map is {9, 9, 96, 1}. The expanded feature map is first passed through a CBR block
with a convolution kernel of 3 × 3 × 3, a step size of 1 × 1 × 1, and a filter of 8 (CBR
block refers to 3D convolutional neural network, BatchNorm, and ReLU activation function
modules are executed sequentially), and the feature map F1 of size {9, 9, 96, 8}, then input
F1 into a multi-scale feature fusion module, and add the three feature maps and F1 to obtain
the feature map F2 of size {9, 9, 96, 8}. Pass F2 through a CBR block with a convolution
kernel of 3 × 3 × 3, a step size of 1 × 1 × 1, and a filter of 16 to further increase the



Remote Sens. 2022, 14, 742 5 of 22

number of feature maps and obtain Feature map F3 of size {9, 9, 96, 16}. Similar to the
conversion of feature map F1 to feature map F2, feature map F3 obtains a feature map
of the same size ({9, 9, 96, 16}) after the multi-scale feature fusion module and passes it
through a convolution kernel into 1 × 1 × 1, a step size of 2 × 2 × 2, and a CBR block
with a filter of 32 to obtain a feature map F4 with a size of {5, 5, 48, 32}. After F4 passes
through a 3DCOV_attention module that does not change the shape of the feature map, it
passes through a CBR block with a convolution kernel of 1 × 1 × 1, a step size of 1 × 1 × 1,
and a filter of 64 to obtain a size of {5, 5, 48, 64}. The feature map F5 to feature map F6
is the same as the operation of feature map F4 to feature map F5. From F5, we obtain a
feature map F6 of size {5, 5, 48, 128}. F6 first passes through a CBR block with a convolution
kernel of 1 × 1 × 1, step size of 2 × 2 × 2, and filter of 192 to obtain the feature map
F7({5, 5, 48, 64}). F7 goes through after the 3DCOV_attention module, passes a CBR block
with a convolution kernel of 1 × 1 × 1, a step size of 1 × 1 × 2, and a filter of 256 to obtain
the feature map F8({3, 3, 12, 256}). Finally, after the flattening operation, F8 is converted
into a one-dimensional vector, and then passed through the fully connected module of size
256 and 128 (dropout is 0.5). Finally, the classification result is output.

2.2. Multi-Scale Feature Fusion Module

Many studies have shown that the feature information extracted in different scales is
different, and the feature extraction in a single scale often misses some feature information.
Therefore, many methods use multiscale feature extraction to improve the feature extrac-
tion capability of the network. Szegedy et al. [41] proposed a module called Inception,
which contains four parallel branch structures: 1 × 1 convolution, 3 × 3 convolution,
5 × 5 convolution, and 3 × 3 maximum pooling. This module performs feature extraction
and pooling at different scales to obtain multiple scales of information. Finally, the features
are superimposed and output, and the sparse matrix is clustered into denser submatrices
to improve the computational performance. Chen et al. [42] proposed a network called
Deeplab V3, which added a multi-scale feature extraction module ASPP [42] and parallel
sampling of the given input with different sampling rates of the whole convolution at the
end of its feature extraction network which is equivalent in the context of multiple scale
image acquisition. Zhao et al. [43] proposed a pyramid pool module and pyramid scene
analysis network. The acquired feature layer was divided into grids of different sizes, and
each grid was internally averaged. The aggregation of contextual information in different
areas is realized, which improves the ability to obtain global information. Chen et al. [44]
created a multibranch network and frequently merged branch features of different scales
to obtain multiscale features. Inspired by the above methods, we propose a multiscale
feature-fusion module, as shown in Figure 2. We use convolution kernels of different sizes
for multiscale feature extraction on the input feature map, and finally add the feature
results extracted from different branches to the output, sample the different granularities of
the feature map, and fuse the spatial and spectral features of the feature map effectively.

Remote Sens. 2022, 14, 742 6 of 23 
 

 

5×5×5
Filters：D/2 

5×5×5
Filters：D 

3×3×3
Filters：D/2 

3×3×3
Filters：D 

1×1×1
Filters：D 

1×1×1
Filters：D/2 

[H,W,C,D] [H,W,C,D] 

 
Figure 2. Multi-scale feature fusion module. 

When we input the feature map of size {H, W, C, D}, the feature map is first sent to 
the CBR of the convolution kernel size of 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5 in the module 
(execute 3D convolution, BatchNorm, and Relu activation functions in sequence), the fil-
ters are D/2, and the feature map of size {H, W, C, D/2} is obtained. The obtained feature 
maps were sent to the CBR modules with convolution kernel sizes of 1 × 1 × 1, 3 × 3 × 3, 
and 5 × 5 × 5, respectively, and the filters were D. At this time, three feature maps of sizes 
{H, W, C, D} were obtained, and finally, the three results were added to the input to obtain 
the final output feature map. 

