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Abstract: Desert locust plagues can easily cause a regional food crisis and thus affect social stability.
Preventive control of the disaster highlights the early detection of hopper gregarization before they
form devastating swarms. However, the response of hopper band emergence to environmental
fluctuation exhibits a time lag. To realize the dynamic forecast of band occurrence with optimal
temporal predictors, we proposed an SVM-based model with a temporal sliding window technique
by coupling multisource time-series imagery with historical locust ground survey observations from
between 2000–2020. The sliding window method was based on a lagging variable importance ranking
used to analyze the temporal organization of environmental indicators in band-forming sequences
and eventually facilitate the early prediction of band emergence. Statistical results show that hopper
bands are more likely to occur within 41–64 days after increased rainfall; soil moisture dynamics
increasing by approximately 0.05 m3/m3 then decreasing may enhance the chance of observing
bands after 73–80 days. While sparse vegetation areas with NDVI increasing from 0.18 to 0.25 tend
to witness bands after 17–40 days. The forecast model combining the optimal time lags of these
dynamic indicators with other static indicators allows for a 16-day extended outlook of band presence
in Somalia, Ethiopia, and Kenya. Monthly predictions from February to December 2020 display an
overall accuracy of 77.46%, with an average ROC-AUC of 0.767 and a mean F-score close to 0.772.
The multivariate forecast framework based on the lagging effect can realize the early warning of band
presence in different spatiotemporal scenarios, supporting early decisions and response strategies for
desert locust preventive management.

Keywords: desert locust; environmental indicator; dynamic forecast; machine learning; time lag

1. Introduction

The 2019–2021 desert locust (Schistocerca gregaria, Forskål) upsurge has posed a major
threat to the food security and regional stability of East Africa, the Middle East, and South-
West Asia [1]. Countries such as Ethiopia and Somalia have witnessed the worst damage
for nearly 25 years, while for Kenya, this is the worst damage for almost 70 years [2]. Desert
locust plagues are consequences of changes in population density, triggering solitarious
individuals to transform into gregarious hopper bands and fledged swarms with booming
populations [3–5]. The invasion of swarms is incredibly rapid and destructive, destroying
crops and pastures in their path [5]. Due to the mass destruction and high mobility of locust
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swarms, it is more cost effective and environmentally friendly to take control measures
before the maturity and aggregation of isolated populations [6–9]. Thus, a preventive
management strategy (PMS) was adopted by the Food and Agriculture Organization (FAO)
of the United Nations [10,11]. PMS relies on early warning of and early reaction to hopper
gregarization at the beginning of outbreaks [12–15]. Therefore, it is vital to predict more
accurate and timelier band presence of desert locusts dynamically in order to navigate the
ground surveyors to the gathering nymphs and treat them before they become another
devastating air force [16].

Traditional methods employed by the Desert Locust Information Service (DLIS) of
FAO include the desert locust development model (DLDM) and trajectory model (DLTM),
which are based on weather forecasts [17]. DLDM is a phenology model that depends on
the temperature to estimate the growth rate of eggs and hoppers and thus predicts hopper
occurrence, for example, the widely used degree-day model [18]. Whereas DLTM methods,
e.g., the HYSPLIT method originating from atmospheric transport and dispersion models,
track the displacement of adults with air temperature, pressure, and wind to analyze the
invasion risk and simulate the presence of their offspring [10,19,20]. Weather forecasts,
primarily the prediction of seasonal rainfall and temperature, facilitated both methods to
fill the time extension for long-term predictions [21]. Overall, these meteorological-based
models are beneficial for dynamic prediction due to the high temporal resolution of weather
products. However, they are also limited by a lack of soil and vegetation information;
therefore, they must be managed with intelligence by experienced forecasters [17].

Remote sensing imagery has been increasingly combined with meteorological data
and applied in monitoring desert locust breeding habitats where hoppers and bands were
produced [5,9,22]. Indeed, the band emergence of desert locusts is influenced by various
driving factors, including bioclimatic, edaphic, and host vegetation. Egg pods are laid in sandy
soil about 5–10 cm below the surface [12]. Successful hatching requires the uptake of sufficient
water [18,23]. After breaking ground, nymphs rely on annual herbs, shrubs, and crops as
food and roost [12,23–25]. According to the desert locust biology, Gómez et al. [26] utilized
the 1 km MODIS land surface temperature and 9 km Soil Moisture Active Passive (SMAP)
root zone estimation to monitor the presence of desert locusts. Escorihuela et al. [27] first
attempted to include high-resolution satellite soil moisture in desert locust surveillance based
on Sentinel-1 data in synergy with the Soil Moisture and Ocean Salinity (SMOS) microwave
observations. Ellenburg et al. [28] evaluated the utility of 3 km land surface model-derived soil
moisture products to monitor the nymph distribution. Vegetation parameters mostly derived
from medium resolution data fusion products of MODIS and SPOT, such as the vegetation
index [29–31], leaf area index [26], green leaf biomass [32], and greenness [33,34], have also
had their feasibility tested to map the pest distribution.

