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Abstract: Grasslands, as an important part of terrestrial ecosystems, are facing serious threats of
land degradation. Therefore, the remote monitoring of grasslands is an important tool to control
degradation and protect grasslands. However, the existing methods are often disturbed by clouds and
fog, which makes it difficult to achieve all-weather and all-time grassland remote sensing monitoring.
Synthetic aperture radar (SAR) data can penetrate clouds, which is helpful for solving this problem.
In this study, we verified the advantages of the fusion of multi-spectral (MS) and SAR data for
improving classification accuracy, especially for cloud-covered areas. We also proposed an adaptive
feature fusion method (the SK-like method) based on an attention mechanism, and tested two types
of patch construction strategies, single-size and multi-size patches. Experiments have shown that
the proposed SK-like method with single-size patches obtains the best results, with 93.12% accuracy
and a 0.91 average f1-score, which is a 1.02% accuracy improvement and a 0.01 average f1-score
improvement compared with the commonly used feature concatenation method. Our results show
that the all-weather, all-time remote sensing monitoring of grassland is possible through the fusion of
MS and SAR data with suitable feature fusion methods, which will effectively enhance the regulatory
capability of grassland resources.

Keywords: grassland remote sensing monitoring; deep learning; multi-spectral and synthetic
aperture radar data; convolutional neural network; adaptive feature fusion

1. Introduction

Grasslands are an important part of terrestrial ecosystems. The Pilot Analysis of Global
Ecosystems (PAGE) is a study conducted by the World Resources Institute, which “examines
grassland ecosystems of the world using a large collection of spatial and temporal data” [1].
It shows that the world’s grasslands cover a total area of 52.5 million km2, accounting
for 40.5% of the Earth’s total terrestrial area (excluding Greenland and Antarctica), store
34% of the total carbon in terrestrial ecosystems, maintain 30% of net primary productivity
and provide about 30–50% of the world’s livestock products. Grasslands also support
25% of the world’s population, and not only provide humans with products of direct
economic value, such as meat and milk, but also serve extremely important ecological
services, such as climate regulation, wind and sand control, water conservation, biodiversity
conservation and so on. However, grassland ecosystems are facing a serious problem: land
degradation [2,3]. More than 23% of the global terrestrial area is affected by degradation,
with grassland being the main type of area affected. The degradation of grassland occurring
in arid and semi-arid areas is a serious threat to ecological security, and is one of the main
causes of frequent disasters, such as insect infestations and dust storms. Therefore, the
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large-scale and high-precision monitoring of grasslands has important ecological value and
research significance.

Among the existing land use and land cover (LULC) monitoring methods, remote
sensing images, especially satellite multi-spectral (MS) images, are widely used due to
their advantages of having wide detection ranges, short monitoring periods and large
data volumes. For example, Phinn et al. [4] used multi-spectral images from Landsat-5
TM and Quickbird-2 to monitor seagrass biodiversity on the Eastern Banks in Moreton
Bay, Australia, an area containing a range of seagrass species, cover and biomass levels.
Lu et al. [5] used Landsat TM/ETM+ data to map and monitor land degradation in areas
under human-induced stresses, such as the western Brazilian amazon. Wiesmair et al. [6]
calculated the NDVI and MSAVI2 using WorldView-2 multi-spectral images, then used
these two indicators separately as predictors for vegetation cover in their random forest
regression analyses. Robinson et al. [7] proposed a method for combining multi-resolution
multi-spectral images and labels, resulting in a high-resolution (1 m) land cover map of
the contiguous US, etc. [8–13]. However, we find that most of the multi-spectral images
used in previous studies, including those mentioned above, are carefully processed public
datasets or selected satellite images. They are often quite clear, ruling out the interference
of clouds and shadows.

However, when our goal shifts to grassland monitoring, especially over large areas
and long periods of time, satellite images with clouds and their shadows can be difficult
to work around. We counted 201 scenes of Landsat8 OLI data covering the study area
(48◦25′ N, 116◦49′ E–50◦03′ N, 118◦50′ E) in 2020, and found that nearly half of the scenes
contained more than 20% clouds (Figure 1a).

