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Abstract: Anomaly targets in a hyperspectral image (HSI) are often multi-pixel, rather than single-
pixel, objects. Therefore, algorithms using a test point vector may ignore the spatial characteristics of
the test point. In addition, hyperspectral anomaly detection (AD) algorithms usually use original
spectral signatures. In a fractional Fourier transform (FrFT), the signals in the fractional Fourier
domain (FrFD) possess complementary characteristics of both the original reflectance spectrum and its
Fourier transform. In this paper, a tensor RX (TRX) algorithm based on FrFT (FrFT-TRX) is proposed
for hyperspectral AD. First, the fractional order of FrFT is selected by fractional Fourier entropy
(FrFE) maximization. Then, the HSI is transformed into the FrFD by FrFT. Next, TRX is employed
in the FrFD. Finally, according to the optimal spatial dimensions of the target and background
tensors, the optimal AD result is achieved by adjusting the fractional order. TRX employs a test point
tensor, making better use of the spatial characteristics of the test point. TRX in the FrFD exploits
the complementary advantages of the intermediate domain to increase discrimination between the
target and background. Six existing algorithms are used for comparison in order to verify the AD
performance of the proposed FrFT-TRX over five real HSIs. The experimental results demonstrate the
superiority of the proposed algorithm.

Keywords: anomaly detection; tensor; fractional Fourier transform; fractional Fourier entropy

1. Introduction

A hyperspectral image (HSI) can be regarded as a 3D cube with two spatial dimensions
and one spectral dimension. The spectral dimension comprises hundreds of contiguous
spectral bands, and HSIs contain rich spectral information. Due to the characteristics of
HSIs, they have increasingly been used for various applications, such as scene classification,
spectral unmixing, target detection [1–3], and so on. In all of these applications, anomaly
detection (AD), as a kind of target detection, does not require a priori information. As such,
it can be used in a wide range of military and civil applications [4–6].

Many algorithms have been proposed for hyperspectral AD over the past two decades.
One class of algorithms does not need to assume the distribution of the background data, in-
cluding algorithms based on sparse representations. Background joint sparse representation
(BJSR) [7] is an adaptive detector based on sparse representation that can automatically han-
dle complicated background classes. The collaborative representation detector (CRD) [8] is
based on the concept that background pixel points can be approximately represented by
their spatial neighborhoods, while anomaly points cannot. Other AD algorithms based on
sparse representations have been detailed in [9–12]. Another class of AD algorithms relies
on particular statistical assumptions; these are considered traditional methods. A famous
statistical model-based algorithm is the Reed–Xiaoli (RX) detector [13,14], which is based
on and evolved from the principle of the generalized likelihood ratio test (GLRT). The RX
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detector assumes that each pixel follows a Gaussian distribution, and the target is deter-
mined by measuring the Mahalanobis distance between the test point and the background.
Global RX (GRX) and local RX (LRX) are two versions of the RX detector [15,16], both of
which estimate background statistics (i.e., mean and covariance matrices). In the GRX,
the whole image is used for background statistics. In the LRX, sliding dual windows are
used to obtain local background statistics. For the GRX or LRX, the detection performance
depends on the estimation of the covariance matrix, and the computational complexity is
usually high. To overcome this problem, Fowler and Du have proposed dimensionality
reduction-based RX through random projections [17]. In the random projection domain,
the Mahalanobis distance can also be used to effectively calculate the AD result, which
is similar to the result in the original domain. In GRX and LRX, the detection result is
calculated based on the test point vector; however, anomaly targets are usually multi-pixel
objects, and using only the test point vector may reduce the detection accuracy. In [18],
two adaptive detectors—one-step GLRT (1S-GLRT) and two-step GLRT (2S-GLRT)—have
been proposed, based on the GLRT design criterion and its modified version. These two
detectors can detect a multi-pixel anomaly target, without prior knowledge of a pattern, in
the presence of Gaussian noise. In addition, hyperspectral data can be regarded as a 3D
tensor. Similar to algorithms using low-rank sparse decomposition (e.g., LRaSMD) [19,20],
some models based on tensors [21,22] use tensor decomposition to remove redundant
information. The test point vector and its neighborhood vectors can form a test tensor
block centered at the test point. Other tensor-based algorithms consider the spatial–spectral
characteristics of HSIs simultaneously, which can reduce the false alarm rate. A tensor-
based adaptive sub-space detector (TBASD), a tensor version of BJSR, has been developed
based on the test tensor block. It explores spatial–spectral characteristics without breaking
the spatial–spectral structure [23]. However, the computational complexity of algorithms
based on tensors is relatively high. With the recent progress in deep learning (DL) the-
ory, numerous feature extraction algorithms based on DL for HSI processing have been
proposed [24–27]. Algorithms based on convolutional neural networks (CNNs) consider
the spatial–spectral characteristics and, thus, generate effective models.