Previous studies have confirmed the potential of various near-real-time environmental
indicators derived from multisource imagery to detect the presence of desert locusts.
Nevertheless, the response of desert locust emergence to environmental fluctuation exhibits
a time lag. There is an average of three months between the locust eggs being laid and
hatching and the growing hoppers or bands being observed by humans [12,18]. Therefore,
the time scale of environmental indicators based on the phenology of desert locusts should
be considered in order to extract optimal predictors with temporal variables. In this context,
recent research has begun to shift its attention towards the lagging effect of environmental
drivers of hopper occurrence during the recession period; soil moisture has received broad
interest [28,35–38]. For example, Piou et al. [36] investigated the optimal delays of soil
moisture in order to model the hopper emergence through statistical methods.

Although soil water highly influences the incubation of locust eggs, the lagging effect
of temperature and vegetation related to hopper growth, distribution, and gregarization
still lacks discussion [24,26,39–41]. Other geographical factors, such as topography [42],
soil silt or clay content [28,43], and land cover [44–47], have also been proved to bear the
potential to map locust biotopes. They play an irreplaceable role but are rarely included
in the forecast toolkit. Moreover, most empirical studies on the early warning of hopper
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aggregation have focused on monitoring and predicting hopper occurrence in the recession
period, whereas few investigated the band presence.

Therefore, we proposed a novel multivariate forecast framework of desert locust band
emergence in Somalia, Ethiopia, and Kenya. In addition to the long-term surveillance of
solitary individuals, this study is the first attempt to predict hopper band occurrence in
order to support the early warning of outbreak risks. The main purposes of this study
include (1) coupling historical locust ground survey data and multisource Earth observation
data to uncover the lagging effect of critical indicators and to analyze its relationship to
desert locust phenology; (2) developing a machine learning-based prediction model with a
temporal sliding window selector of multiple indicators to dynamically forecast the band
presence; (3) evaluating the accuracy, feasibility and stability of forecast framework to
support desert locust PMS.

2. Materials and Methods
2.1. Study Area and Locust Historical Field Survey Dataset
2.1.1. Study Area

This study concerns Somalia, Ethiopia, and Kenya (SEK) in the Great Horn of Africa,
shown in Figure 1a. It extends eastwards to the Arabian Sea, across the Gulf of Aden from
Yemen. Complex topography, arid and semi-arid climate, and sea surface temperature
anomalies, such as the El Niño Southern Oscillation, shape the bimodal annual rainfall
pattern over much of SEK [48]. It includes a long rainy season from March to May and a
short rainy season from October to December (see Figure 1c). Hence, SEK can form comple-
mentary breeding areas activated by either spring, summer, or winter rains [15,18,49]. Since
2018, the Indian Ocean Dipole has experienced extreme positive phases, with tropical cy-
clones, Sagar, in May 2018, and Pawan, in late 2019, taking turns to hit coastal regions [2,50].
They brought SEK extraordinary rainfall, providing suitable conditions for desert locust
breeding [50,51]. Mass migration of swarms from the Arabian Peninsula since June 2019
has culminated in an outbreak of desert locusts in SEK [51].
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Figure 1. Spatial and temporal distribution of ground points of the desert locust band used for this
study in the SEK region. (a) The geographical location of SEK with band observations in 2000–2020; the
red dot represents band presence while the blue triangle refer to surveyed-absence and the grey one
indicates pseudo-absence. (b) Monthly count of bands from July 2019 to December 2020. (c) Monthly
observations of Global Precipitation Measurement (GPM) V6 in the central SEK region for 20 years
(2000–2020); the red line indicates monthly mean rainfall; the grey area indicates the fluctuation interval.
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2.1.2. Locust Dataset and Data Cleaning

Locust ground points in this study were mainly derived from the DLIS-FAO dataset
(https://locust-hub-hqfao.hub.arcgis.com/ (Accessed: 20 December 2021)). This dataset
compiles ground survey observations spanning 25 years, from 1986 to the present, covering
some 29 million km2 spreading range of the species. We focused on records of band
presences and absences in SEK between 2000 and 2020, which corresponds to the time range
covered by other multisource datasets (see Figure 1a). Band observations are concentrated
in May-June and November-December 2020 (see Figure 1b).

Firstly, we rid the records of inaccuracies in the data collection process. Four built-in
columns in the dataset, with Boolean values recording whether the sampling location and
species are reliable and whether the entry is overall confirmed and credible, were defined
as the quality control fields. So, we removed observations with approximate locations,
uncertain species, and unconfirmed or dubious reports according to the quality control
fields. We also eliminated duplicate records with the same date, latitude, and longitude,
which were likely to be repeated observations of the same population.

