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Abstract: Salinity in the Bering Sea is vital for the physical environment that is tied to the productive
ecosystem and the properties of Pacific waters transported to the Arctic Ocean. Its salinity variability
reflects many fundamental processes, including sea ice formation/melting and river runoff, but its
spatial and temporal characteristics require better documentation. This study utilizes remote sensing
products and in situ observations collected by saildrone missions to investigate Sea Surface Salinity
(SSS) variability. All Satellite products resolve the large-scale pattern set up by the relatively salty
deep basin and the fresh coastal region, but they can be inaccurate near the ice edge and near land.
The SSS annual cycle exhibits seasonal maxima in winter to spring, and minima in summer to fall.
The amplitude and timing of the seasonal cycle are variable, especially on the eastern Bering Sea
shelf. SSS variability recorded by both saildrone, and satellite instruments provide unprecedented
insights into short-term oceanic processes including sea ice melting, wind-driven currents during
weather events, and river plumes etc. In particular, the Soil Moisture Active Passive (SMAP) satellite
demonstrates encouraging skills in capturing the freshening signals induced by spring sea ice melting.
The Yukon River plume is another source of intense SSS variability. Surface wind forcing plays an
essential role in controlling the horizontal movement of plume water and thereby shaping the SSS
seasonal cycle in local regions.

Keywords: sea surface salinity; Bering Sea; remote sensing; saildrone; sea ice; river plume; wind

1. Introduction

The Bering Sea is a semi-enclosed, sub-arctic marginal sea in the North Pacific. Its
bathymetry is almost equally divided by a deep basin and continental shelves. The eastern
shelf is broad and stretches more than 500 km zonally and 1200 km meridionally (Figure 1).
This contrasts with the narrow shelf (<100 km) in the west [1]. The eastern shelf has received
considerable attention as it hosts intense interactions among ocean, ice, and atmosphere.
The changing physical environment is capable of modulating the local ecosystem, which
supports abundant seabirds and marine mammals as well as some of the United States’
most productive and commercially important fish species [2,3].

Salinity is an essential parameter in controlling the seawater properties over the eastern
Bering Sea shelf, which directly mediates the transport of Pacific Water to the Arctic via
the Bering Strait [4,5]. A freshening signal in the Bering Strait is expected to modify the
vertical extent of Pacific Water in the Arctic [6]. Salinity also plays a key role in setting up
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the stratification and mixed layer depth in the shelf region. In the northern shelf (north
of 60◦ N), salinity stratification is often as important as temperature stratification. On the
southern shelf in summer, salinity can dominate stratification at sites on the inner shelf
(≤50 m depth) and in regions of substantial prior ice-melt on the middle shelf (50–100 m
depth), but temperature dominates at most middle-shelf locations [7,8].
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Figure 1. Averaged Sea Surface Salinity in the Bering Sea in July 2015-June 2020 for CORA_OA (a), 
SMOS (b), SMAP (c) and OISSS (d). The isobaths of 50 m, 100 m and 1000 m are denoted in grey 
lines. Several important geographic locations are marked in panel (a): Gulf of Anadyr (GA); St. Law-
rence Island (Lawrence); St. Matthew Island (Matthew); Nunivak Island (Nunivak). Panel (b) in-
cludes Norton Sound (NS). The locations for the mouths of the Yukon River and the Kuskokwim 
River are labelled in panel (c). 
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ically occurs in March and can cover almost the entire eastern shelf [12]. There are dra-
matic changes for the ice duration in the southern shelf where the seawater is often 
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substantial salinity variability in the upper ocean [13,14]. In parallel, coastal river dis-
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Figure 1. Averaged Sea Surface Salinity in the Bering Sea in July 2015–June 2020 for CORA_OA (a),
SMOS (b), SMAP (c) and OISSS (d). The isobaths of 50 m, 100 m and 1000 m are denoted in grey lines.
Several important geographic locations are marked in panel (a): Gulf of Anadyr (GA); St. Lawrence
Island (Lawrence); St. Matthew Island (Matthew); Nunivak Island (Nunivak). Panel (b) includes
Norton Sound (NS). The locations for the mouths of the Yukon River and the Kuskokwim River are
labelled in panel (c).

The fundamental processes modulating salinity variability in the shelf region include
seasonal ice formation-melting cycle and river runoff. Sea-ice cover is a defining charac-
teristic for the Bering Sea. Despite the strong year-to-year fluctuations, sea ice normally
starts to develop in the northern Bering Sea in November when the temperature drops to
the freezing point (approximately −1.7 ◦C). Sea ice formed in the northern shelf advances
southward under prevailing north-north-easterly winds [9,10]. Melting near the ice edge
provides sizable freshwater to reduce the local salinity [11]. The maximum ice extent
typically occurs in March and can cover almost the entire eastern shelf [12]. There are
dramatic changes for the ice duration in the southern shelf where the seawater is often
warmer than its freezing point. The spring melting and northward retreat of ice induce
substantial salinity variability in the upper ocean [13,14]. In parallel, coastal river discharge
becomes important in summer. The Yukon River and the Kuskokwim River are the major
sources for freshwater, and their plumes create sharp salinity gradients [15–18]. With the
breakdown of the inner front in late summer, this low-salinity signature spreads out over
the shelf [19].