2.3. Improved 3D Multi-Headed Self-Attention 
The attention mechanism originally refers to the fact that people pay more attention 

to interesting information while ignoring less important information. Bahdanauet et al. 
[45] first applied the attention mechanism to the field of natural language processing, and 
subsequently self-attention has been used in many studies in the field of machine transla-
tion and natural language processing [46–49]. Attention has also been applied in the field 
of computer vision. Dosovitskiy et al. [50] cut the original image into patches of different 
sizes and then sent the cut region into a transformer block consisting of multi-headed self-
attention and other structures to extract features for image classification. Touvron et al. 
[51] added a feedforward network (FFN) on top of a multi-head self-attention layer and 
introduced a specific teacher-student strategy for image classification tasks. For the target 
detection task, Zhu et al. [52] proposed a variable attention module, and Carion et al. [53] 
proposed a new design for object detection systems based on transformers and bipartite 
matching loss for direct set prediction. In the segmentation task, Zheng et al. [54] and 
others employed a pure transformer module with multi-headed self-attention as a com-
ponent and established a global context. 

However, these designs on the one hand, project the image patch onto the vector, 
resulting in a loss of local detail [55]. In a CNN, the convolution kernel slides on overlap-
ping feature maps, which provides the opportunity to retain detailed local features. There-
fore, the CNN branch can continuously provide local feature details to the self-attention 
branch. On the other hand, the existing self-attention directly obtains the attention matrix 
of Q and K at each spatial position (see the next paragraph for a detailed definition). Ig-
noring the contextual relationship between adjacent K matrices [56], after using the CNN 
operation, the local spatial context can be further captured and the semantic ambiguity in 
the attention mechanism can be reduced [57]. Therefore, in this study, we used a three-
dimensional convolutional neural network operation with a convolution kernel of size 1 
× 1 × 1 to replace the linear projection operation in the above method. The convolution 
kernel has overlapping sliding in the input feature map, and retains the detailed local 
features of the feature map, but on the other hand, makes full use of the context infor-
mation between the input matrix K. 

Figure 2. Multi-scale feature fusion module.



Remote Sens. 2022, 14, 742 6 of 22

When we input the feature map of size {H, W, C, D}, the feature map is first sent to the
CBR of the convolution kernel size of 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5 in the module
(execute 3D convolution, BatchNorm, and Relu activation functions in sequence), the filters
are D/2, and the feature map of size {H, W, C, D/2} is obtained. The obtained feature maps
were sent to the CBR modules with convolution kernel sizes of 1 × 1 × 1, 3 × 3 × 3, and
5 × 5 × 5, respectively, and the filters were D. At this time, three feature maps of sizes
{H, W, C, D} were obtained, and finally, the three results were added to the input to obtain
the final output feature map.

2.3. Improved 3D Multi-Headed Self-Attention

The attention mechanism originally refers to the fact that people pay more attention to
interesting information while ignoring less important information. Bahdanauet et al. [45]
first applied the attention mechanism to the field of natural language processing, and subse-
quently self-attention has been used in many studies in the field of machine translation and
natural language processing [46–49]. Attention has also been applied in the field of com-
puter vision. Dosovitskiy et al. [50] cut the original image into patches of different sizes and
then sent the cut region into a transformer block consisting of multi-headed self-attention
and other structures to extract features for image classification. Touvron et al. [51] added
a feedforward network (FFN) on top of a multi-head self-attention layer and introduced
a specific teacher-student strategy for image classification tasks. For the target detection
task, Zhu et al. [52] proposed a variable attention module, and Carion et al. [53] proposed a
new design for object detection systems based on transformers and bipartite matching loss
for direct set prediction. In the segmentation task, Zheng et al. [54] and others employed a
pure transformer module with multi-headed self-attention as a component and established
a global context.

However, these designs on the one hand, project the image patch onto the vector,
resulting in a loss of local detail [55]. In a CNN, the convolution kernel slides on overlapping
feature maps, which provides the opportunity to retain detailed local features. Therefore,
the CNN branch can continuously provide local feature details to the self-attention branch.
On the other hand, the existing self-attention directly obtains the attention matrix of Q and
K at each spatial position (see the next paragraph for a detailed definition). Ignoring the
contextual relationship between adjacent K matrices [56], after using the CNN operation,
the local spatial context can be further captured and the semantic ambiguity in the attention
mechanism can be reduced [57]. Therefore, in this study, we used a three-dimensional
convolutional neural network operation with a convolution kernel of size 1 × 1 × 1 to
replace the linear projection operation in the above method. The convolution kernel has
overlapping sliding in the input feature map, and retains the detailed local features of the
feature map, but on the other hand, makes full use of the context information between the
input matrix K.

Specifically, we define the input feature map xεRH×W×C×D, where H and W represent
the length and width of the feature map, respectively, C represents the number of spectra of
the feature map (number of channels), and D represents the feature map quantity. We first
map the input feature map to three feature spaces a (x)εRH×W×C×D1, β(x)εRH×W×C×D1

and θ(x)εRH×W×C×D1, and then reshape the feature maps in the a(x), β(x) and θ(x) spaces
to obtain three matrices Q, K and V, respectively, as shown in Equation (1):

Q = Reshape(Cov3D(x))
K = Reshape(Cov3D(x))
V = Reshape(Cov3D(x))

(1)

Cov3D represents a three-dimensional convolutional layer with a convolution kernel
size of 1 × 1 × 1, and Reshape(·) represents a reshaping operation on the shape of the
obtained feature map.