2.1.3. Pseudo-Absence Generation

Nevertheless, some uncertainties remain in the dataset, especially the absence samples
caused by the spatial bias and temporal discontinuity of data collection [31]. Surveyed
absence (SA) points are usually sampled in potential locust-prone areas of preference [31].
Therefore, we generated pseudo-absence (PA) points by a random generation with exclusion
buffer (RGEB) [52]. RGEB uses a buffer to adjust the distance between PA and presence
points to avoid both appearing in one grid [53]. Empirical studies suggest that buffer size
depends on the data at hand [54–56]. Considering the maximum spatial resolution (~10 km)
of our multisource data, we adopted a 10 km radius buffer around each presence site for
the PA generation.

Different proportions of absence and presence can affect model performance posi-
tively or negatively [57]. We generated different numbers of PA and carried out accuracy
and precision tests at different presence-absence ratios (see Supplementary Material 1).
I accordance with the results of the experiment, a small percentage of 500 PA points ran-
domly assigned sampling dates in 2019–2020 were added to represent those areas rarely
visited by locusts in those years (see Figure 1a). Consequently, a total of 5272 ground
points of band occurrence were sampled from the SEK region in 2000–2020 after cleaning,
including 2389 presences and 2888 absences (see Figure 1a).

2.2. Extraction of Environmental Indicators of Desert Locust Presence
2.2.1. Multiple Indicators from Multisource Data

Ten vital influential factors and their most typical indicators were selected based on
desert locust biological and applied research [23]. They were extracted from multiple data
sources, including meteorological, remote sensing, and basic geographic data and were
then divided into dynamic and static categories (see Table 1 for more details) [5]. Dynamic
indicators, including precipitation (PREC), soil moisture (SM), normalized difference vege-
tation index (NDVI), and surface temperature (LST) change rapidly; hence, they are usually
observed with high temporal resolutions. Nevertheless, the static indicators are relatively
stable, with observations on an annual or even decadal basis, including elevation (DEM),
land use and land cover (LULC), soil sand content (SND), soil clay content (SCL), soil silt
content (SLT), and soil coarse fragment content (CRF).

Datasets were selected, catering to the desert locust biology and the needs of proposed
forecast framework. Stable products with long time series and high temporal resolution
were selected to build time series of dynamic drivers and, thus, to investigate the de-
layed response of band occurrence to these indicators by coupling with the DLIS-FAO
dataset. Whereas datasets with higher spatial resolution were selected for a better over-
all spatial accuracy of prediction. For example, the rainfall assimilation product, which
combines satellite imagery with in-situ station data, was chosen for its better performance

https://locust-hub-hqfao.hub.arcgis.com/
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in Africa [58–60]. Hourly SM observation converted to daily composite data was used for
time series extraction, while a modelled product with a higher spatial resolution was used
as SM predictors for the forecast [61–63]. Both layers met the requirement, as much as they
could, for monitoring in the root zone where females spawn at a 2–15 cm depth rather than
the sediment surface [27]. We also chose the latest version of datasets for static drivers to
represent the 2020 scenario for the forecast.

Table 1. Multiple indicators and multisource datasets.

Indicators Data Source Spatial
Resolution

Temporal
Resolution Time Range Description

Dynamic
indicators

PREC CHIRPS 1 0.05◦ (~5 km) daily 1981–2021 Precipitation (mm/day)

SM
ERA5-Land 2 0.1◦ (~10 km) hourly 1981–2021

Volumetric soil water layer
2 (7–28 cm below the

surface) (m3/m3)

SERVIR 3 0.03◦ (~3 km) daily 2020–2021
Volumetric soil moisture

(0–10 cm below the
surface) (%)

NDVI MOD09GA 1 km daily 2000–2021 Red and NIR band
normalization

LST MOD11A1 1 km daily 2000–2021 Units converted
from K to ◦C

Static
indicators

SND
ISRIC 4

SoilGrids [64]
250 m 3-year 2014, 2017, 2021

Sand in depth of 5–15 cm
(g/kg)

CLY Clay content in depth of
5–15 cm (g/kg)

SLT Silt in depth of 5–15 cm
(g/kg)

CRF Coarse fragments in depth
of 5–15 cm (cm3/dm3)

LULC CGLS-LC100 5

[65]
100 m 5-year 2015–2019 Discrete classification

DEM NASADEM
[66] 30 m - 2020 Elevation (m)

1 CHIRPS: Climate Hazards Group InfraRed Precipitation with Station. 2 ERA5: European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis v5. 3 SERVIR: Not an abbreviation but a Spanish word means “to serve”.
4 ISRIC: International Soil Reference and Information Centre. 5 CGLS: Copernicus Global Land Cover Layers.

All data were pre-processed with geometric correction, radiometric calibration, atmo-
spheric correction, and cloud removal. Due to our preference for high temporal resolution
data, imagery used in this study was then resampled to a unified spatial resolution of 1 km.
Preliminary evidence in previous empirical studies showed that the environmental indi-
cators at 1 km spatial resolution were representative and suitable for regional, large-scale
monitoring and forecasts [27,30,36].