Figure 1. Landsat8 OLI data cloud coverage statistics (48◦25′ N, 116◦49′ E–50◦03′ N, 118◦50′ E,
2020) obtained using the USGS EarthExplorer system; (a) distribution of scenes with different cloud
coverage, labeled in the format of “cloud coverage, number”; (b) example of a scene in our study
area with slightly heavy clouds.

Synthetic aperture radar (SAR) data have all-weather and all-day capability, and
thus are well-suited for this situation, which is commonly influenced by cloud cover.
Additionally, existing studies have demonstrated that the proper use of VH (vertical–
horizontal) and VV (vertical–vertical) polarization SAR data can be helpful for grass
classification [14]. All of these indicate that the fusion of MS and SAR data will bring
great convenience for remote sensing and grassland monitoring. Therefore, our research
proposes a multi-source fused grassland remote sensing monitoring method. Different
from existing works [15–17] that fuse two kinds of images at the data level (layer stack,
Ehlers fusion, etc.), our method uses feature-level fusion, which fuses features extracted
independently from each type of data to improve the ability to resist cloud interference and
improve accuracy. Meanwhile, due to the high labor and time costs required for the pixel-
by-pixel annotation of high-resolution remote sensing image data, patch-based methods
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are widely used in deep learning-based remote sensing image analysis [18,19]. Considering
that with single-size patches, it is difficult to accommodate various types of features with
complex and different shapes and sizes, multi-size patches are used in our method. Finally,
we select a typical experimental area containing various ecological subdivisions at the
China–Mongolia–Russia border to verify the effectiveness of the method.

2. Materials and Methods
2.1. Study Area

In this study, the area between 48◦25′–50◦03′ N and 116◦49′–118◦50′ E at the border
of China–Mongolia–Russia was selected as a typical study area, as shown in Figure 2.
Specifically, the red boxes in Figure 2 represent the location of the study area. The study
area has a semi-dry, humid climate, with relatively serious soil desertification, which is a
critical area for wind and sand control, and a typical area for the remote sensing monitoring
of grassland. Meanwhile, the study area is rich in ecological subdivisions, with a large
area of typical grassland in the north, and Hulun Lake and its surrounding grassland and
some sandy areas in the middle and south, which are representative of various grassland
ecosystems. Therefore, the study of this region has considerable reference value and can be
used to judge the effectiveness of our method.

Figure 2. Location of the study area.

2.2. Dataset
2.2.1. Data Introduction and Pre-Processing

In this study, multi-spectral remote sensing images and SAR remote sensing images
are used. The data collection time is selected from July to August, when grass growth is at
its peak. In particular, MS data were collected on 9 July and 1 August 2020, and SAR data
were collected on 26 July and 12 August 2020.

For the MS data, we use Landsat-8 Collection 1 Level-2 surface reflectance products
provided by the United States Geological Survey (USGS), which are pre-processed officially.
These data contain 7 different bands, including three RGB bands, one NIR band, two SWIR
bands and one coastal band, with a 30m resolution.

For the SAR data, we use Sentinal-1B Level-1 Ground Range Detected (GRD) high-
resolution products provided by the European Space Agency (ESA), which have a 10 m



Remote Sens. 2022, 14, 750 4 of 16

resolution. These data are then processed using SNAP Desktop, which includes steps such
as apply orbit file, GRD border noise removal, thermal noise removal, speckle filtering,
radiometric calibration, terrain correction and geocoding to obtain VV- and VH-polarized
data. After that, the data are resampled to 30m resolution to match the Landsat-8 data.

Finally, both data are cropped, mosaicked and layer overlaid using ENVI, referring
to the study area. The images were also normalized using the 2% linear contrast stretch
method. The final results of data pre-processing are shown in Figure 3.

Figure 3. (a) MS image after data pre-processing (Landsat-8, 4, 3 and 2 bands); (b) MS image after
data pre-processing (Sentinal-1, VH polarized).

