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Abstract: The growing need for sustainable management approaches of crops and bare soils requires
measurements at a multiple scale (space and time) field system level, which have become increasingly
accurate. In this context, proximal and satellite remote sensing data cooperation seems good practice
for the present and future. The primary purpose of this work is the development of a sound protocol
based on a statistical comparison between Copernicus Sentinel-2 MIS satellite data and a multispectral
sensor mounted on an Unmanned Aerial Vehicle (UAV), featuring spectral deployment identical to
Sentinel-2. The experimental dataset, based on simultaneously acquired proximal and Sentinel-2
data, concerns an agricultural field in Pisa (Tuscany), cultivated with corn. To understand how the
two systems, comparable but quite different in terms of spatial resolution and atmosphere impacts,
can effectively cooperate to create a value-added product, statistical tests were applied on bands
and the derived Vegetation and Soil index. Overall, as expected, due to the mentioned impacts, the
outcomes show a heterogeneous behavior with a difference between the coincident bands as well
for the derived indices, modulated in the same manner by the phenological status (e.g., during the
canopy developments) or by vegetation absence. Instead, similar behavior between two sensors
occurred during the maturity phase of crop plants.

Keywords: sentinel-2; unmanned aerial system; crop; bare soil; methodology; statistical comparison;
vegetation index; corn

1. Introduction

For several years, agriculture has been called upon to play its role as a supplier of
food and other fundamental raw materials in a context of environmental sustainability
and climate change [1–3]. This emergency was announced in the reports of the biggest
international organizations, such as the Food and Agriculture Organization (FAO) and
the United Nations (UN) [4–6]. As highlighted by Schiavon et al. (2021) [7], user needs of
national and international institutional communities (i.e., policy makers, environmental
agencies, regional government and local authorities) as well as private entities (i.e., insur-
ance companies, businesses) require value-added information related to cropland mapping
and phenological study, to cope with Common Agricultural Policy (CAP) 2023–2027 objec-
tives, as sustainable agriculture production and natural resources management. For more
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than 40 years, remote sensing (RS) has contributed to the evolution of agricultural practice
to support agricultural policy and economics. Exploiting various types of sensor in optical,
thermal, and microwave spectral domains that are mounted on aircraft, satellites, drones or
tractors, RS provides repetitive information on crop and soil status throughout the several
seasonal steps, at different scales and for different actors [8,9]. Furthermore, the European
Commission (EC), beginning in 2018 [10], has encouraged the use of new technologies
such as Copernicus Sentinel data, integrated with EGNOS/Galileo, UAS data, geotagged
photographs of EO products, possibly taking advantage of Copernicus In situ Component,
for the control and granting of CAP payments by local authorities. This promotes open data
with a common data-sharing approach. Nowadays, the technological innovation required
in agricultural management, so-called smart farming [11], concerns the use of Information
and Communication Technology (ICT) [12], big-data [13], Artificial Intelligence (AI) tools,
specific sensors and integrated procedures of satellites and UAS data [14], to monitor crop
growth and development, plant health, productivity and to manage nutrient and water use
optimization programs. This is a great opportunity to boost the free and open market of
Copernicus, the EO program of the European Union, as demonstrated by the analysis of
the users’ technical and operational requirements for the expansion of the European space
component and its services in different application domains [15].

Regarding the use of satellite and UAS data, many applications have been tested in
precision agriculture (PA) [16–18]. The first satellite products emerged in the 1970s [19],
although the spatial resolution was very low, such as Landsat data [20,21]. However, more
recent advances in high-resolution satellites with a larger number of wavebands, as well
as the advent of new satellite constellations such as Geo-Eye [22] or WorldView [23], have
greatly facilitated the application of the technological achievements of remote sensing
studies [8,9]. Nevertheless, unfavorable weather conditions, the timeliness of observation,
high prices or not having suitable spatial resolution, still represent the most critical aspects
in their practical applications for smart farming [9]. On the other hand, the UAS, also
defined as proximal sensing, are applied inside the PA [24,25], through the redefinition
of several techniques, from a soil plant analysis development (SPAD) method [26] to
fluorescence sensing for nitrogen deficiencies [27,28]. UASs offer a series of advantages
such as better spatial resolution, the ease of reaching narrow and difficult places accessible
to humans and the ability to program the acquisition date [29]. On the contrary, the
limitations of UAS are its not very extended tiles, the need for ongoing maintenance of its
mechanical parts, problems with the battery or fuel, the short flying time and the small
payload.

Considering that the two systems are potentially complementary, several studies have
taken into account the hypothesis of integrating satellite and UAS data within the same
time series [30]. The comparison of the results of certain elaborations carried out on the
two remote sensing products suggest the possibility to integrate both data sources [31–34]
or they specify particular use conditions [35–39]. In some cases, however, the spatial
and spectral characteristics of the two considered systems are very different and/or the
comparison method applied, such as linear regression only, might not consider all the
variables involved.