2.2.2. Extraction of Time Series of Dynamic Indicators

We realized a bulk automated extraction of time series of dynamic indicators to ground
observation sites. We assumed that it took an average of around 96 days before the hopper
bands were observed, based on the locust biology and empirical studies (see Figure 2a) [23].
Imagery of four dynamic indicators were dynamically selected by a sliding window of the
given 96-day band development cycle prior to the sampling date, and daily mean values
were extracted to each point (noted as d96, d95, d94, d93 . . . , d02, d01). Based on historical
ground survey sites in SEK between 2000 and 2020, we generated over 5000 daily time
series of each dynamic indicator at each point.
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presence. (b) Time lag variable importance ranking for dynamic indicators. (c) Forecast of desert
locust presence based on multivariate machine learning model with a temporal sliding window.

For actual preventive control operations, daily to seasonal forecasts to detect band
emergence grounds are required. The frequency of reporting varies with the situation
and scale. A forecast of 8 to 10 days is usually used on a national scale. Thus, an 8-day
time step was adopted to cutthe time series Meanwhile, the mean values of each eight-day
period were calculated as a secondary time slice noted as 12 time-lagged variables (lag12,
lag11, lag10 . . . , lag02, lag01). A time-series dataset of four dynamic indicators for the
development sequence of bands was eventually constructed (see Figure 2a).

We then used the dataset to analyze and evaluate the variable importance of the time
lag in order to select the best temporal window for each dynamic indicator for forecast in
Section 2.3. Meanwhile, we exposed and discussed the lagging response of band presence
to each indicator buried in these statistical results.

2.2.3. Extraction of Static Indicators

Static indicators extracted from multisource Earth observation data such as topography,
soil texture, and land use, which represent inherent ecological conditions of the study area,
are also indispensable for the forecast of locust bands. Thus, we also overlaid ground
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points on the imagery of six static indicators in order to extract the static values to these
locations (see Figure 2a). These values were then added to the time-series dataset created in
Section 2.2.2 to construct a complete dichotomous dataset (see Figure 2b). This dataset with
static indicators and other dynamic indicators was finally used for the dynamic forecast of
band presence in Section 2.4.

2.3. Time Lag Variable Importance Ranking for Dynamic Indicators

We constructed two variable importance evaluation models for each dynamic indicator
with all their time lag variables based on the 2000–2020 band occurrence classified dataset
with multivariate time-series indicators established in Section 2.2.3 (see Figure 2b). Logistic
Regression-Dominance Analysis (LR-DA) and Random Forest-Mean Decrease Gini (RF-
MDG) were classic methods widely used for feature importance ranking and feature
selection [67,68]. LR is simple but efficient and interpretable. In contrast, RF makes up
for the inability of LR to solve non-linear problems whilst being able to quantify the
relative contribution of features. Therefore, statistical results of the two methods were
comprehensively analyzed to draw reliable conclusions on the most significant time lag
variables (see Figure 2b). LR described the conditional probability of desert locust hopper
band occurring (Equation (1)) or not occurring (Equation (2)) by the sequential variables of
dynamic indicators at each ground observation site [69]:

P(Y = 1|X) = e(WX+B)

1+e(WX+B) (1)

P(Y = 0|X) = 1
1+e(WX+B) (2)

where the binary state of band absence or presence at each ground observation point is
Y = (Y1, Y2, . . . , Yk) ∈ {0, 1}; k denotes the ordinal number of 5272 ground points, k ∈ N.
The time lag variable for each dynamic indicator is X =

(
X1,j,k, X2,j,k, . . . , Xi,j,k

)
; i identifies

the time lag variables {lag01, lag02, lag03 . . . , lag12}, i ∈ [1, 12], i ∈ N; j is the ordinal
number of four dynamic indicators, j ∈ {1, 2, 3, 4}, corresponding to PREC, SM, NDVI,
and LST, respectively. The weight coefficients corresponding to the time lag variables of
each environmental indicator are W =

(
w1,j, w2,j, . . . , wi,j

)T ; whereas B =
(
b1, b2, . . . , bj

)T

refers to the bias constants of each environmental indicator.
LR-DA calculated the relative importance scores for lag features [70,71]. McFadden R2

was selected to measure the conditional and additional contributions for all possible sets of
variable groups and finally to determine the combined contribution ranking of all lagging
indicators [72]. At the same time, RF-MDG reported the importance of variables through
evaluating the improvement in error at each node for each randomly selected variable and
the ratio for all nodes in the forest [67,73]. The normalized results of the relative importance
ranking of LR and RF were combined to identify one to three optimal lagging variables for
each dynamic indicator.