The above AD algorithms mainly operate in the original spectral domain. AD methods
based on the transform domain comprise another research direction. Kernel Reed–Xiaoli
(KRX) [28] is a classical transform domain method. It expands a linear non-Gaussian model
in the low-dimensional original data space to a non-linear Gaussian domain in the higher-
dimensional feature space. In addition, the fractional Fourier entropy (FrFE)-based RX
(FrFE-RX) [29] algorithm processes signals in the fractional Fourier domain (FrFD). In the
FrFD, which lies between the original reflectance spectrum and its Fourier transform, the
data have complementary strengths through the use of space–frequency representations,
and discrimination between anomalies and the background can be enhanced [29–31],
thus improving the AD performance. An algorithm using a fractional Fourier transform
(FrFT) and transferred CNN based on a tensor (FrFTTCNNT) [32] has been proposed
for hyperspectral AD, which considers the spatial–spectral characteristics in the FrFD.
However, the number of parameters to be adjusted in FrFTTCNNT is relatively large and
the computational complexity is relatively high. In addition, the higher-dimensional dataset
in FrFTTCNNT is dimensionally reduced before FrFT, which removes the redundancy of
spectral bands but also results in the loss of information.

In this paper, the fractional Fourier transform-based tensor RX (FrFT-TRX) algorithm
is proposed for hyperspectral AD. First, the original HSI is transformed into the FrFD by
FrFT with FrFE maximization. Then, in the FrFD, TRX is used to detect anomaly targets.
Finally, the optimal AD result is achieved by adjusting the spatial sizes of the target and
background, as well as the fractional order of FrFT.

In summary, the main contributions of this paper can be summarized as follows:

1. Through improved mining of the spatial characteristics of HSI, tensor RX (TRX)—an
improved version of LRX—is proposed. TRX uses the test point tensor, instead of the
test point vector.
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2. The proposed TRX is combined with FrFT, which can handle non-stationary noise
better than the traditional Fourier transform (FT). In the FrFD, discrimination between
anomalies and the background is enhanced.

3. The optimal fractional order, p, of FrFT in the proposed FrFT-TRX does not correspond
to FrFE maximization but is obtained by reverse adjustment. That is, p is first selected
by FrFE maximization and TRX is employed in the FrFD. According to the optimal
spatial dimensions of the target and background tensors, the optimal AD result is
achieved by adjusting the p value, such that the optimal p is obtained.

The remainder of this paper is organized as follows. In Section 2, we describe the
related work and the overall architecture of our proposed method. Our experimental
results and discussions related to the proposed method are presented in Section 3. Finally,
conclusions are drawn in Section 4.

2. Proposed Method
2.1. Fractional Fourier Transform for HSI

The FrFT transforms a signal into an intermediate domain [29]. For a hyperspectral
dataset X = {x i ∈ RD, i = 1, · · · , N}, where xi is the test point vector, and N and D stand
for the number of sample points and spectral bands, respectively, this process can be
formulated as follows:

xi
p(u) =

1
N

N

∑
s=1

xi(s)Kp(s, u), (1)

where u and s are both indices, p is the fractional order of FrFT, and Kp(s, u) is represented
as follows:

Kp(s, u) =


Aφ exp

[
jπ(s2 cot φ− 2su csc φ + u2 cot φ)

]
, φ 6= nπ

δ(s− u), φ = 2nπ

δ(s + u), φ = (2n± 1)π

, (2)

where n is an integer, φ = pπ/2 is the rotation angle, and Aφ is as follows:

Aφ =
exp[−jπsgn(sin φ)/4 + jφ/2]

|sin φ|1/2 . (3)

In FrFT, xi
p equals xi when p = 0 and xi

p equals the traditional FT of xi when p = 1.
In most cases, as the value of p ranges between 0 and 1, xi

p contains information on both the
reflectance spectrum and its Fourier domain. In [29], the optimal value of p was obtained
by calculating FrFE, and the FrFE-RX algorithm obtained the optimal AD results. The
influence of different values of p on the AD results of the proposed FrFT-TRX algorithm is
discussed in the experimental section of this paper.