Our knowledge about the hydrography and salinity in the Bering Sea were mostly
derived from shipboard samplings and moored measurements at single-point sites. How-
ever, the remoteness, ice coverage and harsh stormy weather limit the availability of in
situ observations in winter and early spring. It is therefore difficult to construct a complete
annual cycle for salinity over the vast shelf region. While moored instruments recorded
temporal salinity changes associated with sea ice development [20,21], the corresponding
spatial characteristics remain largely unknown. Moreover, the low salinity water near
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the ice edge has rarely been observed. These fresh lenses are expected to pose significant
impacts on the air-sea exchanges of momentum and heat [22,23].

Remote sensing Sea Surface Salinity (SSS) observations became available since 2010
and offered unprecedented capability of mapping global SSS [24,25]. Current satellite
missions, including Soil Moisture and Ocean Salinity (SMOS), Aquarius/SAC−D (Aquar-
ius), and Soil Moisture Active Passive (SMAP), make use of L-band (1.4 GHz) microwave
radiometry whose sensitivity is significantly reduced in cold temperatures. According
to [26–28], the root-mean-square difference (RMSD) between SSS satellite data and in situ
observation is about 1 PSS-78 [29] north of 50◦ N, which is much larger than the overall
RMSD of 0.2 PSS-78 between 40◦ S and 40◦ N. Despite the uncertainties, remote sensing
salinity was found to capture successfully the large salinity changes in the Arctic [30–32].
SSS averaged over the Arctic basin usually obtain encouraging results and the basin mean
SSS displayed consistent annual and interannual variability with in situ products [32,33].
In addition, satellite salinity was also combined with ocean color data to quantify the river
plume and infer a different freshwater source in the Arctic Ocean [34,35].

To evaluate remote sensing SSS in the Arctic Ocean and adjacent subpolar regions, it
is necessary to pay attention to the intense near surface vertical salinity stratification [36].
Some in situ salinity observations might not be close enough to the surface and often
yield large biases when validating L-band radiometric SSS, which are representative of
the first top centimeter. Recently, Saildrone, Inc. uncrewed surface vehicles (USVs) have
been widely deployed to make near-surface measurements in the Bering Sea, Chukchi
Sea and Arctic Ocean [37,38]. The authors in [39] analyzed saildrone data in 2019 and the
simultaneous remote sensing salinity products and concluded that many of the mesoscale-
submesoscale variability were captured. Most importantly, they also pointed out SMAP
products can resolve the marked salinity gradient near the Yukon River plume.

Many saildrone vehicles were launched from Dutch Harbor, AK and navigated
through the eastern Bering Sea shelf. Some saildrones were designed to measure the
eastern Bering Sea shelf [16,40,41]. These new observations augment traditional shipborne
hydrographic casts and provide critical near-surface information. It is worth mentioning
that the analysis of measurements in 2019 only covered a small part of the Bering Sea
shelf [39]. This study presents saildrone observations in 2015–2017 when the shelf region
is well sampled, aiming to document the synoptic variability of SSS. For the Bering Sea,
winter sea ice had record-breaking low extent in recent years, exposing many regions to be
sampled by satellite sensors. This study will take advantage of those winter surface salinity
information in those usually ice-covered regions and derive a mean annual cycle in the
Bering Sea.

2. Materials and Methods
2.1. In Situ Gridded Data

The gridded in situ salinity observations utilized in this study is the Coriolis Ocean
dataset for ReAnalysis (CORA) created by the French Coriolis team. It is produced by
a statistical objective analysis method developed and maintained at LOPS (Laboratoire
d’Océanographie Physique et Spatial): the In Situ Analysis System (ISAS). The inputs
are quality controlled in situ hydrographic profiles from different types of instruments:
mainly Argo floats (including Ice Tethered Profiler), CTD, XBT and XCTD, sea mammals,
moorings, drifting buoys, Thermosalinographs, and surface drifters, etc. [42,43]. This
product is referred to as CORA_OA. Its salinity at 1 m depth is taken as SSS in this study. It
is available on a monthly basis with horizontal grid spacing of 0.5◦.

2.2. In Situ Saildrone Measurements

Several saildrones missions have been carried out in the Bering Sea and the Arctic since
2015 [16,40,41]. Some vehicles targeted the Arctic region and therefore did not spend much
time in the Bering Sea. This study selected the vehicles and missions that mostly surveyed
the eastern Bering Sea shelf in 2015, 2016 and 2017. Different types of instruments were
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installed to collect variables required to quantify air-sea fluxes, including air temperature,
humidity, wind speed and direction, ocean temperature and salinity, etc. While both
temperature and salinity reflect ocean properties, most saildrones missions began in spring
and finished in summer. The overwhelming signal in the observed temperature data
is gradual warming from spring to summer with an increase of about 6–10 ◦C. Surface
heating in summer is widely distributed and yield warming signals in the entire Bering
Sea shelf. Consequently, it is very challenging to infer water mass distributions based on
near surface temperature only. In contrast, salinity demonstrate more regionally dependent
variations, making it a good indicator for ocean dynamics. Thus, our analysis only involves
salinity recorded by the Teledyne RDI Citadel CTD. The nominal measurement depth is
0.5 m or 1 m.