2.4. Model for Forecast Based on a Temporal Sliding Window

The Support Vector Machine (SVM) has been widely used in species distribution
simulation for its simplicity and robustness in maximizing separation margins [31,74]. RF
has also been proven to perform well in modeling the presence-absence of species, so we
conducted a comparative experiment of both machine learning methods (see Supplemen-
tary Material 2). We finally decided to use SVM as the fundamental model for the forecast
for a better overall accuracy throughout the year. For dynamic indicators, a temporal
sliding window selector was invented to choose trainers and predictors dynamically based
on the time lag information mining from the historical ground survey information and
long time series of satellite imagery in Section 2.3. Lagging variables of dynamic indicators
with lower significance were removed and those that contributed highly survived. We then
combined other static indicators for model training and prediction. Thus, we proposed a
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data-driven multivariate approach combining machine learning and a temporal sliding
window to predict band occurrence for early warning (see Figures 2c and 3).
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Theoretically, this method allowed for dynamic forecasts of band occurrence every
8 days. In this paper, monthly forecasts from February to December 2020 (20th of each
month) were implemented as an example to validate the model performance and robustness.
The 2000–2020 historical dataset constructed in Section 2.2, with all of the static indicators
and optimal time lag variables of each dynamic indicator retained, was used as training
sets. Records in the target month were set aside as ground truth for each training set in
order to evaluate this prediction afterwards. A filtered subset then trained an optimal SVM
regression model with a radial-based function by tuning hyperparameters.

Moreover, images in the optimal time lag windows of each dynamic indicator and
all static images were prepared as a batch of predictors. We resampled the multisource
heterogeneous data to the spatial resolution of 1 km. Alongside other elementary prepro-
cessing, we also used the Inverse Distance Weighted (IDW) method to fill in the blanks
for images with vast missing pixels after cloud masking. Predictors were input into the
training models that we built. Raw values of regressions were normalized to represent the
likelihood of desert locust bands occurring.

2.5. Model Evaluation and Accuracy Assessment

The model was validated by both presences and absences of the 2020 ground obser-
vations set apart from the historical datasets (see Figure 2c). We divided the regression
results into three categories, low, average, and high probability of band presence. The
probability threshold, when maximizing the sensitivity and specificity or true positive rate
and true negative rate (max TPR + TNR) derived from the training model, was defined as
the optimal splitting point to divide the regression results into low and average probability
of band presence for model evaluation (see Figure 4) [75,76]. Projected results with average
probability of band presence were then partitioned by the first quartile, while the high
probability was merely used for better visualization and demonstration.
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The monthly reserved band occurrence as ground truths were overlaid on the classified
results to build confusion matrixes. If a presence point fell within the predicted area with
average or high probability of band presence, it was recorded as a true positive (TP);
otherwise, it was a false negative (FN). If an absence point fell within the predicted low
probability area for band presence, it was recorded as a true negative (TN); otherwise, it was
a false negative (FN). Nevertheless, absence observation indicates only a failure to observe
any band in sight in this location; it does not make it unsuitable for locust breeding or band
developing. Thus, F-score was selected to focus on the positive performance by a combined
consideration of precision and recall. Ultimately, five evaluation metrics including the
overall accuracy, sensitivity, specificity, ROC-AUC, and F-score were calculated based on
the confusion matrix.

3. Results
3.1. Lagging Response of Hopper Band Occurrence to Environmental Drivers

Figure 5 depicts the value distribution of four environmental drivers over the desert locust
band-forming sequences. PREC, SM, and NDVI showed a similar trend in the band-forming
period. Instead, LST probably exhibited an opposite trend or lacked an apparent sequential
characteristic. All indicators where hopper bands were absent remained roughly stable, but
where hopper bands were present, indicators experienced a rise at different time lags.
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distributions of dynamic indicators in band presences while the green box refers to that in band absences.

PREC (see Figure 5a) at band occurrence consistently obtained higher medians over the
breeding and developing period of hopper bands and gradually increased until it peaked
at lag07. The differences between value distributions of presences and absences reached
their maximum from lag08 to lag06. The SM factor (see Figure 5b) at band attendance fell
behind band absence for the first 32 days from lag12 to lag08. They then elevated to a peak
at around 0.2 (m3/m3) from 40 (lag05) to 17 (lag03) days before bands were observed. The
trend of SM is similar to that of PREC, however, its peak was delayed by 16 days compared
to PREC. NDVI (see Figure 5c) followed the same trend as PREC and SM, peaking at about
0.25 from 32 (lag04) to 9 (lag02) days ahead of the observation, with a further delay of
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about 8 to 16 days compared to SM. Additionally, the median LST (see Figure 5d) of band
presence revealed possibly opposite volatility in the propagated region compared to other
factors. LST of band presence remained high from lag12 to lag09 and then decreased and
rose again to its highest point.