The study presented focuses on a statistical comparison between data acquired by
two multispectral instruments characterized by the same spectral bands, i.e., Sentinel-
2 satellite sensor (S2) and MAIA S-2 (MS2) camera (SAL Engineering S.r.l.), mounted
on an unmanned aerial vehicle. The purpose was to evaluate the feasibility of robust
synergistic use of the two sensors, verifying the correspondence between the S2 and
MS2_10 products. The ability to generate more information through sensor cooperation
was analyzed and adapted to the crops and bare soil recognition. As already experimented
by other authors in different contexts [40,41], the favorable and unfavorable conditions of
UAS and satellite data synergistic use were studied. Therefore, the procedure provided
for a statistical quantification of eventual differences found and to evaluate under which
conditions they can be considered acceptable. The derived advantage is a greater awareness
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in the application of mixed time series to monitor and to discriminate crops and bare soil.
As well as S2 [42–45], MS2 also found several applications due to its centimetric spatial
resolution as PA, crop classification and assessment [46–48]. Using a corn crop field as a
case study, the accurate statistical comparison between S2 and MS2 imagery was based on
the Normalized Difference Vegetation Index (NDVI), [49] and the Soil Adjusted Vegetation
Index (SAVI), [50]. Several studies are based on these vegetation indexes for different
purposes, such as estimating living biomass in semi-arid areas [51] in pasture fields [52],
identifying tree infections [53], assessing crop hail damage [54], comparing two indexes’
reliability with different land use [55] and to cross-compare between two different sensor
products [56,57]. Considering different crop vegetal cover density and their time evolutions,
the indices were compared using the Welch‘s test [58]. This test can perform when sample
variances are not equal and allows easy inferences to be made using a null hypothesis
based on the mean. Then, to better understand the results, the same test was also applied
on corresponded Near Infrared (NIR) and Red bands.

In the end, as suggested by other studies [31,37,59,60], the linear regression between
S2 and MS2 index values was calculated to verify the reliability of its use in the various
scenarios analyzed.

2. Study Area and Materials
2.1. Study Area

The study area is located in Madonna dell’Acqua in the municipality of San Giuliano
Terme (Pisa), a few kilometers north of Pisa (Figure 1). The field selected for the joint survey
(S2-MS2) was cultivated in 2019 with corn (Zea mays) in an area of about 10 ha.

The soils that characterize the area, and in particular the studied field, are mainly
Eutric Cambisols, according to the World Reference Base (WRB) taxonomy [61]. These are
relatively young soils, featuring a more or less evolved subsurface horizon that presents
pedogenetic alterations of a chemical/physical nature. These occurred on site (cambic
horizon), and are not due to illuviation processes. The soils are very deep, with an Ap-Bw
profile (horiz. Cambico) -Bg. They are non-gravelly, with a sandy to silty texture, are
non-calcareous to slightly calcareous, with a neutral to moderately alkaline reaction, with
saturation in bases very high and are moderately well drained. The field has conventional
transversal drainage channels for the entire extension, with an average depth compared to
the ground level of about 50 cm.

2.2. Data

Sentinel-2 comprises two polar-orbiting satellites, in the same sun-synchronous orbit:
Sentinel-2A, launched in 2015, and Sentinel-2B, launched in 2017. They carry an optical
instrument, called MultiSpectral Instrument (MSI), that collects energy in 13 different
spectral bands with several spatial resolutions (Table 1). The data used were downloaded
from the Theia web page (https://www.theia-land.fr/en/satellite-data/ (accessed on
30 September 2020). Theia is a Scientific Expertise Center conducting research on remote
sensing, such as mobilization satellites and airborne and in situ data on ‘continental surface’
issues.

The S2 data used are level 2-A. These data were corrected for atmospheric effects using
MAJA software [62]. This was developed by the Centre d’Etudes Spatiales de la Biosphère
(CESBIO), which developed the methods and a prototype, and by the Centre National
d’Etudes Spatiales (CNES) which funded the operational version of the processor. In the
case of the S2 satellite, the first step consists in estimating and subsequently correcting
for gaseous absorption. The next step is the creation of a composite image with the
unclouded pixels from the processed data used as a reference for cloud detection [63].
After a multitemporal test, which is the sign of cloud presence, a final test measures the
correlation of the pixel neighborhood in relation to the previous images. If a large correlation
is observed, the pixel is, ultimately, not declared as a cloud. After the aerosol optical
thickness (AOT) is estimated [64], it is possible to retrieve the surface reflectance, using

https://www.theia-land.fr/en/satellite-data/


Remote Sens. 2022, 14, 1028 4 of 21

look-up tables (LUT). Before editing the output image, the software corrects the adjacency
effects and the effects of terrain slopes on illumination [65]. The S2 radiometric resolution
is 12 bit, meaning the sensor can record 4096 energy levels. This range is converted into
floating point type (from 0 to 1). S2 pixel values make ‘original’ reflectance × 10,000 (factor
scale), but, at times, this value may be higher than 10,000 due to specific angular reflectivity
effects [66].
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Figure 1. Study area: corn crop field (continuous red line) located in San Giuliano Terme (Pisa,
Italy). The circled dots are the Ground Control Points used to MS2 orthoimage processing. Image
background: Google Earth Satellite (WGS 84/UTM zone 32N).
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Table 1. Characteristics of the two sensors used, in terms of band name, central wavelength and spatial
resolution. The corresponding central wavelengths between the two instruments are highlighted
in bold.