In 2015, saildrone vehicle sd-128 rendezvoused with the NOAA ship, Oscar Dyson,
three times between 1 and 10 May 2015 for instrument comparisons [16,40]. The ship data
were collected at 2.5 m depth and saildrone measurements were at 0.5 m. Their maximum
difference was less than 0.1 PSS-78 and the rms difference was about 0.01 PSS-78 [16]. No
inter-comparison was carried out in other years. However, there were at least two vehicles
deployed in each year and they had crossovers or approached each other (less than 1 km).
Salinity records during those crossing periods were selected. Their comparisons display
good agreement with difference ranging from 0.03 PSS-78 to 0.1 PSS-78 and rms difference
of 0.02 PSS-78. Thus, salinity observations from saildrones were assumed to be of good
quality. We also notice that some saildrone vehicles had CTDs installed in keel tunnel
where the flow was unpumped, relying on the speed of saildrone through the water to push
water through the tunnel. Our quality control analysis indicates that this likely induces
salinity bias of about 0.02 PSS-78 and also as large as 0.3 PSS-78 at few moments. However,
those errors have little impact on our analysis as we mostly spatially average the saildrone
measurements over more than 10-km to match with satellite data.

2.3. Satellite SSS Products

Three remote sensing SSS products were analyzed, which were created by different
quality control processes. The first one is SMAP product from Remote Sensing Systems
Version 4.0 (referred as SMAP hereafter). SMAP dataset is a level 3 product with 8-day
running mean [44]. Its processing produces gridded data with feature resolution at both
40 km (RSS40 km) and 70 km (RSS70 km). It is available from May 2015 to present on a
0.25◦ × 0.25◦ daily grid. Both are utilized for comparison with the saildrone data, which
yield quite similar statistical results including mean difference and standard deviation of
difference. However, RSS40 km often displays nosier spatial pattern near the 50 m isobath
and coastline. Here only the RSS70 km is presented.

The second one is SMOS level 3 debiased version-5 dataset produced by LOCEAN/IPSL
(UMR CNRS/UPMC/IRD/MNHN) laboratory and ACRI-st company that participate in
the Ocean Salinity Expertise Center (CECOS) of Centre Aval de Traitement des Donnees
SMOS (referred as SMOS hereafter). It is provided by 9-day running mean maps on an
Equal-Area Scalable Earth (EASE) 25-km grid. It spans from January 2010 to November
2020 every four days [45].

The third is Multi-Mission Optimally Interpolated Sea Surface Salinity (OISSS) Level 4
V1.0 dataset (referred as OISSS hereafter). This dataset maps the Level-2 orbital swath data
from the AQUARIUS/SAC-D mission (25 August 2011 to 7 June 2015), the Soil Moisture
Active Passive (SMAP) mission (April 2015-present) and Soil Moisture and Ocean Salinity
(SMOS) mission onto a 0.25◦ spatial and 4-day temporal grid using Optimal Interpolation
(OI). The two-month overlap between Aquarius and SMAP was used to ensure consistency
and continuity in the data record. SMOS data were used only to fill the SMAP data gap
during 19 June–24 July 2019, when SMAP satellite was in a safe mode [46].

Monthly average fields are also constructed for the three satellite products. For each
individual grid point, its monthly mean is calculated only when the valid data points
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within that month cover at least 20 days in the original time series. The resulting monthly
data are further used to construct 12 climatological fields to study the annual cycle.

2.4. Surface Wind

Winds are extracted from the National Center for Environmental Prediction (NCEP)
North American Regional Reanalysis (NARR) model hindcasts [47]. The NARR reanalysis
dataset includes surface pressure, wind, temperature and ocean-atmosphere heat fluxes
every three hours. Here, only the daily mean winds are utilized to match the satellite
maps. Its spatial resolution is about 32-km. This wind field was selected to examine the
relationship between wind and ocean velocity in the eastern Bering Sea shelf [48].

3. Results
3.1. SSS in Gridded Datasets
3.1.1. Mean SSS Fields

The mean states of SSS are obtained by averaging the available data from CORA_OA,
SMOS, SMAP and OISSS between July 2015 and June 2020. The four products agree broadly
in the overall SSS spatial structure in the deep basin of the Bering Sea (Figure 1). SSS in the
deep ocean is around 33 PSS-78 with maximum values in the central basin. Their similarity
is also confirmed by the relatively small differences (less than 0.2 PSS-78) in regions deeper
than 1000 m (Figure 2). Notable discrepancy occurs in the north-western Bering Sea, where
SMAP is larger than CORA_OA by more than 1 PSS-78 off the east coast of Siberia. This is
likely due to land contamination as differences arise near the land.
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Figure 2. Difference of mean Sea Surface Salinity between CORA_OA and the other three satellite
products: SMOS minus CORA_OA (a); SMAP minus CORA_OA (b); OISSS minus CORA_OA (c).
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The most striking feature in the eastern Bering Sea shelf is the low salinity water in
the Norton Sound that receives the Yukon River discharge (Figure 1). Along 165◦W near
the center of Norton Sound, the lowest value in mean SSS is about 25–26 PSS-78 in SMAP,
28–29 PSS-78 in CORA_OA and SMOS, and 30 PSS-78 in OISSS. Those numbers are in line
with their differences shown in Figure 2. Note that there is intense salinity front associated
with the river plume [39]; it is not a surprise to find significant biases in gridded datasets.