2.2. Tensor RX for HSI

Each test point vector and its neighborhood form a tensor block for a hyperspectral
dataset. The test tensor 3Γx ∈ Rwx×wx×D, where wx × wx is the window size of the test
tensor and D is the number of spectral bands, can be expressed as

3Γx= β3Γa +
3Γnx , (4)

where β ∈ Rwx×wx is a matrix of the corresponding abundance coefficients, 3Γa ∈ Rwx×wx×D

is the tensor of the anomaly target, and 3Γnx ∈ Rwx×wx×D is the corresponding noise tensor,
which can be regarded as being composed of wx × wx noise vectors. The noise vector
satisfies ni ∼ N(0, R), i = 1, 2, · · · , wx × wx, where R is an unknown covariance matrix,
and 3Γnx∼ N(0, R).
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For the homogeneous background tensor 3Γb ∈ Rwb×wb×D—where wb × wb is the
window size of the background tensor and wb ≥ wx—centered at the test point vector, no
anomaly exists. 3Γb is assumed to be available; that is,

3Γb = 3Γnb∼ N(0, R) , (5)

where 3Γnb ∈ Rwb×wb×D is the background noise tensor. The noise vectors in 3Γnb are
assumed to be independent and identically distributed (IID).

Equations (6) and (7) show the binary hypothesis test in tensor form.

H0:

{
3Γx∼ N(0, R)
3Γb∼ N(0, R)

Anomaly absent, (6)

H1:

{
3Γx∼ N

(
β3Γa, R

)
3Γb∼ N(0, R)

Anomaly present. (7)

As the noise vectors are IID, the joint probability density functions (PDFs) of 3Γx and
3Γb under H0 and H1 can be expressed as follows:

f (3Γx, 3Γb; R, H0) =
exp[− 1

2 tr(R−1F0)]

(2π)N(L+K)/2|R|(L+K)/2
, (8)

f (3Γx, 3Γb; 3Γa, β, R, H1) =
exp[− 1

2 tr(R−1F1)]

(2π)N(L+K)/2|R|(L+K)/2
, (9)

where F0 and F1 are:
F0 = 3Γb

3Γb
T + 3Γx

3Γx
T , (10)

F1 = 3Γb
3Γb

T+(3Γx−β3Γa)(
3Γx−β3Γa

)T
. (11)

As the parameters 3Γa, β, and R in f (3Γx, 3Γb; R, H0
)

and f (3Γx, 3Γb; 3Γa, β, R, H1
)

are unknown, an adaptive detector based on the generalized likelihood ratio test (GLRT)
is employed and each unknown parameter is replaced by its maximum likelihood (ML)
estimate [18].

Similar to the two-step GLRT in [18], the covariance matrix R is first assumed to be
known and the GLRT detector based on the tensor can be written as follows:

max{3Γa , β} f (3Γx|H 1)

f (3Γx|H 0)

H1
≷
H0

ξ1, (12)

where ξ1 is the AD threshold, and f (3Γx|H 1
)

and f (3Γx|H 0
)

represent the PDFs of 3Γx
under H1 and H0, respectively. Due to the independence of the vectors in 3Γx, f (3Γx|H 1

)
can be written as:

f (3Γx|H 1) =
exp[− 1

2 tr(R−1F1)]

(2π)NK/2|R|K/2 , (13)

where
F1 = (3Γx−β3Γa)(

3Γx−β3Γa)
T . (14)

Furthermore, f (3Γx|H 0
)

can be written as

f (3Γx|H 0) =
exp[− 1

2 tr(R−13Γx
3Γx

T)]

(2π)NK/2|R|K/2 . (15)
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The maximization of f (3Γx|H 1
)
, with respect to β, can be achieved at

β1 =
3Γx

TR−13Γa
3ΓaTR−13Γa

, (16)

where the corresponding maximum of f (3Γx|H 1
)

is

max
{β}

f (3Γx|H 1) =
1

(2π)NK/2|R|K/2 exp
[
− 1

2 tr(R−13Γx
3Γx

T)
]

× exp
[
− 1

2 tr
(

R−13Γx
3Γx

TR−13Γa
3Γa

T

3ΓaTR−13Γa

)]
.

(17)

Substituting Equations (15) and (17) into Equation (12) yields

max
{3Γa}

R−13Γx
3Γx

TR−13Γa
3Γa

T

3ΓaTR−13Γa

H1
≷
H0

ξ2, (18)

where ξ2 is the AD threshold. According to the Rayleigh–Ritz theorem [18,33], the following
expression can be obtained:

max
{3Γa}

R−13Γx
3Γx

TR−13Γa
3Γa

T

3ΓaTR−13Γa
= λmax

{
R−1/23Γx

3Γx
TR−1/2

}
. (19)

Then, we replace R with R = 3Γb
T3Γb to obtain

D
(

3Γx

)
= λmax

{
3ΓxR−13Γx

T} H1
≷
H0

ξt, (20)

where ξt is the AD threshold. To overcome the problem of high computational complexity
due to the tensor, Equation (20) can be written in matrix form, as follows:

D(X)= λmax

{
XM−1XT

} H1
≷
H0

ξx, (21)

where X ∈ Rm×D (m = wx × wx) is the second-order matrix corresponding to 3Γx, M = BTB,
B ∈ Rn×D (n = wb × wb) is the second-order matrix corresponding to 3Γb, and ξx is the
AD threshold.