Sentinel-2 MAIA S2

Band Name Central
Wavelength (nm)

Spatial
Resolution (m) Band Name Central

Wavelength (nm)
GSD
(m)

B1—Coastal aerosol 443 60 S1—Violet 443 0.047
B2—Blue 490 10 S2—Blue 490 0.047
B3—Green 560 10 S3—Green 560 0.047
B4—Red 665 10 S4—Red 665 0.047
B5—Vegetation Red Edge 705 20 S5—Red Edge 1 705 0.047
B6—Vegetation Red Edge 740 20 S6—Red Edge 2 740 0.047
B7—Vegetation Red Edge 783 20 S7—NIR 1 783 0.047
B8—Narrow NIR 842 10 S8—NIR 2 842 0.047
B8A—NIR 865 20 S9—NIR 3 865 0.047
B9—Water vapour 945 60 / / /
B10—SWIR - Cirrus 1.375 60 / / /
B11—SWIR 1.610 20 / / /
B12—SWIR 2.190 20 / / /

MAIA S-2 is a multispectral camera that permits the simultaneous acquisition of high-
resolution images at various wavelength intervals in Visible (VIS) and NIR electromagnetic
spectrum regions. In particular, it is equipped with the same first nine wavelength intervals
of the S2 satellite (Table 1). The MS2 system comprises of an array of nine monochromatic
sensors that collect energy in unison thanks to global shutter technology, permitting it to
be acquired ‘one-off’ for synchronized multiband measurements [67]. It was mounted on
an UAV: a DJI S-900. For each performed survey, a single multispectral orthophoto was
generated using the 300 acquired images. The orthorectification process was carried out
using photogrammetric processing with Metashape-Agisoft software. The software uses
Structure from Motion algorithms for the homologous point definition and for the Bundle
Adjustment application based on the Ground Control Point (GCP) use, [68]. All flights were
programmed and performed in the same way: an altitude of 100 m Above Ground Level
(AGL) and strips able to ensure longitudinal overlap of over 80% and a lateral overlap of
about 35% between the frames. For each frame, the Ground Sample Distance (GSD) equal
to 4.7 cm and the footprint of 63 m × 48 m were due to the combination of study area
size (9.1 ha), its almost rectangular shape and multispectral camera sensors of dimensions
4.8 mm × 3.6 mm with pixel size of 3.75 microns. For correct Bundle Adjustment process
application, 8 GCPs were placed on the ground (Figure 1), uniformly distributed over the
entire study area. All the GCPs, clearly visible on the images, were measured with dual
frequency GNSS (Global Navigation Satellite System) geodetic instrumentation (Topcon
GB500) equipped dual-frequency geodetic antennas (Topcon PG-A1 L1/L2). To guarantee
centimeter accuracy (1–2 cm in the three dimensions), the single base static GNSS method
was used. The reference instrument (Master Station) was positioned near the study area
(maximum distance from the GCPs of less than 1 km).

To compare MS2 and S2 data, the S2 radiometric resolution was reduced from 12 bit to
8 bit. To achieve this result, the value of each DN was divided by 10,000 and then multiplied
by 255 using a Raster Calculator in QGIS. To guarantee an accurate comparison between
the two instruments, three acquisition dates were chosen based on the corn phenological
cycle. For June and August there was a perfect match between MS2 and S2 with about half
an hour’s difference between the two flights. Unfortunately, for July, the contemporaneity
of the two acquisitions was hampered as the satellite data was affected by the presence of
clouds. The available date closest to the proximity acquisition of the satellite data without
cloud cover was therefore chosen (Table 2).



Remote Sens. 2022, 14, 1028 6 of 21

Table 2. Sentinel-2 and MAIA S-2 acquisition time.

Acquisition Date Time (UTC+1) Sun Azimuth (◦) Sun Elevation (◦)

Sentinel-2

3 June 2019 10:18:45 146.13 24.62

16 July 2019 10:28:42 148.1 25.26

5 August 2019 10:28:41 151.76 29.32

MAIA-S-2

3 June 2019 12:00:00 193.48 55.96

11 July 2019 12:00:00 190.43 56.1

5 August 2019 12:00:00 189.29 51.07

Before the statistical test application, to also make S2 and MS2 data geometrically
comparable, the MS2 spatial resolution was resampled from 0.047 m to 10 m, using a grid
framework that derived from S2. The MS2 resampled data will be later called MS2_10.

3. Methods
3.1. Georeferencing

The S2 orthoimages are in UTM-WGS84 projection [69]. Concerning MS2, to ensure
final centimeter accuracy (1–2 cm), the Master Station point geodetic coordinates were
determined by a long-term static GNSS survey based on the connection to the three EUREF
network permanent stations: GENO, IGMI, ELBA. The chosen geodetic reference system
was IGb14—epoch 2019.5, projected in the UTM-WGS84 cartogaphic system. For the
processing of GNSS data of all three surveys, the precise ephemeris distributed by IGS
(International GNSS Service) was always used. The final orthoimage accuracy, confermed
by some GCPs not used for the Bundle Adjustment calculation, was always less than 5 cm,
i.e., less than the size of the GSD. This result, also in relation to the GCP number choice, is
in agreement with that reported by [70].