SMAP data also reveals that low salinity waters extend southward along the coast of
Alaska (Figure 1c). This feature seems to be reasonable considering the freshwater input
from the Kuskokwim River. However, none of the other three datasets capture these coastal
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low salinity values. The Gulf of Anadyr is another region with high disparity among the
datasets, with SSS in SMAP and OISSS higher than CORA_OA by more than 1 PSS-78.

The overall SSS variations are quantified by standard deviation (STD). Gulf of Anadyr
and Norton Sound are hotspots for the elevated variability (STD > 1) due to sea ice forma-
tion/melting and river discharges (Figure 3). OISSS displays much lower STD over there,
suggesting that more realistic signals are excluded in its quality control process. There are
also remarkable variabilities around St. Lawrence Island and Nunivak Island, but they are
only pronounced in SMAP. They are not necessarily bias as dramatic salinity changes were
documented in this area [8,17,21]. In contrast, SMAP also includes high STD along the east
coast of Siberia, which is very likely to be uncertainties/errors near the land.
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Figure 3. Standard deviation fields for CORA_OA (a), SMOS (b), SMAP (c) and OISSS (d). The
isobaths of 50 m, 100 m and 1000 m are in grey lines.

3.1.2. Annual Cycle

To illustrate the annual cycle, monthly mean SSS fields in March, June, September, and
December are extracted from the four datasets over the period of July 2015 to June 2020
(Figure 4). These four months are selected to represent the typical maximum sea ice extent
(March), early summer (June), fall (prior to ice formation, September) and early winter
(developing stage of ice formation, December) in the eastern Bering Sea shelf. Because of
sea ice, remote sensing SSS in winter are usually inaccessible over a large proportion of the
eastern Bering Sea shelf. However, the record-breaking low sea ice extent in 2018 and 2019
enabled much more ice-free regions to be recorded in satellite data [12]. To obtain more
robust results, the monthly fields in Figure 4 include at least two valid data points at each
grid. Note that SSS from satellites are the salinity in the uppermost skin layers and they
should be different from the near surface salinity in the presence of sea ice.

The region north of St. Lawrence Island is mostly masked by sea ice in March (Figure 4).
Fresher waters are found along the Alaskan coast and serve to maintain large-scale horizon-
tal gradients between the eastern shelf and deep ocean. Inter-comparisons between the four
datasets reveal their distinct characteristics. The coastal salinity in CORA_OA is apparently
higher than those from the other three products (Figure 4a). SMOS displays lower SSS in
the Gulf of Anadyr (Figure 4e). SSS near St. Matthew Island are much higher (by more than
1 PSS-78) in SMAP (Figure 4i). By June low salinity waters spread to the central shelf. They
mainly stay in the inner shelf (<50 m isobath) in SMOS, SMAP and OISSS (Figure 4f,j,n).
In contrast, they also extend to Gulf of Anadyr in CORA_OA (Figure 4b). SSS patterns
in September are similar to those in June. The most noticeable changes exist in Gulf of
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Anadyr where SSS increases in CORA_OA (Figure 4c) and decreases in SMOS (Figure 4g).
The coastal freshwater retreats in December but remains fresher than March in the four
products.
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Figure 4. Monthly mean SSS produced from CORA_OA (a–d), SMOS (e–h), SMAP (i–l) and OISSS
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The isobaths of 50 m, 100 m and 1000 m are marked by grey lines. Magenta and black (in panel i)
lines are the maximum sea ice edge during 2015–2020. Note, white area in the top row (a,e,i,m) is
missing data due to ice.

One distinct feature for SSS over the shelf region is the parallel between isohalines and
isobaths. This applies to all products and all seasons. Such behavior results from the fact
that their spatial patterns are largely shaped by oceanic advective salinity changes. Any
salinity anomalies, either due to sea ice melting or river discharge, are spread by ocean
currents whose directions are mostly guided by isobaths [1,4].

SSS changes in the deep ocean are relatively weaker. They are visually lower in
September than March for CORA_OA, SMAP and OISSS. In contrast, SMOS displays an
opposite trend, in which deep-basin SSS is lower in March than in September (Figure 4e,g).
The positive biases off the east coast of Siberia in SMAP persist throughout the year,
suggesting that they are affecting the entire dataset rather than certain periods (Figure 4i–l).

The maximum and minimum of the annual cycle are taken as average of the topmost
5% and lowest 5% values, respectively, over 2015–2020 from the four products. This
approach is to reduce the uncertainty due to noises in satellite data and some accidental
influencing factors. The difference between maximum and minimum are defined as the
amplitude for the seasonal SSS variability. The overall patterns for the amplitudes are
similar to the STD fields in Figure 3, indicating that substantial variability takes place on the
seasonal time scale. Gulf of Anadyr carries the largest amplitude (Figure 5). It is more than
2 PSS-78 for CORA_OA, SMOS and SMAP, but is only about 0.8 PSS-78 in OISSS. Large
values are also found around St. Matthew Island in SMOS and SMAP. The peak-to-peak
ranges in deep ocean are quite weak (~0.2–0.3 PSS-78) in CORA_OA and OISSS. SMOS and
SMAP, however, exhibit much noise in the deep ocean and their amplitude can reach up to
0.7–0.8 PSS-78 in some regions.
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Figure 5. Amplitude (maximum minus minimum) for the sea surface salinity annual cycle in
CORA_OA (a); SMOS (b); SMAP (c) and OISSS (d). The annual cycle is extracted using monthly data
in July 2015–June 2020. Grey lines indicate isobaths of 50 m, 100 m, and 1000 m. Note, white area is
missing data.