Then, we perform the inner product operation on Q and KT, match sequence Q with K,
obtain the attention map, and obtain the attention score. The attention score of each pixel
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represents the relationship between each pixel and the target feature. The attention is not
sensitive to the order of the input vector. Like [58,59], we add a relative position bias P here.
Then, the attention map is standardized to the attention weight using the softmax function.
Subsequently, we aggregate all the values of V, use the attention weight to calculate the
output of the final attention matrix, and perform the Reshape operation to the final output,
as shown in Equation (2).

3DMHSA(Q, K, V) = Reshape
(

Softmax
(

Q·KT + P
)

V
)

(2)

As shown in Figure 3, P is obtained by adding three random position codes, where the
H, W, C, and Q matrices are the same. After performing the reshape operation, the position
codes are multiplied by the Q matrix to obtain the position code P.
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Given the feature map x of the shape {H, W, C, D}, we first pass through three convolu-
tion kernels of size 1 × 1 × 1 and a three-dimensional convolution of step size of 1 × 1 × 1
to obtain three A feature maps with a shape of {H, W, C, D}. After performing the reshape
operation on them, we obtain three matrices Q, K, and V with sizes {N, D/N, H*W*C},
where the context information and local feature details are preserved, and N is the number
of heads. Then, the matrices Q and K are multiplied to obtain an attention matrix of size
{N, H*W*C, H*W*C }. To confirm the position information between images, we introduce
position coding information here. Initialize three matrices with sizes {N, D/N, H, 1,1}, {N,
D/N, 1, W,1}, {N, D/N, 1, 1,C}. It should be noted that H, W, and C here are the H, W, and
C of Q matrix. As shown in Figure 3, we first add the three position matrices to obtain a
matrix of size {N, D/N, H, W, C}, perform the reshaping operation, and multiply it by the
Q matrix to obtain the final position coding matrix P. The position coding matrix P is added
to the attention matrix, and multiplied by matrix V after the Softmax activation function to
output a matrix of shape {N, D/N, H*W*C }. After performing the reshaping operation, the
output is a feature map of size {H, W, C, D}.

2.4. DCOV_Attention Block

In convolutional neural networks (CNN), the convolution operation is based on
discrete convolution operators. It has the properties of spatial locality and variance, such
as translation and shared weights. It is now widely used in computer vision tasks [60–63].
However, the convolution operation only works in the local neighborhood and is effective
in extracting local features. In turn, the limited receptive domain hinders the modeling of
global dependencies, and it is difficult to capture the global representation, resulting in
the loss of global features. However, since self-attention can capture interactions over long
distances, it is widely used in computer vision. Currently, many methods combine self-
attention and convolution operations [64–70]. Srinivas et al. [64] used global self-attention
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instead of spatial convolution in the last three bottleneck blocks of the ResNet. Graham
et al. [67] proposed a CNN and transformer hybrid neural network. At the front end of the
proposed method, a convolutional neural network was used to first extract image features,
and then a self-attention module was used to produce global dependencies. Wang et al. [70]
proposed a pyramid vision transformer which could improve the performance of many
downstream tasks. Inspired by the above methods, we applied it to a three-dimensional
convolutional neural network and used a 3D self-attention mechanism to improve the
convolution. We created a 3DCOV_attention block, that combines the convolution map
that extracts local features with the self-attention feature map which can establish a global
dependency to enhance the local receptive field while capturing interactions over a long
distance. As shown in Figure 4, the entire module consists of three-dimensional convolution,
BatchNorm, activation function (Relu), LayerNorm, concatenate, 3DMHSA, and other
components, as shown in Equation (3).

F0 = CBR1(x)
F1 = 3DMHSA(LN(F0))
F2 = Con(F1, F1 + F0)

F3 = CBR4(CBR3(LN(F2)))
Fout = CBR2(x) + F2 + F3

(3)
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Figure 4. 3D Convolutional Neural Network with Self-Attention (3DCOV_attention).

The CBR module performs three-dimensional convolution, BatchNorm, and activation
function (Relu), among others, sequentially. The size of the convolution kernel of three-
dimensional convolution in CBR1 and CBR2 is 3 × 3 × 3, and the step size of is 1 × 1 ×
1. the size of the convolution kernel of the three-dimensional convolution in CBR3 and
CBR4 is 1 × 1 × 1, and the step size is 1 × 1 × 1. LN stands for LayerNorm operation,
Con stands for the concatenation operation, and 3DMHSA stands for 3D multi-head self-
attention (Figure 3).