A quality control of the relative georeferencing between the MS2_10 and S2 images
was required. In fact, if the georeferencing was not correct, the value measured in the
pixel (i, j) of the first data would not correspond to that contained in the pixel (i, j) of
the second data as they would cover different portions of land. Therefore, to achieve the
correct overlap, it would be necessary to shift one pixel in relation to the other by a certain
lag (u, v). The square of the radiometric intensity difference (Equation (1)) is a measure of
the fit between an image f (x, y) and a feature t (x, y) shifted by (u, v):

d2
f,t(u, v) = ∑ x, y[f(x, y)− t(x− u, y− v)]2 (1)

where the ∑ is extended on the window containing the feature t translated by (u, v).
To identify the minimum of the distance d2

f,t(u, v), Lewis (1995) [71] proposed a robust
algorithm that search the maximum of the Normalized Cross-Correlation matrix γ(u, v),
(Equation (2)):

γ(u, v) =
∑x,y

[
f(x, y)− f u,v

]
− [t(x− u, y− v)− t]√

∑x,y

[
f(x, y)− f u,v

]2
∑x,y[t(x− u, y− v)− t]2

(2)

where:
f (x, y) is an image;
t (x, y) is a feature;
t is the mean of the feature;
f u,v is the mean of f (x, y) in the region under the feature.

The sum is over x, y under the window containing the feature t positioned at (u, v).
The maximum of γ(u, v) corresponds to the feature’s most right index [71].
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The calculation was performed by comparing the MS2_10 and S2 bands over the study
area in the three different phenological stage [72]. The maximum of the cross-correlation
matrix normalized was obtained for indexes (8,8) i.e., for a lag (0, 0), considering that the
image size is an 8 × 8 pixel. This means that no shifts improve the correlation achieved in
georeferencing.

Figure 2 shows an example of the values obtained for the correlation coefficients
matrix, for the observable NIR (June date).
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value is shown in 2−D chromatic scale. The maximum is reached for lag (8,8) or shift (0,0).

3.2. Data Accuracy

For each band, the slightest noticeable radiometric difference between S2 and MS2_10
data depends on the acquisition accuracy level of the two sensors.

The MS2_10 translates the received radiation intensity (photons) into a discrete DN
representable on 256 radiometric levels. This range was converted into floating point type,
from 0 to 1. Numerous experimental tests, implemented by the authors with technicians
from SAL Engineering of Modena (Italy), showed that the MS2 (8 bit) measurement have
a repeatability of one bit. The tests were carried out on few hundred images defining
the black level of all the CMOS sensors that make up the MAIA-S2 camera. The optical
black pixel method [73] was used to define the dark voltage value. The test results have
confirmed the stability of DN in correspondence of all the pixels of images, with a black
level constant value of DN = 9. Therefore, we can assume an accuracy of τ = 1/256~0.004.
This value is considered the resolution of the measurement, i.e., the minimum discriminable
quantity.

Concerning S2, the original signal discrimination occurs at 12 bits but a resampling
at 8 bits was carried out. This range was converted into floating point type, from 0 to 1.
Similar considerations to the previous ones can be made about S2 radiometric accuracy.

Based on the assumed hypothesis, the differences between S2 and MS2 measures were
significant if they exceeded τ’= 0.005.

3.3. Test Area Choice and Vegetation Index Applications

Significant within-field spatial variability exists in factors that influence crop yield;
this variability can be measured [74]. Consequently, it is important that the resulting
information is as correct as possible in order to be used to improve crop management
practices, in relation to increasing profit and decreasing environmental impact. In order
to analyze several vegetation spatial distribution scenario, three test areas with a different
percentage of vegetation cover were identified inside the corn crop field. The areas had to
be characterized by a high, medium and low vegetation percentage, respectively. For this
purpose, a procedure based on the chlorophyll content map was applied. The chlorophyll
content was used as a parameter of maturity and quality of food crops [75,76]. Several
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authors have showed that reflectance in the green and/or red-edge spectral regions is an
optimal parameter for non-destructive estimation of leaf chlorophyll content in a wide
range of its variation [77–80]. They used different vegetation indexes, such as the MERIS
Terrestrial Chlorophyll Index (MTCI), [81], Enhanced Vegetation Index (EVI2), [82], and
Red-edge Chlorophyll Index (CIRed-Edge), [80,83]. In this paper, the considered vegetation
index was the green Chlorophyll Index (CIgreen, Equation (3)), [75]:

CIgreen =
ρNIR
ρGreen

− 1 (3)

where ρNIR and ρGreen are NIR and green reflectance, respectively.
As showed by [84–86], this index has a strong linear correlation with chlorophyll

content at the leaf scale.
The procedure applied a moving window over the CIGreen map and calculated the sta-

tistical parameters on the window elements. In this way, the characteristics of homogeneity
and intensity were calculated in correspondence with the neighborhood of the current
position (i, j). The calculated statistical parameters are the average for the intensity and
standard deviation for dispersion. The association of the vegetal percentage was based on
the histogram of the average and standard deviation values referred at the floating window
centers.