Timings for the maximum and minimum of SSS are also extracted for the annual
cycle. The maximum mostly arises in winter for CORA_OA, SMAP and OISSS (Figure 6).
For instance, it is either March or April in the eastern Bering Sea shelf (<100 m). Though
appearing patchy in the deep ocean, it mainly ranges from January to April. SMOS, on the
contrary, has its maximum in October and November in both the eastern shelf and deep
ocean. The minimum in the four datasets is frequently identified from June to September,
which is likely associated with sea ice melting and river discharge (Figure 7). There are a
few exceptions, including November–December in the inner shelf in OISSS, and January–
March in the deep ocean in SMOS. Such localized patterns in the particular timings of
seasonal maximum and minimum indicate that there are considerable variabilities imposed
upon the annual cycle. The following section will demonstrate that SSS synoptic changes
are rich in the eastern Bering Sea shelf.
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3.2. SSS during Saildrone Missions

Saildrone observations are time series along the trajectories of vehicles. To match
them with gridded satellite data, we adopted the collocation method by Vazquez-Cuervo
et al. [39] to interpolate the one-minute saildrone measurements to the nearest grids in each
satellite dataset. For each unique gridded satellite data point, all matched saildrone data
were averaged within that grid cell, providing a single matchup saildrone data point for
each single satellite retrieval. CORA_OA, SMAP and OISSS share the same 0.25◦ grid and
their matchups procedures are thus identical. SMOS has different grid and spatial resolution
of 25 km, which is about 1/3◦ in the Bering Sea region. However, each selected grid cell in
satellite products usually has hundreds of matched data points from saildrone data and
their average shows negligible difference between 0.25◦ and 1/3◦ resolution datasets.

More than one saildrone was deployed in each year. They operated simultaneously
but did not necessarily follow identical tracks. Statistical comparisons between each
individual saildrone mission and three satellite products were evaluated using three metrics:
correlation, bias (satellite minus saildrone) and Root Mean Square of the Difference (RMSD).
The correlation reflects how well satellite data resolve the spatial gradients of SSS. Its
confidence level was performed assuming Student’s t test at 95%. Most satellite products
are significantly correlated with paired saildrone data (Table 1). The only exception is
SMOS and OISSS data in 2016. As shown below, saildrone vehicles, SD126 and SD128, in
2016 mostly stayed in the southern shelf where salinity spatial gradients were quite weak.
All satellite datasets exhibit positive biases with respect to saildrone data. Higher biases are
normally accompanied with larger values of RMSD, indicating that satellite products have
better performance in some area, but evidently degrades in other regions. Their detailed
performance is discussed in the following.

3.2.1. Saildrone Missions in 2015

Two saildrone vehicles SD126 and SD128 were launched at Dutch Harbor, AK in
April 2015 to survey the eastern Bering Sea shelf [16,40]. They navigated northward
near the isobaths of 70 m and 100 m (Figure 8a). They were programmed to sample the
oceanographic fields following sea ice melting near St. Matthew Island and also observe the
Yukon River plume. On 20 May 2015 when both vehicles were still south of 59◦N, SMAP
data displayed freshwater encircling the sea ice margin near St. Matthew Island (Figure 8b).
The observed freshwater was a typical feature for the melt water. Saildrones approached
the Island in early June when the surrounding SSS increased to about 31–31.5 PSS-78. Such
an increase likely resulted from vertical mixing induced by winds. The 31.5 isohaline is
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usually taken as an indicator for the melt-water edge [8]. Both saildrone and SMAP data
captured this lens of freshwater in the vicinity of St. Matthew Island (Figure 8a,c).

Table 1. Statistical comparison between saildrone data and satellite products. Saildrone missions
are listed in the first column where vehicle name begins with SD and the survey year is underneath.
Metrics for evaluation include correlation (95% confidence level in parentheses), Bias and Root Mean
Square of the Difference (RMSD).

SMOS SMAP OISSS

Saildrone Missions Correlation Bias RMSD Correlation Bias RMSD Correlation Bias RMSD