If the size of the input feature map x is {H, W, C, D}, we first reduce the dimensions of
the feature map through the CBR1 module. Without affecting the classification performance
of the module, we reduce the calculation amount of the 3DMHSA module, and obtain the
feature map F0 with size {H, W, C, D/2}. Then, we successively pass the feature map F0
through the LN and 3DMHSA modules to obtain a feature map F1 with size {H, W, C, D/2}.
Then, we merge F0 and F1, and then perform the splicing operation with F1 to obtain a
feature map F2 with size {H, W, C, D}. While we changed the shape of the feature map,
we increased the receptive field of the entire module and introduced the residuals. The
poor connectivity avoids problems such as gradient dissipation. Then, the feature map F2
is successively passed through the LN, CBR3, and CBR4 modules to obtain a feature map
F3 with a size of {H, W, C, D}, which improves the feature extraction ability of the network,
and finally passes through the CBR2 the feature map of the module is added with the
feature map F2 and the feature map F3, and the final output size is the {H, W, C, D} feature
map Fout. The feature information of the feature map is aggregated, and a large distance
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between the images is created. The dependency to note here is that the Cov_attention block
does not change the shape of the input feature map (the input and output feature maps are
equal in size).

2.5. Loss Function

The cross-entropy loss function is often used in multi-label classification models. To
optimize the proposed model (3DSA-MFN), we used cross-entropy as the loss function of
the HSI classification task, which is defined as follows:

Loss = − 1
M

M

∑
m=1

C

∑
c=1

ym
c log ŷm

c (4)

where M is the number of samples in each batch, C is the number of feature types in the
training samples, y is the real feature label, and ŷ is the predicted label.

3. Experiments, Results, and Discussion

In this section, we first introduce three widely used public datasets, and then introduce
the experimental settings. Subsequently, some hyperparameters that affect the experimental
results were analyzed. Finally, quantitative and qualitative experiments and analysis were
conducted using the proposed model and other recent methods.

3.1. Data Set Description

For our experiments, we used three widely used public datasets: Salinas scene (SA),
Indian Pines (IN), and Pavia University (PU). These datasets featured a variety of locations.
Types of objects, image data obtained from forests, farmlands, university towns, and other
locations Detailed information is provided in Table 1.

Table 1. Datasets employed during trials.

Data Sensor Wavelength (nm) Spatial Size (Pixel)s Spectral Size No of Classes Labeled Samples Spatial Resolution (m)

SA AVIRIS 400–2500 512 × 217 224 16 54,129 3.7
IN AVIRIS 400–2500 145 × 145 200 16 10,249 20
UP ROSIS 430–860 610 × 340 103 9 42,776 1.3

3.1.1. The Salinas (SA) Dataset

The Salinas scene (SA) dataset is an HSI collected by an airborne visible/infrared
imaging spectrometer (AVIRIS) sensor on farmland in Salinas, California, United States.
It contains 224 spectral bands with wavelengths ranging from 400 to 2500 nm. Each HSI
had a size of 512 × 217 pixels and a spatial resolution of 3.7 m/pixel. The dataset has
54,129 labeled pixels and 16 feature types (e.g., fallow and celery). The pseudo color image
and corresponding ground truth map are shown in Figure 5, and the ratios of the training
and test samples are listed in Table 2.

3.1.2. The Indian Pines (IN) Dataset

The Indian Pines (IN) dataset was collected using the AVIRIS sensor in northwestern
Indiana, United States, with a spectral resolution of 400–2500 nm. It contains 224 spectral
bands. In the experiment, 200 spectral bands were used and 24 water absorption bands
were discarded. It includes an HSI of 145 × 145 pixels and a spatial resolution of 20 m/pixel,
with 10,249 labeled pixels, covering 16 object categories (including corn and oats). Pseudo
color and ground real images are shown in Figure 6. The ratios of the training and test
samples are presented in Table 3.
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Table 3. Training and testing samples for the IN Dataset.

No. Class Training Testing Total

1 Alfalfa 8 38 46
2 Corn-no till 284 1144 1428
3 Corn-min till 166 664 830
4 Corn 46 191 237
5 Grass/pasture 146 584 730
6 Grass/tress 96 387 483
7 Grass/pasture-mowed 6 22 28
8 Hay-windrowed 94 384 478
9 Soybeans-no till 194 778 972

10 Soybeans-min till 490 1965 2455
11 Soybeans-clean till 118 475 593
12 Wheat 40 165 205
13 Woods 252 1013 1265
14 Buildings-grass-trees 76 310 386
15 Stone-steel towers 18 75 93
16 Oats 4 16 20

Total 2038 8211 10,249

3.1.3. University of Pavia (UP)

The Pavia University scene (PU) dataset is an HSI collected by a reflection optical
system imaging spectrometer (ROSIS) sensor in the urban area of the University of Pavia,
Italy. The HSI has 610 × 340 pixels, a spatial resolution of 1.3 m/pixel, a spectral band of
103 One, and a wavelength of 430–860 nm. There are a total of 42,776 marker pixels and
nine feature types (including ash and soil). The pseudo color and real images of the ground
are shown in Figure 7. The ratios of the training and test samples are presented in Table 4.
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Table 4. Training and testing samples for the UP Dataset.