Several suitable positions have been identified. These showed the desired charac-
teristics, i.e., high value and low dispersion of CIGreen (area A), low intensity and high
dispersion of CIGreen (area C), and intermediate conditions for area B. Then, an expert
operator chose the three definitive zones from the suitable positions. He defined the test
area boundaries based on expeditious field surveys and a photo-interpretation of the MS2
data. Square areas measuring 80 × 80 m (equivalent to an 8 × 8 pixel) were chosen to
facilitate subsequent comparisons.

Then, NDVI [49] and SAVI [50] indices (Equations (4) and (5)) were applied both on
S2 and MAIA_S2 data. For both indices, the bands used were B4 (Red) and B8 (NIR) bands
for Sentinel-2 and S4 (Red) and S8 (NIR) bands for MAIA S2_10.

NDVI =
NIR− Red
NIR + Red

(4)

Concerning SAVI index, the Huete equation was used:

SAVI =
[

NIR− Red
NIR + Red + L

]
(1 + L) (5)

where:
L = 0.75 for June data and A, B, C areas;
L = 0.50 for July data and B, C areas;
L = 0.25 for July data and A area.

Considering that the proximity data were resampled to the S2 data resolution, the
choice of L values was based on their predominant use in the satellite data processing [50,87].
Considering the total vegetation cover showed in August data, the SAVI was not calculated
for this epoch.

3.4. Statistical Test

When the index differences exceeded τ’, it was necessary to evaluate their statistical
significance relating their value to the associated uncertainty level.

After the three test areas’ identification with different homogeneous vegetation cover,
the obtained radiometric parameters from the S2 and MS2_10 vegetation index values were
compared. The comparison is validated by statistical tests.

The radiometric homogeneity of each test area allowed its 64 pixels (n) belonging to
the same statistical distribution to be considered. The greater the test area homogeneity,
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the greater the robustness of this hypothesis. Therefore, both for the 64 S2 pixels and for
MS2_10, sample mean and variance

(
xk, s2

k
)

were calculated (Equation (6)):

xk =
n

∑
i

xki

n
; s2

k =
n

∑
i

(
xki − xk

)
(n− 1)

(6)

And sxk was the standard deviation associated with the sample mean (Equation (7)):

ssk =
sk√

n
(7)

Between the two means with variance estimated from the samples they belong to, the
equality test was based on the null hypothesis of the expected values equality (Equation (8)).
Namely, the expected value of the difference between corresponding values was considered
equal to zero. In this context, the corresponding values were related to pixels of equal
position (Equation (8)):

H0 : E{ x1} = E{ x2}, H0 : E{ x1 − x2} = 0 (8)

where:
k = 1 for S2
k = 2 for MS2_10.

The hypothesis was tested through Welch’s t-test. The null hypothesis (Equation (8))
based on the mean offered an intuitive interpretation. The nonparametric tests based on
the comparison of ranks, and which generally have less power, have not been chosen.
Tests based on trimmed means have the disadvantage that the amount of trimming must
be arbitrarily chosen. On the other hand, the Welch test requires the normality of the
distribution of the samples, which does not always occur [88].

The considered statistic was the ratio (Equation (9)) between the difference of the index
means and its standard deviation estimated by the two samples (Equation (10)):

tυ =
d x
sd x

(9)

d x = x1 − x2; sd x =

√
s2

1
n1

+
s2

2
n2

(10)

where, with i = 1,2:
xi = sample mean;
si = sample standard deviation;
ni = sample size.

In the Welch’s t-test, the degrees of freedom associated is approximated given by
Equation (11):

υ ≈

(
s2

1
n1

+
s2

2
n2

)2

s4
1

(n2
1 υ1)

+
s4

2
(n2

2 υ2)

; υi = ni − 1 (11)

Considering that the two compared samples had the same element number n1 = n2 = n,
the Equations (9) and (11) have become:

tυ =

√
n( x1 − x2)√

s2
1 + s2

2

; (12)

υ =
(n− 1)

(
s2

1 + s2
2
)(

s4
1 + s4

2
) (13)
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The Welch test t variable follows to Student t distribution at ν degree of freedom
(Equations (12) and (13)). The tν value was compared with the assumed critical value tWc
corresponding to a confidence chosen level.

It is underlined that the previous test concerned the difference between the average
values and did not consider the oscillation of the differences around the average observed
in the various pixels. Therefore, the differences between the averages reflected effects
obviously affecting the entire area.

The used sdx can help to evaluate the fluctuation extent of the values in the various
pixels around the average of the considered area.

3.5. Linear Regression

The evaluation of the correlation between the values obtained by the two sensors in
the corresponding pixels was performed by linear regression (according to the least squares
procedure). For each regression, Y = p1 X + p0 the following quantities were calculated:
regression parameter p1 and p0; their standard deviations σp1, σp0; the standard error
of the regression σ0; correlation coefficients; the determination coefficient R2 and linear
correlation coefficients ρ.