SD126
2015 0.68(0.42) 0.78 2.2 0.86(0.49) 0.67 1.35 0.68(0.52) 0.93 2.08

SD128
2015 0.82(0.57) 0.58 1.87 0.86(0.57) 0.80 1.34 0.80(0.56) 1.03 2.15

SD126
2016 0.35(0.43) 0.05 0.31 0.48(0.46) 0.24 0.27 0.48(0.52) 0.06 0.22

SD128
2016 0.45 (0.46) 0.13 0.37 0.60(0.42) 0.16 0.28 0.72(0.58) 0.02 0.20

SD1001
2017 0.75 (0.51) 0.39 0.36 0.73(0.53) 0.61 0.32 0.83(0.60) 0.45 0.24

SD1002
2017 0.76 (0.53) 0.56 0.64 0.85(0.64) 0.79 0.54 0.87(0.62) 0.52 0.46

SD1003
2017 0.72 (0.55) 0.62 0.63 0.82(0.62) 0.79 0.53 0.81(0.63) 0.63 0.52
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ries. The launch site is the southern end of their tracks and time span is 26 April to 28 July 2015. 
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Figure 8. (a) In situ salinity (color shading) from saildrone vehicles 126 and 128 along their trajectories.
The launch site is the southern end of their tracks and time span is 26 April to 28 July 2015. Passing
time (month/day) for a few spots (triangles) are provided as reference. Snapshots for SSS are extracted
from SMAP products on 20 May (b), 2 June (c) and 12 July (d). Note, white area is missing data.
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The vehicles reached the Yukon River plume in mid-June and followed a sawtooth
course near the salinity front. During this period, coastal freshwater widely was distributed
from the Yukon River mouth (Norton Sound) to 56◦N (about Bristol Bay). These waters
mostly stay in shallow regions (less than 30 m or 20 m). The saildrones started to return
in early July along the isobath of 50 m. The Yukon River plume retreated, but a lens of
freshwater resided east of St. Matthew Island and near the 50 m isobath (Figure 8d).

The point-to-point comparison between satellite data and saildrone SD128 measure-
ments reveal both temporal and spatial SSS variability along saildrone’s track (Figure 9a).
SSS from all datasets is relatively stable in May although SMAP displays general overes-
timation. They start to decrease in early June when the vehicle approached St. Matthew
Island. Saildrone recorded further lower SSS values (less than 25 PSS-78) in mid-June
when it was near the Yukon River plume. The large amplitude fluctuations in SSS clearly
demonstrate the sharp SSS spatial gradient when the vehicle moved back-and-forth near
the plume. SMAP exhibits the best performance as it exactly captures the initial transition
from high SSS (>30 PSS-78) to low SSS (<25 PSS-78). SMAP data is quite stable thereafter
because its temporal resolution is much coarser than the rapidly moving saildrone vehicles.
Nevertheless, SMAP still shows a statistically high correlation with saildrone data (Table 1).
In contrast, OISSS completely fails to resolve the plume regime. SMOS seems to capture the
salinity front, but its SSS in the near coast is much higher than that recorded by saildrone.
This is likely due to an issue of resolvability near land. SSS in all datasets increase to about
30 PSS-78 in early July when saildrone left the Yukon River plume and sampled along the
50-m isobath. Similar to the behavior in May, SMAP has larger positive biases in July than
SMOS and OISSS.
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Figure 9. (a), Time series of salinity measured by CTD on saildrone 128 (black) and collocated SSS
from SMOS (red), SMAP (blue) and OISSS (green). (b), Time series for averaged SSS within a box
near St. Matthew Island. The box location is marked in Figure 8b.

To evaluate the capabilities of satellite data in capturing the spring sea ice melting near
St. Matthew Island, SSS time series within a boxed region near the island (Figure 8b) are
constructed. Freshening events occur in May for year 2015 to 2017 in SMAP data (Figure 9b).
The lowest SSS is well below the criterion of 31.5 isohaline. SSS in SMOS also drops below
31.5 PSS-78 in May, but its minimum is considerably larger than that in SMAP. In contrast,
OISSS has high salinity (>31.5 PSS-78) over the entire period of 2015–2017. Interestingly,
OISSS does show reduction in every May. It is speculated that the processing of OISSS
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eliminates the low SSS near sea ice edge but keeps the values near the boundary of fresh
lens associated with sea ice melting.

3.2.2. Saildrone Missions in 2016

Saildrone vehicles SD126 and SD128 were deployed again on 23 May 2016 and recov-
ered on 3 September. They stayed in the southern part of the shelf (south of 59◦ N). SD128
approached a mooring M2 (black triangle in Figure 10a) in early June. It recorded salinity
values around 31.6 PSS-78. Satellite maps also exhibit relatively low SSS near the mooring
during this period (Figure 10). Another striking feature captured by satellite data is a large
area of coastal freshwater north of 59◦ N. Despite different values in SSS, all three satellite
products reveal that a freshwater belt connects the Yukon River plume and the low SSS
possibly induced by sea ice melting north of St. Matthew Island. This was formed under
offshore winds. A similar event also took place in 2017, which will be discussed in the
following section.
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Figure 10. (a) Salinity (color shading) from CTD on saildrone vehicles 126 and 128 along their
trajectories. The launch site is the southern end of their tracks and time span is 23 May to 3 September
2016. Location (triangle) and passing time (month/day) for SD 128 are marked. The performance of
three satellite products in early June is illustrated by snapshots extracted from SMOS (b), SMAP (c)
and OISSS (d). Note, white area is missing data.

Saildrones spent the rest of June in the region south of 56◦N and between the outer
shelf (about 100 m water depth) and deep ocean (about 1000 m water depth) (Figure 11).
Following their sawtooth pathway, the observed SSS displays larger values (about 32.5
PSS-78) over the deep ocean and fresher values (less than 32 PSS-78) in the shelf region. As
shown in Figure 12a, the SSS fluctuations from mid-June to July largely reflect the spatial
SSS gradient between deep ocean and shelf. They further navigated to north of 56◦ N in
mid-July. Their survey was mostly confined between the 100-m and 50-m isobaths where
SSS spatial difference is weaker. Consequently, the peak-to-peak range for SSS variability
during this period is smaller than those in mid-June (Figure 12a).
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flipped to westerly and north-westerly and persisted until middle June. This promoted an 
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Figure 12. Time series of salinity measured by CTD on saildrone (black) and collocated SSS from
SMOS (red), SMAP (blue) and OISSS (green). Measurement from SD128 in 2016 and SD1001 in 2017
are displayed in (a,b), respectively.