2.2.2. Data Labeling

In the data labeling part, if the data are directly labeled as grassland and non-grassland,
it is easy to annotate only simple samples, which means that the model cannot account
for all kinds of ground objects in the non-grassland samples, and this eventually leads to
the problem of a false high model evaluation index and poor robustness. Therefore, in
this study, we adopt multi-category labeling, and label the features into five categories:
grassland, farmland, water, man-made buildings and bare land.

During the labeling process, the remote sensing images were quantitatively examined
according to the multi-temporal NDVI index curves and spectral curves in the Google
Earth Engine [20]; meanwhile, the Google Earth super-high-resolution RGB images were
combined as references to improve the accuracy of the labeling (Figure 4).

There are 1075 samples in the dataset, which contains 435 grassland samples,
109 farmland samples, 238 water samples, 126 man-made building samples and 167 bare
land samples. The whole samples are randomly split into a training set, validation set,
and test set according to the ratio of 6:1.5:2.5. The specific sample distribution is shown in
Figure 5.

2.3. Our Method
2.3.1. Overview

In this paper, we propose an adaptive feature fusion method based on the attention
mechanism in order to fuse MS and SAR images better and improve the classification
accuracy and resistance against cloud interference. We trained the feature extraction and
fusion network by extracting multi-size patches in multi-source remote sensing images as
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training samples, and finally achieved the classification and remote sensing monitoring
of grassland. Our method includes the following main components: (1) multi-source and
multi-size patch extraction from selected sample points; (2) a feature extraction network
based on a CNN (Convolutional Neural Network); (3) adaptive feature fusion and a
classification module, as shown in Figure 6. It is necessary to clarify that in the “Adaptive
feature fusion and classification” part of Figure 6, concatenation is the commonly used
feature fusion method, and the SE-like and SK-like methods are the feature fusion methods
we proposed. These three methods are used to fuse features separately.

Figure 4. Examples of typical samples and methods to assist with labeling. (Top: MS remote sensing
image from Landsat-8. Middle: super-high-resolution RGB image from Google Earth. Bottom:
multi-temporal NDVI index curves and spectral curves generated by Google Earth Engine).

Figure 5. Landsat-8 image (4, 3 and 2 bands) and samples used in our study.
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Figure 6. Methods and processes proposed in this article.

After the neural network model in the above method is trained, the classification
effectiveness of the method is evaluated by a pre-obtained test set. Then, the multi-source
remote sensing images of the whole study area are input line by line to obtain the classifica-
tion results at pixel level, which is also the result of the remote sensing monitoring of the
grassland in the study area.

2.3.2. Extraction of Multi-Source and Multi-Size Patch

The patch-based method is widely used in the classification of remote sensing images.
Compared with the pixel-based method, the patch-based method combines the sample
point and its surrounding pixels within a certain range to a patch, and takes this patch as a
complete sample. This method not only considers the spectral information of the sample
point itself, but also supplements the texture information around the sample point, making
full use of both the spectral and spatial information of remote sensing images, and it has
achieved good results in the existing studies.

However, we found that the traditional patch-based methods tend to use a single
fixed-size patch, such as 5 × 5, 11 × 11, etc. Considering that the actual ground objects
vary in sizes and shapes, a single fixed-shape patch often cannot effectively extract the
texture features of various types of ground objects at the same time. For example, rivers
are less effective in square patches, larger patches tend to cause the ground object in it to
be less correlated with the central sample points and smaller patches contain insufficient
texture information. Therefore, we propose the method of multi-size patches. As shown in
Figure 7, this method constructs multiple patches at the same time for a single sample point,
and can generate rectangular patches of different shapes and square patches of different
sizes according to the predefined parameters. For all types of ground objects, our method
can generate at least one patch that can effectively characterize the central sample point
(Figure 7b), which is convenient for subsequent feature extraction and fusion.