Figure 6 demonstrates the relative importance rankings of time lag variables for each
dynamic indicator. Larger contributions appeared essentially at time lags with the most
significant difference of values between presences and absences in Figure 5. Due to the
spatial heterogeneity of the phenology of desert locusts on the large scale of the study area,
multiple consecutive lags were preferred in this study to provide the sliding window with
a temporal tolerance. Results of LR-DA and RF-MDG agreed that the PREC factor had
the highest relative importance in the temporal window from 64 days (lag08) to 41 days
(lag06) before band observation (see Figure 6a). NDVI also made a higher contribution
from 40 days (lag05) to 17 days (lag03) ahead of band detection without any doubt (see
Figure 6c).
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Figure 6. The normalized relative importance of time-lagged variables of each dynamic indicator.
The green box refers to the optimal temporal sliding window. (a) Relative variable importance of
PREC. (b) Relative variable importance of SM. (c) Relative variable importance of NDVI. (d) Relative
variable importance of LST. The blue bar represents the relative variable importance of LR-DA while
the orange box refers to that of RF-MDG.

However, the two approaches had slightly different views on the optimal time lag
of the SM factor. One indicated that the time lag that contributed most to the model was
lag05 (40 to 33 days before band emergence), whereas the other also detected a sub-peak at
lag05 but ultimately supported lag10 (80 to 73 days before band occurrence). Combined
with the boxplot of SM (see Figure 6b), both votes of the optimal lagging window should
be accepted. Moreover, the results of RF concluded that the contribution of lag05 was the
most considerable, with the next largest contribution from lag12. Whereas the rankings of
LR displayed a discontinuity, tending to suggest that lag12 made the highest contribution,
that lag06 took second place, and that lag05 made a meagre contribution. However, directly
using near-real-time LST indicators with no delay as predictors was still not a good choice
compared to other lagged variables. We finally identified lag12 as the most important
variable of LST (see Figure 6d). To sum up, we eventually adopted mean PREC from
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lag08 to lag06, SM at lag10 and lag05, mean NDVI from lag05 to lag03, and LST at lag12 to
participate in the forecast (see the green boxes in Figure 6).

3.2. Dynamic Forecast of Hopper Band Presence in SEK

Eleven forecast experiments from February to December 2020 demonstrated satisfac-
tory overall performance with an average accuracy of over 77%, a ROC-AUC value of
0.7666, and an F-score close to 0.7715 (see Table 2). The forecast accuracies for March, April,
May, and June were exceptionally high, above 0.8. Predicted band-forming areas in other
months shared an accuracy of about 0.75.

Table 2. Evaluation of dynamic predicting results.

Date
Evaluation Metrics

Accuracy (%) Sensitivity Specificity ROC-AUC F-Score

February 2020 74.44 0.6047 0.8759 0.7403 0.7792
March 2020 80.15 0.6934 0.9329 0.8131 0.7930
April 2020 82.59 0.7264 0.9002 0.8133 0.7811
May 2020 88.68 0.8886 0.8814 0.8850 0.9218
June 2020 85.31 0.8971 0.6667 0.7819 0.9081
July 2020 70.00 0.6167 0.7714 0.6940 0.6549

August 2020 76.99 0.6238 0.9412 0.7825 0.7453
September 2020 79.81 0.6314 0.9203 0.7759 0.7258

October 2020 66.77 0.5988 0.7419 0.6704 0.6515
November 2020 73.41 0.7500 0.7116 0.7308 0.7673
December 2020 73.95 0.7087 0.7816 0.7451 0.7586

Average 77.46 0.7036 0.8296 0.7666 0.7715

The forecast model integrating all dynamic and static factors can eventually report up
to 16 days in advance. Predicted probabilities of band occurrence, classified results, and
corresponding ground observations in SEK 2020 were displayed in Figures 7 and 8. The
spatial distribution of band presence varied from season to season. Desert locusts preferred
spring and summer to propagate in SEK, while the suitable range was significantly reduced
from July to October. Aggregated band present areas from February to April were mainly
located along the Ethiopian Rift, the Eastern Branch of the East African Rift Valley, and a
broad area of Kenya, including the central area of the country and the areas surrounding
Lake Victoria in the southwestern corner. May and June were clearly the best months for
desert locust reproduction. The expanded range and suitability of summer band present
areas were concentrated in the bare ground covered by sparse scrubs and herbs around
Lake Turkana in northwestern Kenya, in the Somali State of Ethiopia and in the Togdheer,
Mudug, and Galguduud Regions of Somalia. From July onwards, local ecology was less
suitable for desert locust, leading to adults and swarms migrating to their usual winter
band present areas along the Red Sea and the Gulf of Aden. However, winter’s short
rainy season brought back the breeding season. The parcel suitable for local breeding from
November to December was distributed in the eastern horn of Ethiopia and central Somalia
regions, where locusts landed in warmer and wetter areas along the southeastern coast.
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Figure 8. Dynamic projected areas with classified probabilities of band presence and monthly ground
truths of band presence in SEK from February 2020 to December 2020. Areas were divided into
low and average probability of band presence by statistics at max TPR + TNR of training models
as dichotomous thresholds for model evaluation, while the high probability area partitioned by the
first quartile was only used for better visualization and demonstration. (a) February 2020, (b) March
2020, (c) April 2020, (d) May 2020, (e) June 2020, (f) July 2020, (g) August 2020, (h) September 2020,
(i) October 2020, (j) November 2020, (k) December 2020.
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4. Discussion
4.1. Lag Effect of Environmental Drivers in Desert Locust Ecology