This detector is a special case of 2S-GLRT [18] and can be regarded as a tensor RX
(TRX) detector. In the TRX, the spatial sizes of the target and background are assumed to
be rectangular.

2.3. FrFT-TRX for HSI

As shown in Figure 1, the proposed FrFT-TRX is based on FrFT and TRX. First,
the fractional order of FrFT, p, is selected by FrFE maximization. Then, the test HSI is
transformed into the FrFD by FrFT. Next, TRX is employed for hyperspectral AD in the
FrFD. Finally, according to the optimal spatial dimensions of target and background tensors,
the optimal AD result is achieved by adjusting the value of p. The detailed procedure of
the proposed FrFT-TRX algorithm is shown in Algorithm 1.
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Algorithm 1: Proposed FrFT-TRX method.

Input: HSI X = {x i ∈ RD, i = 1, · · · , N}, fractional order of FrFT p, test tensor 3Γx, and
background tensor 3Γb

(1) p is first selected by FrFE maximization;
(2) For each test point vector xi, its representation in FrFD is obtained by Equation (1);
(3) TRX is used in the HSI after FrFT via Equation (20);
(4) p is adjusted according to the optimal 3Γx and 3Γb to obtain the optimal AD result.

Output: Optimal p, 3Γx, 3Γb, and AD result.
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Figure 1. Diagram of the proposed FrFT-TRX algorithm.

3. Experimental Results
3.1. Datasets

Five real HSIs were used to evaluate the AD performance of the proposed FrFT-TRX
algorithm. Figures 2a, 5a, 8a, 11a, and 14a show the 100th bands of the five experimental
HSIs, while Figures 2b, 5b, 8b, 11b, and 14b show the corresponding ground-truth maps.

Table 1 lists some features of the five experimental HSIs. Data L, C, P, and T are
from the ABU dataset (http://xudongkang.weebly.com/ accessed on 25 December 2021).
Data S are part of the San Diego airport area data, which were captured over CA, USA
and include 224 spectral bands from 370 nm to 2510 nm. After removing the noisy bands,
126 bands were used for the experiment. Data L, C, T, and S were captured by an airborne
visible/infrared imaging spectrometer (AVIRIS), while Data P were captured by a reflective
optics system imaging spectrometer (ROSIS-03) sensor.

Table 1. Features of five experimental HSIs.

Data Capture Location Resolution Sensor Experimental Size Flight Date

data L Los Angeles 7.1 m AVIRIS 100 × 100 × 205 11/9/2011
data C Cat Island 17.2 m AVIRIS 150 × 150 × 189 9/12/2010
data P Pavia 1.3 m ROSIS-03 150 × 150 × 102 Unknown
data T Texas Coast 17.2 m AVIRIS 100 × 100 × 204 8/29/2010
data S San Diego 3.5 m AVIRIS 120 × 120 × 126 Unknown

3.2. Experiment

Six existing algorithms were used for comparison, in order to verify the effectiveness
of the proposed FrFT-TRX algorithm: GRX and LRX, the benchmark AD algorithms; KRX,
a classical transform domain method; FrFE-RX, a new RX algorithm in the FrFD; FrFE-
LRX, the local algorithm version of FrFE-RX; and TRX, which is based on dimensionality
reduction by principal component analysis (PCA-TRX). Two-dimensional diagrams of the
detection results were used for subjective evaluation. The receiver operating characteristic
(ROC) curve, area under the ROC curve (AUC), and separability graph were used for
objective evaluation.

For fairness of comparison, the parameters of the comparison algorithms were set to
the optimal values within a certain range. In our experiments, all windows were rectangular
and the side length size is used to represent the window size. For GRX, there were no
parameters that needed to be debugged. For LRX, the dual-window sizes (Win, Wout) were
parameters that needed to be debugged. For KRX, kernel parameter c and the dual-window

http://xudongkang.weebly.com/
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sizes (Win, Wout) have a great influence on the AD results. For FrFE-RX, the fractional
order p was set based on FrFE. For FrFE-LRX, p was also based on FrFE and (Win, Wout)
needed to be debugged. For PCA-TRX, the number of dimensions d after PCA and the
spatial sizes (Wt, Wb) of the target and background tensor have important influences on
the AD results. For FrFT-TRX, the fractional order p and the spatial sizes (Wt, Wb) of the
target and background tensor all needed to be debugged. Table 2 shows the parameter
settings for LRX, GRX, FrFE-RX, FrFE-LRX, PCA-TRX, and FrFT-TRX, with respect to the
five experimental HSIs.