To simultaneously utilize the rich color information of hyperspectral images and the
ability of SAR images to penetrate cloud, we also propose a multi-source patch extraction
method. Considering that MS and SAR images are from two different data sources, the
image coordinates corresponding to a certain geographic coordinate are not the same
on these two types of images. To solve this problem, we achieved the direct conversion
of geographic coordinates to image coordinates on any image containing geographic
information using functions from the Geospatial Data Abstraction Library (GDAL). This
method gives us the ability to directly extract patches from different data sources to ensure
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that they represent the same sample point. At the same time, we used the above multi-size
patch extraction method on different data.

Figure 7. (a) Multi-source patch extraction and its application scenarios (top: MS image influenced
seriously by cloud; bottom: SAR image); (b) multi-size patch extraction and its application scenarios
(top left: linear ground objects with rectangular patch; top right: small ground objects with small
square patch).

2.3.3. CNN-Based Feature Extraction Network

We constructed a convolutional neural network as a feature extraction sub-network
to extract the features of each patch obtained in Section 2.3.2. Considering that the size of
each patch does not exceed 32 × 32 at most, we controlled the depth of the convolutional
neural network to prevent overfitting. Additionally, a one-dimensional convolutional
neural network is proposed specifically for extracting the spectral information of the
sample points themselves. Specifically, each feature extraction sub-network consists of two
convolutional layers and one pooling layer using the Leaky-ReLU activation function. Each
feature extraction sub-network outputs feature vectors of the same size, and the specific
network structure is shown in Figure 8.

Figure 8. Structure of feature extraction network.

2.3.4. Adaptive Feature Fusion and Classification

As mentioned earlier, in our approach, multiple features extracted from different
patches with different data sources and shapes are obtained for any sample point, so a data
fusion method is needed to combine these features for the final grassland classification. In
particular, for any given sample point, there are only a few sources and sizes of patches
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that can effectively characterize the central sample point (Figure 7). This makes it necessary
for the features to be given corresponding weights during the fusion process to enhance the
influence of the effectively characterized patches and accordingly diminish the influence
of the others. In this regard, we proposed two adaptive feature fusion and classification
methods, the SE-like method and SK-like method, based on the attention mechanism.

Before presenting our methods, we will explain the traditional feature fusion method,
feature concatenation. It obtains the new feature vector by concatenating the features of
each patch, as shown in the following equation:

U =
[

X1X2 . . . XN
]
,

where X =
[
X1, X2, . . . , XN] is the input feature vector and U is the result of feature concatenation.

The SE-like adaptive feature fusion method references the idea of a Squeeze-and-
Excitation Block [21], in which the features from different patches are used as each channel
of the fused feature vector, and squeeze and excitation processes are performed on this
feature vector. The SE-like structure can train a one-dimensional weight vector with the
same length as the original input feature, and multiply it with the fused feature vector
by the channel scale to achieve adaptive feature fusion. Similar to the original structure,
the adaptive feature fusion of the SE-like method consists of two major steps, Fsq and Fex,
which are mathematically expressed as follows:

zc = Fsq(uc) =
1

H×W

H

∑
i=1

W

∑
j=1

uc(i, j),

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)),

where the Fsq process is a global average pooling (GAP) process, while the Fex process
contains two fully connected layers and the ReLU activation function. The structure of
SE-like adaptive feature fusion method is shown in Figure 9, in which 4 is used as an
example of the number of features extracted from patches.

Figure 9. Structure of SE-like adaptive feature fusion method.

The SK-like adaptive feature fusion method is derived from the Selective Kernel Con-
volution method [22]. Unlike the original work, we replace the convolution results of differ-
ently sized convolution kernels with the feature vectors extracted by each feature extraction
network as the input to the SE-Block. For the input feature vector X =

[
X1, X2, . . . , XN],

the SK-Block first performs element-level summation as follows:

U =
N

∑
s=1

Xs,
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and the following steps are similar to the SE-like method, and contain a global average
pooling Fgp procedure and an Ff c procedure consisting of a fully connected layer:

sc = Fgp(uc) =
1

H×W

H

∑
i=1

W

∑
j=1

uc(i, j),

z = Ff c(s) = δ(B(Ws)),

where δ is the ReLU activation function and B represents the batch regularization. After
that, further, we construct multiple attention vectors based on the number of input feature
vectors and apply the Softmax operator among the attention vectors to ensure that the sum
is 1 in the channel direction:

wi
c =

eWi
cz

∑N
j=1 eW j

cz
, i = 1, 2 . . . N.