4. Results
4.1. Test Areas

To identify several potential test areas, a procedure was implemented. It was based
on the statistical parameter calculation of the pixels contained in a moving window on the
image. The moving window was applied on the MS2_10 CIGreen map that originated from
the MS2 data, characterized by higher geometric resolution (GSD 4.7 cm). Only the original
July map was used to recognize the three scenarios due to it including a nonhomogeneous
spatial vegetation distribution overall. On the other hand, the June and August MS2 CIGreen
maps were not suitable: the first showed mainly bare soil due to the majority of corn plants
not yet to having sprouted in that month; the second map showed a homogenous plant
distribution over the whole crop field and the differentiation among vegetation densities
was not possible.

In order to quantify and to discriminate the different vegetation distributions, the
considered criteria were: high average (>4.4) and low dispersion (<1.4) identify area A,
low mean (<4.0) and low dispersion (<1.1) identify area C; mean values included from 4.05
and 4.15 and high dispersion values (>1.75) describe area B. These values were chosen by
analyzing the histograms of mean and dispersion of the CIGreen in the moving windows.

Figure 3 shows the pixels that satisfied both previous conditions (in yellow) in the
corn field. To simplify the moving window application, the field surface was included in a
larger rectangular area (in purple).
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The agronomic expert operator then defined the final size of the test areas around the
identified pixels, i.e., 80 × 80 m (8 × 8 S2 pixels), (Figure 4). Concerning test area B, to
clearly separate it from test areas A and C, the expert preferred to consider the northernmost
zone among those available.
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4.2. Vegetation Index and Statistical Test Results

For each analyzed stage and for each test area, the NDVI and SAVI averages were
calculated on the 64 vegetation index values included in each test area. For each average
value, the corresponding root-mean-square error (r.m.s.e.) values were reported (Table 3).

The S2—MS2_10 vegetation index differences were calculated based on these average
values (Table 3). When these differences exceeded the minimum appreciable radiometric
resolution threshold τ’, the equality hypothesis of their expected values was tested. To
confirm the reliability of the Welch’s test, it was applied on all test areas and all stages.

Table 3. For each test area and for each stages: NDVI and SAVI average values and corresponded
r.m.s.e. for both sensors, S2—MS2_10 difference of vegetation index mean values, Welch’s test output.
In bold, the values show the cases in which the equality hypothesis was accepted. In italics, the
values show the cases in which the difference were considered not significant.

NDVI SAVI
Epoch Test Area Sentinel-2 MAIA S-2 Sentinel-2 MAIA S-2

June

A

mean 0.247 0.155 0.160 0.103
r.m.s.e. 0.043 0.047 0.030 0.032

difference 0.093 0.057
W test 11.6 10.4

B

mean 0.269 0.177 0.160 0.110
r.m.s.e. 0.047 0.053 0.028 0.033

difference 0.092 0.051
W test 10.4 9.3

C

mean 0.205 0.117 0.124 0.073
r.m.s.e. 0.038 0.041 0.021 0.024

difference 0.090 0.103
W test 12.7 14.1
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Table 3. Cont.

NDVI SAVI
Epoch Test Area Sentinel-2 MAIA S-2 Sentinel-2 MAIA S-2

July

A

mean 0.871 0.776 0.685 0.602
r.m.s.e. 0.013 0.048 0.020 0.038

difference 0.095 0.083
W test 15.3 15.4

B

mean 0.856 0.728 0.575 0.488
r.m.s.e. 0.020 0.066 0.033 0.051

difference 0.128 0.087
W test 14.8 11.4

C

mean 0.819 0.617 0.477 0.371
r.m.s.e. 0.035 0.081 0.045 0.035

difference 0.202 0.106
W test 18.2 14.8

August

A

mean 0.947 0.946 Not applicable
r.m.s.e. 0.005 0.010

difference 0.001 Not applicable
W test 0.9

B

mean 0.956 0.948 Not applicable
r.m.s.e. 0.007 0.009

difference 0.007 Not applicable
W test 4.9

C

mean 0.955 0.950 Not applicable
r.m.s.e. 0.013 0.014

difference 0.006 Not applicable
W test 2.4

The difference values were compared with the assumed critical value tWc and the
hypothesis of equality of the means is accepted for tv < tWc = 2.6 (confidence level 99%),
(Table 3).

To better understand the results obtained from the indices, the Welch’s test was also
applied to the bands used, NIR and Red.

For each analyzed epoch and for each test area, the NIR and Red averages were
calculated on the 64 vegetation index values included in the test area. For each average
value, the corresponding root-mean-square error (r.m.s.e.) values were reported (Table 4).
Skewnness values were also shown in the same table. The skewness values are generally
low and comparable for both samples, except for some MS2_10 Red samples.