PREC is the initial external trigger for the reproductive events of desert locusts; thus, it
possesses a longer lag. Females generally lay eggs after consecutive rainfall surges [78–82]. In
SEK, a total median PREC of almost 60 mm for about 24 days is likely to observe hopper
bands after 41 to 64 days. This result is similar to the predicted temporal gain of rainfall
on hopper emergence in Mauritania, whose PREC could forecast band emergence up to
50 days in advance [36]. Tratalos et al. [83], however, suggested that the previous generation
reproduces and forms bands about 4 months after the arrival of rainfall. This is because his
indicator came from the recession zone within the Sahara. Eggs and hoppers developed
much more slowly there, meaning that the time required before sighting band occurrence
was greatly extended.

Suitable SM content and duration is not only a booster of oviposition and incubation
but is also an early signal of vegetation growth. Locust egg hatching and survival rates are
limited by a moisture content of 5–20% per unit volume of soil [84,85]. Hence, bands are
likely to be observed after 33 to 40 days, when the median SM value rises to approximately
0.2 m3/m3 after a rainfall upsurge in SEK. Another scenario is when the median SM
value remains extremely low at 0.15 m3/m3 and increases after one month; bands probably
appear after 73 to 80 days. These findings agreed with those of Gómez et al. [38], who found
that a median SM of more than 0.11 m3/m3 for at least 16 days increased the probability of
hoppers occurring after 79 days. Meanwhile, Piou et al. [36] also observed that soil moisture
dynamics with similar trends increased the chance of hopper sightings after 72 days.

Sparsely vegetated areas where the median NDVI slightly rises to around 0.25 were
more likely to track successful band development after 17 to 40 days. The shortening of the
time lag is due to the fact that the vegetation mainly affects the hopper development period
by providing them with nutrition and shelter. Piou et al. [35,36] found that vegetation
growth around one and a half months before the survey was one of the best predictors of
hopper presence during the recession period in Mauritania. It is a mildly shorter response
time than in this study. Both results are reliable given that SEK has a more humid climate
than Mauritania in West Africa.

LST did not show a significant optimal time window for observation, mainly due to the
fact that the hatching and developing phases of the reproduction process are temperature
dependent [18,86,87]. Laboratory studies revealed that most eggs incubate at low thermal
cycles (30 ◦C or 25 ◦C) of desert locust biotopes [88]. Temperatures below 15 ◦C and above
35 ◦C might raise egg mortality [23]. Gómez et al. [26] introduced LST into the desert
locust monitoring system and found that eggs were sensitive to an average LST of around
25 ◦C, while hoppers preferred an LST of around 35 ◦C. Similarly, prosperous band-forming
habitats of SEK exhibited a high median LST in the early stage due to their locations in and
around the deserts. It then declined, partly because of the increased rainfall required for
propagation and partly in response to the temperature needs of the pests to reproduce.

To validate these lagging results for single factors, an integrated model was built
combining the time lag variables of all dynamic indicators (see Figure 9). An 8 to 16-day
delay of the optimal predictive temporal window between PREC-SM-NDVI indicators
was detected by previous analysis and the integrated model. Although the precise mecha-
nism driving desert locust reproduction requires further research in biology and ecology,
results have confirmed that PREC, SM, and NDVI successively influence the oviposition,
incubation, and nymph development in distinct ways. In general, the surge in PREC
allows for an appropriate increase in SM in the root zone, which facilitates the hatching
of eggs and promotes the annual vegetation springing up, leading to an increased NDVI.
During this process, LST also affects soil evapotranspiration and vegetation development.
Ultimately, the weather, together with the soil and vegetation, determines the success of
band formation.
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4.2. Strengths and Weaknesses of Environmental Drivers for Forecast Framework

PREC remains an essential predictor of desert locust hopper band emergence. It
maintains egg incubation by moistening the soil while promoting vegetation growth and
thus supporting hopper development. As the most critical external trigger of desert locust
outbreaks, the high temporal resolution of satellite or in-situ rainfall estimates meets the
demand for near-real-time forecasting with a robust performance. The disadvantage is
that rainfall indirectly affects desert locust breeding through the surface environment,
where evaporation, desert aerosols, or runoff may lead to a spatially inaccurate final
prediction [58].