The final feature vector V = [V1, V2, . . . , Vc] is obtained by computing the original
feature vector with the attention vector as follows:

Vc =
N

∑
i=1

wi
c·Xi

c,
N

∑
i=1

wi
c = 1.

The structure of SK-like adaptive feature fusion method is shown in Figure 10, in
which 4 is used as an example of the number of features extracted from patches.

Figure 10. Structure of SK-like adaptive feature fusion method.

2.4. Evaluation Metrics

During training and testing, several evaluation metrics were used to compare the
performance differences between the proposed methods. Specifically, overall accuracy
and average F1-score were calculated for the training, validation and test set. The overall
accuracy is the ratio of correctly classified samples to the total number of samples:

overall accuracy =
1
K

K

∑
k=1

TP + TN
TP + TN + FP + FN

where K stands for total number of classes, k is for each class, TP is the true positives, TN is
the true negatives, FP is for false positives and FN is for false negatives. The F1-score is
calculated from precision and recall, and then averaged across the categories to obtain the
average F1-score:

avg F1 score =
1
K

K

∑
k=1

2
pr

p + r
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where K and k stand for the same as before, p stands for precision and r stands for recall.
Additionally, the precision and recall can be calculated as follows:

p = TP/TP + FP

r = TP/TP + FN
where TP, FP and FN also stand for the same as before.

3. Results
3.1. Model Training
3.1.1. Training Process

Our model is trained and validated on a server equipped with an Intel(R) Xeon(R)
Gold 6226R @ 2.90GHz processor and a dual NVIDIA(R) Tesla(R) V100 graphics processing
unit (GPU).

For each of the methods proposed above, we trained and tested them on the dataset to
find the most suitable method for conducting the remote sensing monitoring of grasslands.
Figure 11 shows the variation of accuracy and loss with the training process, using the
SK-like method as an example, while other methods behave similarly.

Figure 11. Training curves of accuracy and loss against number of epochs (red: training set; blue:
validation set).

We can see that the model gradually converges in the early stage and stabilizes after
250 epochs. Both training and validation accuracy increase as the loss decreases, and
eventually the accuracy of the training set stabilizes around 1, while the accuracy of the
validation set remains around 90%.

3.1.2. Training Strategies

Learning rate decay and weight decay are used to enhance the training performance.
Among them, learning rate decay helps to reduce the training time without affecting the
training result, and weight decay can alleviate the overfitting problem. We set the initial
learning rate and weight decay coefficients to 0.001 and 0.0005, respectively, and set them
to one tenth of the original values in the first 30 and last 50 epochs, as shown in Figure 12.
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Figure 12. Learning rate and weight decay schedule curves.

3.2. Test Result

Each method and the data combination are evaluated via the test set, and the models
trained by each method and data combination are also used to generate the classification
results for the whole study area. The test results are shown in Figure 13.

Figure 13. Test results of the whole study area using different data sources and methods. (a) Source
MS image; (b) results without using SAR data; (c) results using concatenation; (d) results using
SK-like model.

3.2.1. Comparison between Different Data Sources

We use the SK-like model proposed in the previous section to compare the effect of
different data on the classification results. As shown in Table 1, neither the MS nor SAR
data alone can achieve a satisfactory result. For the MS data only, the accuracy is 85.51%
and the average F1-score is 0.80; for the SAR data only, the accuracy is 70.10% and the
average F1-score is 0.63. At the same time, we can see that the integration of MS and SAR
has a good effect, achieving 93.12% and 0.91 on accuracy and average F1-score, respectively,
with an 7.61% and 0.11 improvement compared with using MS only.
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Table 1. Overall accuracy and average F1-score for different data sources in test set.