Table 4. For each test area and for each stages: NIR and Red average values and corresponded r.m.s.e.
for both sensors, skewness values, S2—MS2_10 difference of band mean values, Welch’s test output.
In bold, the values show the cases in which the equality hypothesis was accepted. In italics, the
values show the cases in which the differences were considered not significant.

NIR Red
Epoch Test Area Sentinel-2 MAIA S-2 Sentinel-2 MAIA S-2

June

A

mean 0.274 0.268 0.160 0.192
r.m.s.e. 0.024 0.026 0.028 0.036

skewness 0.74 0.49 −0.03 −0.06
difference 0.005 −0.032

W test 1.1 5.5

B

mean 0.246 0.244 0.142 0.171
r.m.s.e. 0.018 0.022 0.013 0.019

skewness 0.98 0.22 0.02 0.41
difference 0.002 −0.029

W test 0.5 −10.0
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Table 4. Cont.

NIR Red
Epoch Test Area Sentinel-2 MAIA S-2 Sentinel-2 MAIA S-2

C

mean 0.242 0.241 0.165 0.198
r.m.s.e. 0.032 0.035 0.029 0.038

skewness 0.80 0.63 0.65 0.59
difference 0.001 −0.033

W test 0.1 −5.5

July

A

mean 0.396 0.363 0.027 0.046
r.m.s.e. 0.019 0.017 0.002 0.011

skewness −0.19 0.25 0.08 2.35
difference 0.033 −0.019

W test 10.2 −13.6

B

mean 0.377 0.349 0.029 0.055
r.m.s.e. 0.028 0.024 0.003 0.012

skewness −0.05 −0.16 −0.16 0.34
difference 0.028 −0.026

W test 6.0 −16.5

C

mean 0.340 0.318 0.033 0.076
r.m.s.e. 0.024 0.016 0.005 0.020

skewness −0.08 0.20 1.47 1.29
difference 0.020 −0.042

W test 6.1 −16.6

August

A

mean 0.436 0.436 0.012 0.012
r.m.s.e. 0.015 0.022 0.002 0.001

skewness 0.41 0.09 0.61 1.37
difference 0.000 0.000

W test 0.1 0.8

B

mean 0.401 0.405 0.011 0.009
r.m.s.e. 0.019 0.026 0.002 0.001

skewness −0.11 −0.02 −0.06 1.18
difference −0.004 0.002

W test −0.9 −6.2

C

mean 0.419 0.424 0.011 0.010
r.m.s.e. 0.014 0.025 0.003 0.002

skewness −1.01 −0.50 1.51 1.78
difference −0.005 −0.001

W test −1.5 3.4

The S2—MS2_10 band differences were calculated based on these average values
(Table 4). When these differences exceeded the minimum appreciable radiometric resolution
threshold τ’, the equality hypothesis of their expected values was tested. To confirm the
reliability of the Welch’s test, it was applied on all test areas and all epochs.

The difference values were compared with the assumed critical value tWc and the
hypothesis of equality of the means is accepted for tν < tWc = 2.6 (confidence level 99%),
(Table 4).

The results of Table 4 show two anomaolous cases where the equality hypothesis was
not accepted, despite the corresponded differences being lower than the significance level
τ’: B and C test area, for the Red band and August epoch. In these cases, the two data were
assumed to be equivalent.

4.3. Linear Regression: MS2_10 NDVI vs. S2 NDVI

The regressions of MS2_10 NDVI values towards those of S2 NDVI present in the
corresponding pixels were performed.

Linear regression estimates the linear law Y = p1 X+p0 which transforms X measures
(S2) into Y measures (MS2_10). The functional relationship is all the more reliable the less
the experimental points are dispersed around the regression, i.e., the lower the value σ0
and the parameter’s standard deviation σp1, σp0.
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Figure 5 shows some interesting results compared to the Welch’s test finding, as
commented in the Discussion section. The graphs report the NDVI value points (S2,
MS2_10), the estimated regression line and the lines representing the expected range for a
new observation at the confidence level of 0.99. For the same samples, Table 5 shows the
estimate of the parameters (p1, p0), their uncertainties (σp1, σp0), the standard error of the
regression (σ0) and the determination and linear correlation coefficients (R2, ρ).
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Figure 5. The graphs report the NDVI value points (MS2_10, S2), the estimated regression line
MS2_10 = p1 S2 + p0 (black line) and the lines representing the range of variability (red lines)
expected for a new observation at the confidence level of 0.99.

Table 5. Estimate of the parameters (p1, p0), their uncertainties (σp1, σp0 ), the standard error of the
regression (σ0), the determination and linear correlation coefficients (R2, ρ) relating the five graphs of
Figure 5.

Epoch Test Area p1 σp1 p0 σp0 σ0 R2 ρ

June B 0.83 0.04 0.12 0.01 0.018 0.87 0.93

July B 0.27 0.02 0.66 0.01 0.009 0.79 0.89

July C 0.40 0.02 0.57 0.01 0.015 0.84 0.92

August A 0.26 0.05 0.7 0.05 0.004 0.28 0.53

August C 0.60 0.08 0.39 0.08 0.009 0.47 0.68
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5. Discussion

Beginning from a short temporal series of proximal measurements derived from a
UAV platform sensor compliant to the S2 (MAIA-S2, par. 2.2), a comparison analysis was
developed between these data and the mostly contemporary S2 dataset. The study aimed
to highlight their temporal behaviors through a robust statistical analysis between the two
data and their derived VIs in a corn field (Figure 1 and par. 2.1), from the flowering to
the ripening phase (June-August 2019). The main purpose was to verify the relationship
between the dynamics of the canopy and the bare soil component, useful for precision
agriculture approaches and to optimize the cropping systems in a more sustainable way.