No Class Training Testing Total

1 Asphalt 1326 7294 6631
2 Meadows 3728 20,513 18,649
3 Gravel 418 2308 2099
4 Trees 612 3370 3064
5 Sheets 268 1479 1345
6 Bare Soil 1004 5531 5029
7 Bitumen 266 1463 1330
8 Bricks 736 4050 3682
9 Shadows 188 1041 947

Total 8546 34,230 42,776
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3.2. Experimental Setup

We evaluate the performance of the proposed 3DSA-MFN model on an Intel(®) Xeon(®)
Gold 5218 with 512 GB RAM and an NVIDIA Ampere A100 GPU with 40 GB RAM. We
used the Windows 10 operating system, tensorflow2.4.2 deep learning framework and
a python 3.7 compiler. In the training phase, we set the batch size to 32, initial learning
rate to 0.001, Adam optimizer for model optimization was used, and the cross-entropy
loss function was used for backpropagation. We used the overall classification accuracy
(OA), average accuracy (AA), and kappa coefficient (K) to quantitatively evaluate the
performance of the proposed method. Specifically, OA represents the number of correctly
classified hyperspectral pixels divided by the number of test samples; AA represents the
average of all classification accuracies; Kappa coefficient represents a statistical measure of
agreement between the final classification map and the ground truth map, reflecting the
classifier overall effective performance. Its definition is as follows:

OA = ∑Class
i=1 mii
Ntest

AA =
∑Class

i=1
mii
Ni

Class

K =
OA − ∑Class

i=1

(
Ri

Ntest
· Ci

Ntest

)
1 − ∑Class

i =1

(
Ri

Ntest
· Ci

Ntest

)
(5)

where Class represents the number of objects to be classified, mii represents the number
of correctly classified samples of the i-th type of objects (i ranges from 1 to Class), Ntest
represents the total number of test samples, and Ni the i-th type of object test samples.
Ri and Ci represent the sum of the i-th row and the i-th column of the confusion matrix,
respectively.

3.3. Parametric Analysis

In this subsection, we separately analyze the effects of parameters such as spatial input
size, training set ratio, and learning rate on the performance of the proposed model.

3.3.1. Analysis of the Patch Size

The spatial input size determines the amount of spatial information around a pixel
that is used to classify a pixel. To evaluate the impact of the spatial input size on the
performance of 3DSA-MFN, we set up 9 {3, 5, 7, 9, 11, 13, 15, 17, 19} sequentially increasing
spatial inputs. The results in Figure 8 show that the OA value increases significantly initially
when the spatial input is increased. The SA and UP datasets achieved the best performance
when the spatial input size was 9 × 9 pixels. When the spatial input was greater than 9,
there was a relatively weak improvement in performance. The IN dataset achieved the
best performance when the spatial input size was 11 × 11 pixels. When the spatial input is
greater than 17, the classification performance of the three datasets decreases.

3.3.2. Analysis of Different Training Set Proportions

The proportion of training versus testing data affects the fitting process of the model
during its training. We used 3%, 5%, 10%, 15%, 20%, 25%, and 30% as the training set.
The results are shown in Figure 9. It can be seen that when the proportion of the training
set is less than 10%, the classification result of the IN dataset is poor because the total
number of samples in the IN dataset is relatively small. The PU and SA datasets achieved
better classification results when the training-set ratio was 10%. As the ratio increased, the
classification results gradually stabilized. In general, all three datasets achieved responsive
classification results when the proportion of the training set exceeded 15%. For comparison
with other methods, we set the proportion of the training set to 20%.
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3.3.3. Analysis of Different Learning Rates

The learning rate affects the gradient descent rate of the model; therefore, choosing an
appropriate learning rate can control the convergence performance and speed of the model.
In our experiment, to determine the optimal learning rate, we set the learning rate to 0.0001,
0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, and 0.03. The experimental results are shown in
Figure 10. When the learning rate was greater than 0.005, the classification performance
decreased. This is because an excessively large learning rate prevents the network from
converging well, and ignores the optimal value. In subsequent experiments, we set the
learning rate of IN and SA to 0.0005 and the learning rate of UP to 0.0003.
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3.4. Evaluation

We compared and analyzed the proposed model 3DSA-MFN with some of the most
advanced methods. The proposed method uses a 3D-CNN, multi-head self-attention,
multi-scale feature fusion, residual connection, and other strategies. We compare the
proposed 3DSA-MFN with a support vector machine (SVM) [71], a three-dimensional con-
volutional neural network (3D-CNN) [72], a spectral–spatial attention network (SSAN) [25],
a spectral–spatial residual network (SSRN) [73], a hyperspectral image classification using
the bidirectional encoder representation from transformers (HSI-BERT) [36], and a self-
attention transformer network(SAT) [37]. Specifically, in the SVM method, we randomly
sample 20% of the data as the training set, adopt Gaussian RBF kernel, regularization
parameter C and kernel parameter g; train and grid search each SVM classifier in the
ensemble, and set the number of features per node to the square root of the number of input
features. In the 3D-CNN method, we randomly sample 20% of the data as the training set,
the spatial size of the HSI cube is set to 11 × 11, the virtual sample augmentation method is
used. The input data are normalized into [−1 1], the learning rate is set to 0.005, the batch
size is set to 100, and the Adam optimizer is used. In the SSAN method, we randomly
sample 10% of the data as the training set, the spatial size of the HSI cube is set to 7 × 7,
the batch size is set to 100, the weight parameters optimized by Adam are used, and the
learning rate is set to 0.01. In the SSRN method, we randomly sample 20% of the data as
the training set, the spatial size of the HSI cube is set to 11 × 11, the batch size is set to 64,
the optimizer uses Adam, and the learning rate is set to 0.005. In the HSI-BERT method, we
randomly sample training data consisting of 200 labeled pixels per class from the ground
truth map, the spatial size of the HSI cube is set to 11 × 11, the number of attention head
is 2 and the number of layers is 2, while the learning rate is 0.0003, the batch size is 128,
and the dropout rate is 0.2. In the SAT method, we randomly sample 20% of the data as the
training set, the batch size is set to 64, and the image size is set to 64, the patch size is set
to 16, the depth size is set to 4, the learning rate is set to 0.001, and the optimizer is set to
Adam. Although the classification accuracy of the SVM method is low, considering that
SVM is a classical traditional HSI classification method, we still compared it here.