Satellite maps in late August indicate that the freshwater discharge from the Kuskok-
wim River was intensified and advanced offshore. As a result, SSS in the middle shelf
is lower than that in early June. Saildrone data also confirm the low SSS values near the
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50 m isobath in late August (Figure 12a). This is in line with the SSS seasonal minimum
in August-September for this region (Figure 7). SSS variations along the SD128 track are
generally captured by satellite products.

Satellite products generally follows Saildrone records. However, SMOS and SMAP
are much noisier than saildrone data (Figure 12a). OISSS tends to underestimate the high
SSS peaks, but its performance is better than the other three satellite products based on the
overall correlations with and mean biases against saildrone records (Table 1).

3.2.3. Saildrone Missions in 2017

Three saildrone vehicles SD1001, SD1002, SD1003 were launched at Dutch Harbor,
AK on 17 July 2017. Our analysis mostly focuses on the SD1001 data as both SD1002
and SD1003 navigated directly to the Arctic Ocean. Before their deployment, satellite
maps capture the low SSS pattern on the northern shelf, which was induced by sea ice
melting and river discharges (Figure 13a,d). The north-easterly wind provided favorable
conditions (owing to Ekman transport) to push the river plume offshore, so that the plume
was connected with the ice melting fresh water encircling St. Matthew Island. A similar
freshwater belt was found in 2016 (Figure 10), indicating that it is not a rare event. The lens
of low salinity is also mixed downward with subsurface higher salinity, which can account
for the increased SSS in early June (Figure 13b,e). At the same time, the prevailing wind
flipped to westerly and north-westerly and persisted until middle June. This promoted
an offshore and southward ocean current to deliver more freshwater to the southern shelf
(Figure 13c,f). South-easterly winds prevail from late June to middle July, during which the
southward spread of low SSS is almost halted.
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From about 20 July, a few days after SD1001 was launched, surface wind force switched
to westerly and north-westerly again. This then triggered the southward expansion of
low salinity near the Yukon River and the Kuskokwim River. The SMOS map and SD1001
data both confirmed that the southern shelf was widely occupied by low SSS waters
(Figure 14a,b). The wind became adverse for southward transport in August but supported
the westward water movement north of St. Matthew Island (Figure 14c). Surface salinity
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in the southern shelf on 23 August was larger than in early August, likely resulting from
horizontal and vertical mixing processes (Figure 14d).
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Figure 14. (a) Salinity (color shading) from CTD on saildrone vehicles 1001. The launch site is the
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passing time (month/day) for a few spots are marked. SSS snapshots from SMOS are shown on 26
July (b); 7 August (c); 23 August (d). The corresponding wind are in grey vectors. Note, white area is
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SSS time series along the saildrone trajectories are consistent with the spatial pat-
terns described above. It quickly reduced from 32.5 PSS-78 north of Dutch Harbor to
30.5–31 PSS-78 south of St. Lawrence (Figure 12b). When SD1001 surveyed between the
100-m and 50-m isobath in mid-August, the recorded SSS fluctuated between 32 PSS-78
and 31 PSS-78. Thus, SSS has a horizontal gradient of about 1 PSS-78 in this region. SSS
increased to 32.5 PSS-78 after mid-September when the vehicle navigated to deeper water.
All satellite products display rich fluctuations, but SMAP and OISSS apparently overesti-
mate the surface salinity throughout the mission. In contrast, SMOS demonstrates overall
agreement with saildrone data.

4. Discussion and Conclusions

The characteristics for SSS in the Bering Sea are extracted from an in situ observation-
based dataset and three remote sensing satellite products. All of them capture the large-scale
salinity front set up by salty water in the deep basin and freshwater along the coast of
Alaska. The mean pattern of SSS is broadly consistent among different datasets, except for
the substantial biases in SMAP off the coast of Siberia. Significant divergence between those
products also exists on the eastern Bering Sea shelf. It should be stressed that CORA_OA
might include dramatic uncertainties near the shallow waters and ice edge. Accordingly,
discrepancies between satellite products and CORA_OA in those regions do not necessarily
mean biases.

High SSS variability is found on the northern Bering Sea shelf, in particular in Norton
Sound, the Gulf of Anadyr, and around St. Matthew Island. Such variability is pronounced
in SMOS and SMAP but attenuated in OISSS. Not surprisingly, CORA_OA somewhat
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underestimates the standard deviation of SSS in those regions, indicating that its in situ
measurements are insufficient in space and time to resolve the salinity variations. This also
highlights the benefits of remote sensing data in understanding the salinity changes in the
shelf region.

Thanks to lessened ice coverage in recent years, satellite data allows for the depiction
of the SSS annual cycle over the entire Bering Sea. Both the deep ocean and eastern shelf
are characterized by higher surface salinity in winter and lower values in summer months.
The offshore expansion of coastal freshwater in summer and onshore retreat in winter are
captured by all datasets. The peak-to-peak amplitude over a climatological annual cycle
is only about 0.2–0.3 PSS-78 in the basin interior but exceeds 2 PSS-78 near the Gulf of
Anadyr and St. Matthew Island. Its overall pattern resembles the structure of the standard
deviations, suggesting that a large proportion of surface salinity changes take place on the
seasonal time scale.