Table 2. Parameter settings of LRX, FrFE-RX, FrFE-LRX, and FrFT-TRX for the five experimental HSIs.

Data LRX
(Win, Wout)

KRX
(c, Win, Wout)

FrFE-RX
p

FrFE-LRX
(p, Win, Wout)

PCA-TRX
(d, Wt, Wb)

FrFT-TRX
(p, Wt, Wb)

data L (7, 9) (10−5, 5, 9) 0.2 (0.2, 7, 9) (10, 7, 9) (1, 7, 9)
data C (25, 77) (10−2, 5, 7) 0.2 (0.2, 25, 77) (10, 3, 37) (0.2, 3, 37)
data P (25, 81) (10−1, 25, 29) 1 (1, 25, 77) (20, 3, 37) (1, 3, 37)
data T (7, 9) (10−2, 7, 9) 1 (1, 5, 7) (8, 7, 9) (0.2, 7, 9)
data S (7, 9) (10−2, 7, 9) 0.9 (0.9, 7, 9) (9, 3, 31) (0.9, 3, 31)

For data L, as shown in Figure 2, the AD results of the proposed FrFT-TRX algorithm
were obviously better than those obtained by the comparison algorithms. The ROC curves
and the corresponding AUC values are shown in Figure 3. Among the seven tested
algorithms, the proposed FrFT-TRX algorithm had the best ROC curve and the largest
AUC value. Figure 4 shows the separability graphs for data L, where the boxes in the
separability graph indicate pixels without the highest and lowest 10% of the data in each
category, and the maximum and minimum values are shown in the top and bottom rows,
respectively. For data L, as shown in Figure 4, FrFT-TRX could better separate the target
from the background than the six comparison algorithms, and its ability to compress the
background was better than that of GRX, KRX, and FrFE-RX.
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data C (25, 77) (10-2, 5, 7) 0.2 (0.2, 25, 77) (10, 3, 37) (0.2, 3, 37) 

data P (25, 81) (10-1, 25, 29) 1 (1, 25, 77) (20, 3, 37) (1, 3, 37) 

data T (7, 9) (10-2, 7, 9) 1 (1, 5, 7) (8, 7, 9) (0.2, 7, 9) 

data S (7, 9) (10-2, 7, 9) 0.9 (0.9, 7, 9) (9, 3, 31) (0.9, 3, 31) 
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Figure 2. Data L and two-dimensional diagrams of detection results: (a) 100th band of data L;
(b) Ground-truth map; (c) GRX; (d) LRX; (e) KRX; (f) FrFE-RX; (g) FrFE-LRX; (h) PCA-TRX; and
(i) FrFT-TRX.
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Figure 4. Separability graphs for data L.

For data C, as shown in Figure 5i, the anomaly target detection performance of the
proposed FrFT-TRX was the most obvious, compared to that of the other test algorithms.
The ROC curves and the corresponding AUC values are shown in Figure 6. Among the
seven tested algorithms, PCA-TRX and the proposed FrFT-TRX had the best ROC curves
and largest AUC values. Figure 7 shows the separability graphs for data C. FrFT-TRX could
better separate the target from the background, compared to the six existing algorithms,
and its strength at compressing the background was also the best.

Remote Sens. 2022, 14, 797 8 of 18 
 

 

 
 

(a) ROC curves  (b) AUC values 

Figure 3. ROC curves and AUC values for data L. 

 

Figure 4. Separability graphs for data L. 

For data C, as shown in Figure 5i, the anomaly target detection performance of the 

proposed FrFT-TRX was the most obvious, compared to that of the other test algorithms. 

The ROC curves and the corresponding AUC values are shown in Figure 6. Among the 

seven tested algorithms, PCA-TRX and the proposed FrFT-TRX had the best ROC curves 

and largest AUC values. Figure 7 shows the separability graphs for data C. FrFT-TRX 

could better separate the target from the background, compared to the six existing algo-

rithms, and its strength at compressing the background was also the best. 

 

Figure 5. Data C and two-dimensional diagrams of detection results: (a) 100th band of data C; (b) 

Ground-truth map; (c) GRX; (d) LRX; (e) KRX; (f) FrFE-RX; (g) FrFE-LRX; (h) PCA-TRX; and (i) 

FrFT-TRX. 

Figure 5. Data C and two-dimensional diagrams of detection results: (a) 100th band of data C;
(b) Ground-truth map; (c) GRX; (d) LRX; (e) KRX; (f) FrFE-RX; (g) FrFE-LRX; (h) PCA-TRX; and
(i) FrFT-TRX.
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Figure 7. Separability graphs for data C.