3.4.1. Quantitative Evaluation

Tables 5–7 show the classification performance of the different features in the three
public datasets using different methods, including evaluation indicators such as OA, AA,
and Kappa. From the tables, it is clear that it is difficult for the SVM algorithm to perform
effective feature extraction on the dataset with high order nonlinear distribution; therefore,
it achieves poor classification performance. 3D-CNN cannot integrate spatial and spectral
features well, and the classification accuracy still needs to be improved. SSAN and SSRN
can integrate spatial and spectral features effectively and achieve better classification
accuracy. The HSI-BERT and SAT methods can effectively model global dependencies
and achieve a sophisticated classification performance. The method proposed in this
study combines convolutional mapping for extracting local features and self-attention
feature mapping capable of global dependencies to enhance the local receptive domain
while capturing long-distance interactions, fully utilizing contextual information to achieve
sophisticated classification performance. In the SA dataset, 3DSA-MFN achieved the best
classification performance, and SAT, HSI-BERT, and SSRN achieved better classification
results. Among them, the OA value of 3DSA-MFN was equal to the OA value of SAT,
and classification results of 99.92% and 99.91% were obtained, respectively. The OA
values of DSA-MFN were higher than those of SVM, 3D-CNN, SSAN, SSRN, and HSI-
BERT 17.79%, 7.75%, 2.36%, 0.64% and 0.36% are higher, respectively. In the IN dataset,
3DSA-MFN and HSI-BERT achieved comparable performance, with OA values of 99.52%
and 99.56% and Kappa coefficients of 0.9924 and 0.9903, respectively. Since SAT uses an
improved transformation module and also models global dependencies, SAT achieves
better classification performance, with OA and Kappa coefficients of 99.22% and 0.9919,
respectively. In the PU dataset, 3DSA-MFN achieved the best classification performance.
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The OA, AA, and Kappa coefficient were 99.77%, 99.68% and 0.9948, respectively and
its OA values are higher than SVM, 3D-CNN, SSAN, and SSRN. The value increased by
17.85%, 7.62%, 1.75%, and 0.65%. SAT and HSI-BERT also achieved better classification
performance, with OA values of 99.64% and 99.75%, respectively. The AA values are 99.67%
and 99.86%, respectively. The kappa coefficients are 0.9949 and 0.9917, respectively.

Table 5. Classification results of various methods for the SA Dataset.

No Class SVM 3D-CNN SSAN SSRN HSI-BERT SAT Proposed

OA (%) 82.13 92.17 96.81 99.28 99.56 99.91 99.92
AA (%) 81.37 93.51 98.33 99.12 99.84 99.63 99.84
K × 100 81.45 92.29 96.54 98.73 99.56 99.78 99.74

1 Broccoli_g1 80.52 91.43 98.78 100.00 100.00 99.69 99.73
2 Broccoli_g2 81.34 95.37 99.97 97.89 100.00 100.00 99.86
3 Fallow 80.32 91.21 98.66 98.69 100.00 99.25 100.00
4 Fallow_r_p 82.17 89.35 99.05 97.83 100.00 100.00 100.00
5 Fallow_s 81.42 87.72 99.39 98.13 99.92 99.58 99.96
6 Stubble 79.35 91.81 99.97 100.00 100.00 100.00 100.00
7 Celery 83.37 90.08 99.91 100.00 99.96 99.58 100.00
8 Grapes_u 85.28 87.52 92.46 97.83 98.48 100.00 99.88
9 Soil_v_d 83.39. 89.91 99.95 96.57 100.00 99.78 100.00

10 Corn_s_gw 80.72 91.47 96.33 100.00 99.93 99.71 100.00
11 Lettuce_r_4 81.74 93.36 99.43 97.19 100.00 100.00 99.67
12 Lettuce_r_5 85.63 91.52 100.00 98.82 100.00 99.54 99.86
13 Lettuce_r_6 83.19 89.53 100.00 99.17 100.00 100.00 99.93
14 Lettuce_r_7 85.12 91.66 99.81 97.58 100.00 99.92 100.00
15 Vineyard_u 80.33 87.64 91.39 99.33 99.26 100.00 99.75
16 Vineyard_v 83.91 89.32 98.19 99.17 99.97 99.75 100.00

Table 6. Classification results of various methods for the IN Dataset.