The potential of SM as a proxy for PREC to predict desert locust reproduction has been
widely considered in recent years [27,28,36,37,40]. The greatest strength of SM compared
to other indicators is that it reflects the immediate need for locust eggs to hatch, effectively
combining remote sensing techniques with biological mechanisms. It can advance the
prediction by almost three months, buying ample time for early ground control decisions
and actions. With microwave remote sensing, adaptive scaling algorithms and data assimi-
lation models developed, soil moisture products with higher spatial resolutions will better
facilitate desert locust early warning framework as an essential member of the indicator
system [89].

Vegetation has always been one of the critical predictors of nymph occurrence [32,90].
Although moisture indicators offer longer predictive time gains than NDVI, vegetation
provides larva development with nutrition and refuge [82]. At the same time, patches of
thicket and meadow with low coverage and irregularities are more likely to concentrate
solitary hoppers, increasing the likelihood of gregarization into social bands [24,39]. There-
fore, vegetation is crucial to the later stages of reproduction and should not be excluded in
any reproductive habitat indicator system.

LST continuously regulates the breeding behavior, especially at early stages and near
band emergence. It must be included in the indicator system. However, in the context



Remote Sens. 2022, 14, 747 16 of 21

of early warning for preventive management strategy of desert locust, we suggest using
an early predictor (in this study we use variable lag12 instead of lag01) in the forecast
framework to earn adequate time to employ ground control.

4.3. Feasibility and Robustness of Forecast Model for Early Warning

The sound overall accuracy of the predictions for SEK, mainly thanks to the multivari-
ate model, integrates various explanatory indicators containing bioclimatic, soil, vegetation,
topography, land cover, and other information. Recently, experiments and evaluations
of different indicators, primarily some soil physical attributes, have emerged to predict
the reproduction area of desert locusts [22,28,36]. We found that introducing more factors,
particularly critical surface hydrothermal conditions required for propagation through the
time-series variables of the optimal time lag windows, improves the performance of band
presence predictions compared to existing studies.

Preliminary evidence of the applicability and stability of the proposed model has
been demonstrated in time and space and in combination with data availability in this
study. The data-driven model is applicable to species with tremendous ground tracking
information to quantify the phenology of desert locusts by statistical methods and data
mining approaches. In terms of temporal feasibility, the framework is capable of a year-
round forecast for different months and seasons. However, accuracy is more prominent
in summer. This result is inevitable due mainly to the uneven seasonal distribution of the
historical ground survey data used for training. Most of the band points in the SEK region
were collected in March, April, May, and June. In other words, the time-lagged response
pattern of dynamic indicators obtained in this study can be applied to the prediction of
band emergence areas in SEK all year round but is best suited to the forecast needs of
summer band emergence areas. While in terms of spatial feasibility, it is reasonable to
adopt different lagging indicators for different scenarios due to the changing phenology of
desert locust caused by different ecological contexts [91]. The temporal sliding window
technique requires calibration and localization when applied to different areas. However,
the indicator system derived from multisource imagery and the predictive framework can
be promoted to other regions to assist in the local ground control of desert locusts.

Furthermore, the time span that the predictive framework can report in advance varies
with different combinations of environmental factors. It ultimately depends on the nearest
optimal time lag of a specific factor. For example, the single-factor model based on SM
allows for the longest-term prediction, achieving a 72-day extended forecast. Whereas the
prediction model combining all the four dynamic indicators demonstrated in this study
will eventually be able to report the band presence up to 16 days in advance. Different
lengths of terms can be adapted to the needs of different ground applications.

5. Conclusions

This study proposed a data-driven forecast framework based on machine learning
and a temporal sliding window technique to realize the early warning of the presence
of desert locust. Long time series satellite imagery and other Earth observation data
were combined with historical locust ground survey data to construct the sliding window
approach based on the statistical relationship between environmental dynamics and desert
locust phenology. Forecasts can be carried out every 8 days to provide dynamic maps of
prosperous band habitats 2–11 weeks in advance, saving time for ground decisions and
actions and making them more timely, effective, and environmentally friendly. Compared
to meteorological-based models or remote sensing models using near-real-time metrics, this
framework embeds the ecological mechanism on the time scale of hopper band emergence.
It requires little expert knowledge or experiences and is appropriate for other spatial or
temporal scenarios.

A noteworthy shortcoming of the proposed model is that the population dynamics and
migratory behavior of desert locusts have not been taken into account [92,93]. It provides
habitat suitability or potential risks of band presence while residents and invaders can also
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further affect the final distribution of band risks. This partly led to a larger scope of the
predicted zone of band occurrence in September and October 2020 than that which actually
occurred (see Figure 6c). Some successfully breeding and maturing summer swarms had
already migrated with the prevailing winds towards the Red Sea coast and northeast
Somalia for overwintering [94,95]. Further research should focus on coupling the habitat-
based model with population dynamics, embedding the gregarization mechanism into the
data-driven methods.
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February 2020 to December 2020.
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