Data Source Accuracy Average F1-Score

MS only 85.51% 0.80
SAR only 70.10% 0.63
MS + SAR 93.12% 0.91

The introduction of the SAR image provides the ability to correctly classify sections
in cloud-covered areas. As shown in Figure 14, when using the MS image alone for
remote sensing monitoring, the classification results are severely affected by clouds and
fog, creating confusion in them. In contrast, the method integrating the MS and SAR data
leverages the all-weather capability of SAR data, effectively solving this problem, and
successfully distinguished areas such as grassland, farmland and water in cloud-covered
areas, bringing considerable accuracy improvement.

Figure 14. Different classification results using different data sources in an example cloud-covered
area. (a) Source MS image; (b) source SAR image; (c) results without using SAR data; (d) results using
SAR data.

3.2.2. Comparison between Different Methods

Based on the results above, subsequent research will be conducted using the MS+SAR
data to investigate the fusion ability of different adaptive feature fusion methods for
features extracted from different data sources. The detailed results are shown in Table 2.

Table 2. Overall accuracy and average F1-score for different methods in test set.

Method
Single-Size Patch Multi-Size Patch

Accuracy Average F1-Score Accuracy Average F1-Score

Concatenation 92.10% 0.90 92.44% 0.90
SE-like model 91.07% 0.88 91.75% 0.89
SK-like model 93.12% 0.91 90.03% 0.87

Firstly, we tested and compared the proposed method while using single-size patches.
By analyzing the size of the ground objects and conducting several experiments, we selected
15×15 as the size of the patch. As we can see, under such conditions, the SK-like method
obtains the best results, with 93.12% accuracy and a 0.91 average f1-score, which has a
1.02% accuracy improvement and a 0.01 average f1-score improvement compared with the
commonly used feature concatenation method (Table 2). The difference of effectiveness
between the SK-like method and the feature concatenation in fusing two types of data from
different sources is also visually evident (Figure 15). The SK-like method we proposed can
fuse MS and SAR data better with its capability to adaptively assign weights to features
when classifying in scenarios where SAR data have advantages, such as with cloud-covered
areas, water and buildings. The SE-like method, on the other hand, performs poorly, and
ends up being less effective than traditional methods, and will not be discussed later in
the paper.
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Figure 15. Different classification results using SK-like method and feature concatenation in an
example area mainly contains farmland. (a) Source MS image; (b) source SAR image; (c) results using
feature concatenation; (d) results using SK-like method.

Secondly, multi-size patches are used to test and compare each method. As introduced
in Section 2.3.2, we need a set of sizes to generate patches that can fit more ground targets.
After some preliminary experiments, this set of sizes were determined to be 5 × 11, 11 × 5,
15 × 15 and 31 × 31. Under this setting, we tested and found that multi-size patches
showed a slight improvement in both feature concatenation and SE-like methods com-
pare to single-size patches, with a maximum accuracy improvement of 0.68% (Table 2).
However, surprisingly, the SK-like method used in conjunction with multi-size patches
brought a serious performance degradation—a 3.09% loss in accuracy. By analyzing the
generated multi-size patches and the final classification results, we found that one possible
reason was that the MS and SAR data we used could not be matched precisely in spatial
terms. Although we have performed image registration for these two types of data in
the preprocessing stage, they still have a deviation of up to three to five pixels. It has
no effect on larger size patches, such as the 15 × 15 patches used in the single-size patch
method, but has a significant effect on smaller size patches, such as the 5 × 11 patches used
in the multi-size patch method. In the case of using smaller size patches, small or linear
ground objects may be included in the patches generated from the MS data, but disappear
completely in the patches generated from the SAR data (Figure 16a).

Figure 16. (a) Patches of size 5× 11 extracted from the same sample point (same geographic location).
(Top: MS image; bottom: SAR image; right: zoomed-in view of the patch). (b) Classification result
of the example region. (Top: results using single-size patches with SK-like method; bottom: results
using multi-size patches with SK-like method).
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For the feature concatenation method, the features extracted from these patches con-
taining misinformation only constitute a minority of all the features in the sample, and
have little impact on the classification results. The method still benefits from the additional
information brought in by multi-size patches and achieves a small performance gain. How-
ever, for the SK-like method, once the features extracted from these patches containing
wrong information are given higher weights, the classification results of sample points will
be wrong, bringing a serious performance degradation (Figure 16b).