No Class SVM 3D-CNN SSAN SSRN HSI-BERT SAT Proposed

OA (%) 84.57 91.31 95.49 98.53 99.56 99.22 99.52
AA (%) 83.42 90.56 94.17 98.09 99.72 99.08 99.32
K × 100 83.72 91.19 94.85 98.17 99.03 99.19 99.24

1 Alfalfa 79.41 84.17 80.49 98.53 98.77 99.02 98.67
2 Corn-no till 79.52 92.52 90.82 97.74 99.81 99.37 99.59
3 Corn-min till 87.42 94.14 93.84 98.56 100.00 98.38 100.00
4 Corn 84.41 88.73 89.20 97.13 100.00 100.00 98.73
5 Grass-p 82.77 89.31 99.08 99.17 99.83 99.21 100.00
6 Grass-t 81.41 88.19 99.24 98.51 99.48 99.14 99.54
7 Grass-p-m 88.12 87.82 96.00 97.62 100.00 99.19 100.00
8 Hay-w 82.35 92.73 98.14 98.14 99.91 98.51 99.09
9 Oats 77.13 88.12 100.00 98.68 99.34 99.27 99.42
10 Soybeans-n 78.44 87.46 94.62 97.19 98.82 99.34 99.56
11 Soybeans-m 80.72 93.94 98.10 98.28 99.03 100.00 100.00
12 Soybeans-c 78.96 88.11 94.56 97.76 99.39 99.23 99.56
13 Wheat 84.13 89.13 100.00 99.52 98.17 98.86 98.47
14 Woods 82.36 84.27 98.42 98.46 97.13 99.46 98.73
15 Buildings-g-t 77.46 88.51 82.71 99.77 100.00 99.28 99.36
16 Stone-s s 89.33 94.13 91.57 99.09 99.19 99.29 99.37
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Table 7. Classification results of various methods for the UP Dataset.

No Class SVM 3D-CNN SSAN SSRN HSI-BERT SAT Proposed

OA (%) 81.92 92.15 98.02 99.12 99.75 99.64 99.77
AA (%) 80.27 93.67 96.90 99.08 99.86 99.67 99.68
K × 100 80.64 92.82 97.37 98.93 99.17 99.49 99.48

1 Asphalt 82.53 92.52 98.68 99.36 99.68 99.32 99.56
2 Meadows 79.17 91.38 99.44 97.35 99.64 100.00 99.82
3 Gravel 80.72. 92.14 86.00 98.37 99.82 99.45 100.00
4 Trees 82.12 93.19 98.33 100.00 99.70 99.53 99.76
5 Metal 84.51 88.93 99.92 99.82 100.00 99.31 99.59
6 Soil 84.07 94.24 99.11 98.26 99.98 99.94 100.00
7 Bitumen 77.56 92.18 96.55 97.79 100.00 99.27 99.82
8 Bricks 78.72 91.69 94.07 98.86 99.94 100.00 99.91
9 Shadows 81.73 93.72 100.00 99.32 99.99 99.72 100.00

3.4.2. Qualitative Evaluation

Figures 11–13 show the overall accuracy curves of the 3DSA-MFN and other competi-
tor models. The results show that the accuracy of all models improved continuously with
the increasing number of training steps in the initial stage, and then stabilized gradually.
Among the three datasets, SVM had the lowest initial accuracy, while SAT and HSI-BERT
had higher initial accuracy. The proposed model, 3D-CNN, SSAN, and HSI-BERT models
converged rapidly in the initial stage. In particular, the proposed model almost reached
the optimal classification performance for the three datasets after 10 epochs. However, the
3D-CNN and SSAN converged slowly in the subsequent stages. At 30 epochs, the SAT
and HSI-BERT models achieved the best classification performance for the three datasets,
and the accuracy curve almost matched that of the proposed model. SSRN converges
quickly on the SA dataset, and achieves the best performance at 30 epochs and the best
classification performance at 40 epochs on the IN and UP datasets. The SSAN, 3D-CNN,
and SVM achieved the best classification performance at 45 epochs.

Remote Sens. 2022, 14, 742 17 of 23 
 

 

5 Metal 84.51 88.93 99.92 99.82 100.00 99.31 99.59 
6 Soil 84.07 94.24 99.11 98.26 99.98 99.94 100.00 
7 Bitumen 77.56 92.18 96.55 97.79 100.00 99.27 99.82 
8 Bricks 78.72 91.69 94.07 98.86 99.94 100.00 99.91 
9 Shadows 81.73 93.72 100.00 99.32 99.99 99.72 100.00 

3.4.2. Qualitative Evaluation 
Figures 11–13 show the overall accuracy curves of the 3DSA-MFN and other compet-

itor models. The results show that the accuracy of all models improved continuously with 
the increasing number of training steps in the initial stage, and then stabilized gradually. 
Among the three datasets, SVM had the lowest initial accuracy, while SAT and HSI-BERT 
had higher initial accuracy. The proposed model, 3D-CNN, SSAN, and HSI-BERT models 
converged rapidly in the initial stage. In particular, the proposed model almost reached 
the optimal classification performance for the three datasets after 10 epochs. However, the 
3D-CNN and SSAN converged slowly in the subsequent stages. At 30 epochs, the SAT 
and HSI-BERT models achieved the best classification performance for the three datasets, 
and the accuracy curve almost matched that of the proposed model. SSRN converges 
quickly on the SA dataset, and achieves the best performance at 30 epochs and the best 
classification performance at 40 epochs on the IN and UP datasets. The SSAN, 3D-CNN, 
and SVM achieved the best classification performance at 45 epochs. 