For data P, as shown in Figure 8g, the anomaly targets were more obvious in the
results of the proposed algorithm than in those of the six comparison algorithms. The ROC
curves and the corresponding AUC values are shown in Figure 9. Among all seven tested
algorithms, the proposed FrFT-TRX algorithm had the best ROC curve and the largest
AUC value. Figure 10 shows the separability graphs for data P. Among the seven test
algorithms, FrFT-TRX could better separate the target from the background than GRX, KRX,
FrFE-RX, and FrFE-LRX, and its strength in compressing the background was better than
that of LRX. The ability to distinguish between the target and background, as well as the
background compression ability, of the proposed FrFT-TRX algorithm were similar to those
of the PCA-TRX algorithm.
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Figure 8. Data P and two-dimensional diagrams of detection results: (a) 100th band of data P;
(b) Ground-truth map; (c) GRX; (d) LRX; (e) KRX; (f) FrFE-RX; (g) FrFE-LRX; (h) PCA-TRX; and
(i) FrFT-TRX.
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Figure 10. Separability graphs for data P.

For data T, the anomaly targets in Figure 11i are more apparent than those in Figure 11d,e,g,h.
In addition, the anomaly targets in Figure 11c,f are very obvious, but some background
points are also prominent, thereby increasing the false alarm rate. The ROC curves and the
corresponding AUC values are shown in Figure 12. Among all seven tested algorithms,
the proposed FrFT-TRX algorithm had the best ROC curve and the largest AUC value.
Figure 13 shows the separability graphs for data T. The ability of FrFT-TRX to distinguish
the background from the target was not as good as that of GRX and FrFE-RX, but its
background compression ability was better than those algorithms. FrFT-TRX could also
effectively distinguish the background from the target.
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Figure 11. Data T and two-dimensional diagrams of detection results: (a) 100th band of data T;
(b) Ground-truth map; (c) GRX; (d) LRX; (e) KRX; (f) FrFE-RX. (g) FrFE-LRX; (h) PCA-TRX; and
(i) FrFT-TRX.
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Figure 13. Separability graphs for data T.

For data S, as shown in Figure 14i, the anomaly targets in the results of the proposed
FrFT-TRX are more apparent than those in Figure 14c,d,f,g. In addition, the anomaly targets
in Figure 14e,h are very obvious, but some background points are also prominent, thus
increasing the false alarm rate. The ROC curves and the corresponding AUC values are
shown in Figure 15. Among all seven tested algorithms, the proposed FrFT-TRX algorithm
had the best ROC curve and the largest AUC value. Figure 16 shows the separability
graphs for data S. The ability of FrFT-TRX to distinguish the background from targets was
better than that of GRX, LRX, KRX, FrFE-RX, and FrFE-LRX, but not better than PCA-TRX;
however, FrFT-TRX could better compress the background than PCA-TRX.
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Figure 14. Data S and two-dimensional diagrams of detection results: (a) 100th band of data S;
(b) Ground-truth map; (c) GRX; (d) LRX; (e) KRX; (f) FrFE-RX; (g) FrFE-LRX; (h) PCA-TRX; and
(i) FrFT-TRX.
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From the above detection results, we can see that the AD performance of the proposed
FrFT-TRX algorithm was better than that of the six comparison algorithms. In FrFT-TRX,
data processing is carried out in the FrFD, such that the inherent non-stationary noise in
the HSI can be handled better and discrimination between the background and targets
is enhanced. In addition, tensor RX makes use of the spatial–spectral characteristics of
the HSI.

To evaluate the computational complexity of the proposed FrFT-TRX algorithm, we
recorded the time taken by the test algorithms over the five experimental HSIs, as listed in
Table 3. All experiments were conducted on a laptop with an Intel Core i7 CPU (central
processing unit) and 16 GB of RAM (random-access memory). The algorithms were
implemented using the MATLAB R2018b software. The time required was related to the
selection of parameters, such as the window size. The time taken by the proposed FrFT-TRX
can be considered acceptable.

Table 3. Time consumption (in seconds) of all test algorithms for the five HSIs.