SSS normally reaches its seasonal maximum in winter and spring (from December to
April) and minimum in summer (June-September). The timing or phase of the annual cycle
is generally homogeneous in the deep ocean but displays patchy structures in the eastern
Bering Sea shelf. Despite divergent behaviors in different datasets, consistency is found
within each individual product. For instance, peak/trough times on the northern shelf
(north of St. Matthew Island) and central shelf (50–100 m depths) are almost identical. This
suggests that SSS fluctuates in phase across these regions. Previous analysis of hydrographic
profiles pointed out that such coherence also applies to near-bottom salinity changes [17].

We also emphasize that remote sensing SSS in winter is valid in ice free or low-
concentration areas. However, the early-stage sea ice formation is not monotonic, largely
due to the variable surface wind fields. Periods of northerly or north-easterly winds result
in ice advancing, while periods of southerly winds cause ice retreat. Multiple instances
of ice advance and retreat were not uncommon in the eastern Bering Sea shelf [21]. The
intermittent sea ice coverage and ice melting during those periods were widely docu-
mented [3,20,21,49]. Those short-term interruptions certainly modulate the specific SSS
values and timing of the seasonal maximum. Even during stable and widely distributed
sea ice extent periods, low salinity follows the ice edge where melting is frequent. However,
the processing algorithms for different satellite products yield intrinsically varying skills in
resolving the ice-ocean boundary. This is another source of uncertainty in the particular
shape of the annual cycle over the southern part of the shelf.

SSS synoptic variability during the ice-free period is also dramatic over the shelf.
The combination of saildrone measurements and satellite maps reveals the complexity
of those SSS changes. Spring sea ice melting induces fresh layers encircling St. Matthew
Island. Active vertical mixing prevents the persistence of that low SSS. Such rapid events
of SSS reduction are successfully captured by SMAP, indicating that SMAP has promising
applicability near the ice edge. On the other hand, the disappearance of sea ice also
allows the low salinity water in Norton Sound and the Yukon River plume to be directly
influenced by surface wind. As a frequently occurring wind pattern, northeasterlies drive
freshwater westward and sometimes promote the formation of a long freshwater belt north
of St. Matthew Island. According to satellite data, this phenomenon arose in both 2016 and
2017, suggesting that it is a typical process on the northern shelf. This also explains the
enhanced SSS standard deviation in the vicinity of St. Matthew Island.

When the wind shifts to north-westerly, it provides a favorable condition for the
spreading of the Yukon River plume to the southern shelf. Freshwater is visible on the
central shelf, primarily in parallel with the 50 and 100-m isobaths. Another source of
freshwater are the Kuskokwim River and other freshwater streams on the southwest coast
of Alaska. Their signals are detectable in satellite maps in summer and early fall. When the
southward transport of the Yukon River plume co-occurs with the discharge of Kuskokwim
River or when one occurs after another, low SSS signals on the southern shelf can be
sustained for longer time. It is true that SSS reaches its seasonal minimum from June to
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September, but the direction of the prevailing wind plays a critical role in controlling the
detailed structure and timing of SSS minima over the shelf.

Both saildrone in situ observation and satellite maps provide unprecedented knowl-
edge about the SSS variability in the seasonally ice-covered eastern Bering Sea shelf. Climate
projections suggest that ice would retreat earlier and arrive later, which would allow for
extended ice-free periods [50]. This further underscores the values of satellite data in
monitoring winter and spring conditions in the future. In addition, a previous study has
demonstrated that remote sensing salinity can reflect the SSS variability near major rivers
in lower and middle latitudes [51]. Our assessment of satellite products near the Yukon
River further confirms its robustness and benefits in understanding the intense salinity
changes near such a high-latitude river. This has important implications in determining
the most reliable dataset to study the salinity field in the Bering Sea and Arctic Ocean.
While reanalysis products constructed from in situ measurements can serve as baseline for
long-term mean features in these regions, remote sensing salinity is essential to understand
both the time scale and spatial structure for their rapidly changing oceanic processes.

It should be admitted that uncertainties associated with satellite products are apparent,
especially on the eastern Bering Sea shelf. The OISSS product is designed to correct satellite
SSS biases using in situ SSS fields [52], but it missed much realistic variability near the
coastal region and sea ice edge owing to a lack of in situ measurements there. During the
three saildrone missions in 2015–2017, neither SMOS nor SMAP showed overwhelmingly
better performance than the other. One particular issue is the resolvability near land and
ice. The inconsistence between SMOS and SMAP near the Yukon River plume and ice-
melting water around St. Matthew Island are very good examples. Their comparisons
with individual Saildrone missions in 2015 demonstrate that SMOS tends to carry much
larger positive biases than SMAP in these regions (Figure 9). Such overestimation in SMOS
should be very common in other periods, as its long-term mean is higher near the Yukon
River plume (Figures 1 and 4). This problem also significantly affects its capability to record
the SSS variability associated with sea ice melting. This is an important reason for the
weaker standard deviations and lower peak-to-peak amplitude seasonal cycle in SMOS
near St. Matthew Island (Figures 3 and 5). Thus, more work should be carried out to further
improve its performance near the land and ice.
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