Figures 14–16 show the visualization results (pseudo color classification map) of the 
different methods for the three public datasets. We have marked non-obvious misclassi-
fications and noise with red boxes. For all datasets, SVM and 3D-CNN show poor classi-
fication performance with significant noise, especially the SVM algorithm which has a 
large range of misclassification. This is because the SVM algorithm is not able to adap-
tively extract the deep-level features. Since SSAN and SSRN extract spatial and spectral 
information and fuse them separately, there is no large-scale misclassification in their vis-
ualization results, and there is still a small amount of salt-and-pepper noise. In contrast, 
SAT, HSI-BERT, and the proposed model obtained better classification results and 
showed finer boundaries. This is because these three established a global dependency re-
lationship and extracted rich contextual information. The visualization results of the pro-
posed network show that there is almost no misclassification or noise in the UP dataset, 
and there is very little noise at the boundary between the IN and SA datasets. This is due 
to the face that the proposed network effectively integrates spatial and spectral features 
on the one hand, and combines local features and global dependent features on the other 
hand, which effectively improves the feature extraction capabilities of the network. 

 
Figure 11. Overall accuracy curve of different models in SA dataset. 

40

50

60

70

80

90

100

1 5 10 15 20 25 30 35 40 45 50

OV
ER

AL
L A

CC
UR

AC
Y 

%

Epochs
SVM 3D-CNN SSAN SSRN HSI-BERT SAT proposed

Figure 11. Overall accuracy curve of different models in SA dataset.
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Figure 12. Overall accuracy curve of different models in IN dataset.
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Figure 13. Overall accuracy curve of different models in UP dataset.

Figures 14–16 show the visualization results (pseudo color classification map) of the
different methods for the three public datasets. We have marked non-obvious misclassifica-
tions and noise with red boxes. For all datasets, SVM and 3D-CNN show poor classification
performance with significant noise, especially the SVM algorithm which has a large range
of misclassification. This is because the SVM algorithm is not able to adaptively extract the
deep-level features. Since SSAN and SSRN extract spatial and spectral information and
fuse them separately, there is no large-scale misclassification in their visualization results,
and there is still a small amount of salt-and-pepper noise. In contrast, SAT, HSI-BERT, and
the proposed model obtained better classification results and showed finer boundaries.
This is because these three established a global dependency relationship and extracted rich
contextual information. The visualization results of the proposed network show that there
is almost no misclassification or noise in the UP dataset, and there is very little noise at
the boundary between the IN and SA datasets. This is due to the face that the proposed
network effectively integrates spatial and spectral features on the one hand, and combines
local features and global dependent features on the other hand, which effectively improves
the feature extraction capabilities of the network.
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Figure 14. The classification map on the SA dataset for (a) SVM, (b) 3D-CNN, (c) SSAN (d) SSRN,
(e) HSI-BERT, (f) SAT, and (g) proposed 3DSA-MFN. Red boxes are used to mark non-obvious
misclassifications and noise.
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4. Conclusions

In this study, we propose a network model called 3DSA-MFN for the HSI classifi-
cation task. The network includes a three-dimensional multi-head attention mechanism,
multiscale feature fusion, and other modules. We first use the PCA algorithm to reduce
the dimensionality of the spectrum and remove noisy and redundant data. In the feature
extraction stage, we first use the multi-scale feature fusion module to first extract the feature
information of HSI from different scales. Then, we generalize the multi-head self-attention
from two-dimensional to three-dimensional and effectively improve it so that it can fully
utilize the input matrix contextual information. Then, we use the improved 3D-MHSA to
improve the convolutional neural network and get the 3DCOV_attention module. This
module establishes the remote dependency while extracting local features, which can simul-
taneously improve the local receptive field, capture long-distance interactions, and improve
the classification performance of the model. To test the effectiveness of the proposed
method, experiments were conducted on three public datasets. Compared to methods
such as SVM, 3D-CNN, SSAN, SSRN, HSI-BERT, and SAT, 3DSA-MFN achieved the best
classification performance on the SA and UP datasets. For the IN dataset, the classification
performance is slightly lower than that of HSI-BERT and achieved a classification perfor-
mance comparable to that of SAT. Specifically, for the SA, IN, and UP datasets, 3DSA-MFN
achieved OA values of 99.92%, 99.52%, and 99.77%, respectively, and AA values of 99.84%,
99.32%, and 99.68%, respectively. In future work, we will focus on optimizing the attention
mechanism in HSI classification tasks and classifying small samples of HSIs.
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