Data GRX LRX KRX FrFE-RX FrFE-LRX PCA-TRX FrFT-TRX

data L 1.43 27.79 56.67 11.35 39.08 4.97 32.54
data C 0.71 421.21 25.87 22.35 430.72 2.92 140.65
data P 0.63 236.19 1418.01 11.86 218.95 5.56 44.78
data T 0.58 26.95 20.92 10.96 38.06 5.64 33.13
data S 0.59 15.05 26.21 9.37 24.89 1.80 33.61

3.3. Parameter Analysis

For the proposed FrFT-TRX, three parameters—the fractional order p and the spatial
sizes (Wt, Wb) of the target and background tensors—have a significant influence on the
detection results. For data L, p was first selected by FrFE maximization [29], where p = 0.2.
The AUC values versus (Wt, Wb) are listed in Table 4, and the optimal value was 0.9493
when (Wt, Wb) were set to (9, 11). Then, (Wt, Wb) were set to (7, 9) and Figure 17 shows the
AUC values versus p. The optimal AUC value was 0.9529 and the corresponding optimal
p was 1.

For data C, p was first selected by FrFE maximization, where p = 1. The AUC values
versus (Wt, Wb) are listed in Table 5, and the optimal value was 0.9997 when (Wt, Wb) were
set to (3, 23). Then, (Wt, Wb) were set to (3, 23) and Figure 18 shows the AUC values versus p.
The optimal AUC value was 0.9998 and the corresponding optimal p was 0.7 or 0.8.
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Table 4. AUC values versus (Wt, Wb) for data L.

Wt
Wb

5 7 9 11 13 15

3 0.8812 0.8898 0.8790 0.8484 0.8041 0.6838
5 0.9314 0.9356 0.9056 0.8655 0.7733
7 0.9485 0.9410 0.9135 0.8449
9 0.9493 0.9144 0.8744
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For data P, p was first selected by FrFE maximization, where p = 1. The AUC values
versus (Wt, Wb) are listed in Table 6, and the optimal value was 0.9960 when (Wt, Wb)
were set to (3, 37). Then, (Wt, Wb) were set to (3, 37) and Figure 19 shows the AUC values
versus p. The optimal AUC value was 0.9960 and the corresponding optimal p was 1.
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Table 6. AUC values versus (Wt, Wb) for data P.

Wt
Wb

31 33 35 37 39 41 43

1 0.9697 0.9714 0.9725 0.9732 0.9738 0.9741 0.9746
3 0.9955 0.9958 0.9959 0.9960 0.9954 0.9957 0.9958
5 0.9941 0.9945 0.9948 0.9945 0.9942 0.9942 0.9945
7 0.9853 0.9864 0.9874 0.9868 0.9855 0.9845 0.9849
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For data T, p was first selected by FrFE maximization, where p = 1. The AUC values
versus (Wt, Wb) are listed in Table 7, and the optimal value was 0.9935 when (Wt, Wb) were
set to (7, 9). Then, (Wt, Wb) were set to (7, 9) and Figure 20 shows the AUC values versus p.
The optimal AUC value was 0.9945 and the corresponding optimal p was 0.6.

Table 7. AUC values versus (Wt, Wb) for data T.

Wt
Wb

5 7 9 11 13 15 17

3 0.9315 0.9736 0.9832 0.7310 0.9645 0.9440 0.9537
5 0.9916 0.9934 0.9917 0.9400 0.9487 0.9574
7 0.9935 0.9904 0.9160 0.9277 0.9159
9 0.9750 0.9476 0.8347 0.8363
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For data S, p was first selected by FrFE maximization, where p = 0.9. The AUC values
versus (Wt, Wb) are listed in Table 8, and the optimal value was 0.9923 when (Wt, Wb)
were set to (3, 31). Then, (Wt, Wb) were set to (3, 31) and Figure 21 shows the AUC values
versus p. The optimal AUC value was 0.9923 and the corresponding optimal p was 0.9.

Table 8. AUC values versus (Wt, Wb) for data S.

Wt
Wb

25 27 29 31 33 35 37

1 0.9747 0.9797 0.9808 0.9798 0.9782 0.9742 0.9723
3 0.9899 0.9914 0.9921 0.9923 0.9920 0.9900 0.9876
5 0.9874 0.9893 0.9901 0.9903 0.9896 0.9873 0.9825
7 0.9881 0.9896 0.9901 0.9896 0.9884 0.9842 0.9802
9 0.9907 0.9913 0.9907 0.989 0.9863 0.9795 0.9740
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In FrFE-RX, the optimal p was selected by FrFE maximization. As can be seen from the
above analysis, the optimal p value of the proposed FrFT-TRX algorithm was not necessarily
the p value corresponding to FrFE maximization. For data L, the p corresponding to FrFE
maximization was 0.2, but the optimal p of the proposed FrFT-TRX was 1. For data C,
the p corresponding to FrFE maximization was 1, but the optimal p of the proposed FrFT-
TRX was 0.7 or 0.8. For data T, the p corresponding to FrFE maximization was 1, but the
optimal p of the proposed FrFT-TRX was 0.6. This was because FrFE maximization uses
the spectral information of HSI, while FrFT-TRX is based on the test point tensor, which
considers the spatial–spectral information of the HSI.