To verify this conjecture, an additional experiment was carried out. Nine scenes
of Sentinal-2 MSI Level 2A data were mosaiced and cropped to obtain a Sentinal-2 MS
image of the study area. We used this image to replace the originally used Landsat-8
image, and used the original training and test sets for training and testing. The results
show that without adjusting the samples based on the cloud coverage of Sentinal-2 image,
the combination of multi-size patches and SK-like method can already achieve the same
accuracy as single-size patches with the SK-like method, which is a significant improvement
compared to the original 3.09% performance loss.

4. Discussion

In this study, we used MS and SAR data for multi-source data fusion and proposed an
adaptive feature fusion method based on the attention mechanism. The method proposed
in this study has achieved good results for LULC classification on medium-resolution
remote sensing images.

4.1. Dataset and Methods Selection

Firstly, our results clearly showed the advantages of using multi-source data compare
to single-source data. As shown in Table 1, the integration of MS and SAR data obtained
93.12% and 0.91 on accuracy and average F1-score, respectively, with a 7.61% and 0.11
improvement compared with using MS only, which means that the additional information
from SAR data can be of great help in improving the LULC classification accuracy.

Secondly, the combination of the SK-like method that we proposed and single-size
patches achieved the most excellent results, with the highest accuracy of 93.12% and an
average F1-score of 0.91, demonstrating the advantages of the adaptive feature fusion
methods in exploiting the additional information provided by SAR data. Meanwhile, the
traditional feature concatenation method with multi-size patches also achieved good results,
with the second highest accuracy of 92.44% and an average F1-score of 0.90, illustrating the
potential of improving the classification accuracy with the additional information provided
by multi-size patches.

In summary, we believe that satisfactory results can be obtained using the SK-like
method we proposed in the case of the remote sensing monitoring of grasslands using
Landsat-8 MS data and Sentinal-1 SAR data.

4.2. Problems Analysis

Although our method brings a decent performance improvement, there are still some
problems. As we can see in Figure 13, the classification accuracy of cloud-covered areas
is significantly lower than other regions. After analyzing the samples and the results,
we believe that there are two main factors. The first reason is the lack of samples from
cloud-covered regions. In order to allow the neural network to conduct the classification
properly, similar to normal regions, samples from cloud-covered regions need to cover all
five categories, including farmland, buildings and water. Since the percentage of cloud-
covered areas is relatively small, the requirement for the density of samples increases
accordingly. Therefore, we believe that it is necessary to pay attention to sample selection
in future studies. The second reason is the interference of MS images in cloud-covered
areas. MS images will introduce false feature information in cloud-covered areas, especially
in thinner cloud areas, which can have a significant impact on classification accuracy.
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Although the SAR image we used can mitigate this phenomenon, clouds and shadows still
lead to a decrease in class probability, which has been supported by past studies [15].

Additionally, the combination of SK-like methods with multi-size patches is limited
by the alignment problems that exist in the data itself, meaning their combination cannot
achieve the expected results. A possible solution is to use same-source data, such as
Sentinel-1 (SAR data) and Sentinel-2 (MS data) to replace the combination of Sentinel-1
(SAR data) and Landsat-8 (MS data) data used in this paper. The effect of this solution has
been proven by an additional experiment, which can be tried in future studies.

5. Conclusions

In conclusion, the method proposed in this paper adaptively fuses multispectral data
and synthetic aperture radar data using the attention mechanism, effectively solves the
problem of cloud and shadow interference when using remote sensing images, such as
Landsat, for grassland classification, and provides a technical tool for achieving all-time,
all-weather and large-scale grassland remote sensing monitoring, which helps to improve
the capability of remote sensing-based grassland monitoring. This means that we can
further detect and mitigate problems, such as grassland degradation, all over the world,
and protect the Earth’s ecological environment.
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