4. Discussion

Anomaly targets in HSIs are usually small targets with low probability and are often
multi-pixel, rather than single-pixel, objects. Existing RX-based algorithms mainly use
a test point vector. To better mine the spatial characteristics of anomaly targets, an RX
algorithm based on a test point tensor is proposed in this paper. In LRX, the size of the
dual windows has a significant impact on the detection performance. Similarly, in TRX, the
spatial dimensions of the test point tensors and background tensors are key parameters
affecting the results. In this paper, TRX is used in the FrFD, such that the influence of the
transformation domain is considered in the setting of the spatial dimensions of the test
point tensors and background tensors. In FrFE-RX, the optimal fractional order of FrFT is
selected by FrFE maximization. In the proposed FrFT-TRX, the fractional order of FrFT is
first chosen by FrFE maximization and the test HSI is transformed into the FrFD by FrFT.
Then, the TRX is employed for hyperspectral AD in the FrFD. Finally, according to the
optimal spatial dimensions of the target and background tensors, the optimal AD result is
achieved by adjusting the value of the fractional order.
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As detailed in Section 3.3, for data L, the fractional order of FrFT selected by FrFE
maximization was 0.2, but the optimal fractional order of FrFT for FrFT-TRX was 1 (see
Figure 17). For data C, the fractional order of FrFT selected by FrFE maximization was 1,
while the optimal fractional order of FrFT for FrFT-TRX was 0.7 or 0.8 (see Figure 18). For
data T, the fractional order of FrFT selected by FrFE maximization was 1, but the optimal
fractional order of FrFT for FrFT-TRX was 0.6 (see Figure 20). In FrFT-TRX, the AD results
are influenced by the fractional order of FrFT and the spatial dimensions of the test point
tensors and background tensors, such that the optimal fractional order cannot be selected
by FrFE maximization. This is because FrFT is based on a test point vector and mainly uses
spectral information, while TRX in the FrFD is based on a test point tensor. In addition to
spectral information, it also uses spatial information, which restricts the selection of the
optimal fractional order. In this paper, the optimal values of the above three parameters
were determined experimentally. It can be seen, from the experimental results, that for
data P and S, the optimal value of p was equal to that selected by FrFE maximization. The
corresponding optimal (Wt, Wb) results for data P and S were (3, 37) and (3, 31), and Wt
was a proximity vector relative to Wb. This is why the optimal value of p was not affected
by the spatial dimensions of test point tensor Wt and was equal to the value selected by
FrFE maximization.

To solve the problems discussed above, future work will be divided into two lines:
First, a tensor-based FrFT transformation method must be designed, in order to better
maintain the spatial characteristics in the transformation process. Second, determining how
to adaptively select the optimal parameters will be key to improving the algorithm.

5. Conclusions

Anomaly targets are usually multi-pixel objects, and algorithms based on test point
vectors hinder accurate anomaly detection. Data in the FrFD have complementary strengths,
when compared to the original reflectance spectrum and its Fourier transform, such that
discrimination between anomalies and the background can be enhanced. In this paper,
tensor RX based on FrFT was proposed for hyperspectral AD. First, the original HSI was
transformed into the FrFD by FrFT with FrFE maximization. In the FrFD, the complemen-
tary advantages of the intermediate domain were exploited in the data, which increased
the discrimination between the target and background and improved the AD performance.
Then, in the FrFD, TRX was used to detect anomaly targets. TRX employed a test point
tensor and made better use of the spatial characteristics of the test point. Finally, the optimal
AD result was achieved by adjusting the spatial sizes of the target and background as well
as the fractional order of FrFT. The order was first selected by FrFE maximization, and its
optimal value was inversely adjusted using the optimal values for the spatial dimensions
of the test point and background tensors. FrFT was based on a test point vector and mainly
used spectral information, while TRX in the FrFD was based on a test point tensor. The
AD results were influenced not only by the fractional order of FrFT but also by the spatial
dimensions of the test point and background tensors, such that the optimal fractional
order could not be selected by FrFE maximization. The experimental results on five real
HSIs indicated that the proposed FrFT-TRX algorithm was generally superior to the six
algorithms of the same type considered in the comparison.

FrFT is based on a test point vector and mainly uses spectral information, while TRX in
the FrFD is based on a test point tensor and makes use of the spatial–spectral characteristics
of HSIs. To improve the proposed algorithm, we must determine how to preserve the
spatial characteristics of HSIs in the process of FrFT. In addition, the optimal values of the
three parameters in the proposed FrFT-TRX algorithm were determined experimentally in
this work and, therefore, the adaptive selection of optimal parameters must be achieved in
future work.
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