Considering the most resolute S2 pixel size (e.g., 10 × 10 m), and the field features
(e.g., phenological phase, microtopography, moisture and agriculture practices) it is realistic
to expect that an ever-different mixture of canopy, bare soil and other elements affected
the radiance signal provided by individual pixels during the research time span. In this
perspective, the resampling of the proximity MS2 data (almost 5 cm) in the S2 satellite
data resolution (10 m) was carried out. Precisely, the desire to study a proximity data
role in a regional-scale analysis, compared to the mid-resolution, prompted the use of
this uncommon approach [37,89]. This choice was made as many crop field activities
are carried out on a regional scale, and will be even more so in the future, through free
spatial mid-resolution satellite data and with temporal resolution of a few days (e.g., S2
and Landsat). Instead, the proximity data, even if more suitable for local scale studies, are
more expensive to acquire and to process, both in time and economic terms.

After the MS2 data resampling (generation of the MAIA-S210 product), the quality
of the relative georeferencing of the two data types (par. 2.2.1) was evaluated to correctly
proceed with the next experimental design operations. The spatial optimal combination, in
this case probably derived from the Madonna dell’Acqua site conditions, i.e., horizontal
surface without rugged topography, require that the UAV data acquisition be carried out
with the highest reference standards.

The strategy to select three A, B, C test sub-areas (par. 3.1) allowed the adequate
exploitation of the homogeneity of pixel radiometric characteristics within the areas and
to represent, by their sum, the heterogeneity of the patterns of crop and bare soil in
the field under observation. This condition corresponded to the parametric test base
hypothesis, i.e., that the measurements were realizations of a single variable. Therefore,
the measurements constituted a random sample of realizations of the variable. Mean
and variance of the variable were unknown, such as samples made with MAIA S2 and
Sentinel-S2. There are three main advantages deriving from the analysis of subareas with
different vegetation/bare soil cover:

− it allows the identification of different behaviors of the relationship between bare soil
and crop, and their mixture;

− it allows the application of the most suitable and diversified analysis strategy within
each subarea until the completion of the entire plot. The mobile window used was
also essential for characterizing the entire plot and,

− the transfer of the method to different types of crop systems characterized by areas
with different percentages of vegetation cover.

In effect, for a specific multispectral analysis, it is necessary to take into account the
realistic possibility of having, within cultivated plots with extensive crops, areas of even
limited extensions with a different surface coverage ratio between canopy and soil. This
ratio can be due to several factors, such as different nutritional supply, soil composition,
irrigation methods and fertilizer spread, or the presence of anthropogenic elements such as
ditches, drainage channels, service roads, and in any case, to elements of different nature;
all factors that must be understood and managed.

Welch’s test was applied on NDVI average values before, and then on NIR and Red
average values, to evaluate the correspondence between the two remote sensing data that
nominally work with the same bands, even if at completely different scales of observation.
Tables 3 and 4 show that the two sensors provided statistically similar data, i.e., the mean
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equality hypothesis (H0) was accepted, for some specific scenarios. However, when the
numerical difference of the means was less than τ’ = 0.005, the test application was not
necessary because the mean values are indistinguishable. In these cases, the H0 was always
accepted. Based on the Welch’s test calculation, the H0 was accepted for June, the NIR
data in A, B, C test areas; for August, the NDVI data in A and C test areas, Red data in A
test area and NIR data in all test areas. Based on the epochs of acquisition, the analysis of
previous results provided much of information [89] for the potential integrated use of the
MS2 and S2 sensors.

In June, in dominant bare-ground conditions, the S2 and MS2_10 data could not be
considered equivalent. Indeed, despite NIR measurements in A, B and C areas passing the
Welch’s test, for Red band and NDVI data the H0 was never accepted.

In July, the tested areas showed nonhomogeneous plant cover conditions due to the
corn plants that not yet flowered or that were blooming. Consequently, the bare soil
influence is again considerable in the B area and especially in the C area. According
to the agronomic expert who supported the entire study, the 5-day phase shift in the
two acquisitions in the July stage did not affect the results because the change related to
vegetation variation in the field was minimal. Based on this data, it appears that there is
a significant difference between the two sensors (p-value < 0.001). Without a total plant
cover, the two sensors, looking at the same space, measured it in a different way. Even in
the presence of fairly large bare terrain, the S2 data (at 10 m) tend to level off the results,
meaning that the most pronounced potential DN differences between pixels are flattened
out. This is fixed, on the other hand, by considering proximity data (in this case with
original GSD equal to 5 cm) in which, even after aggregation at 10 m, a greater values
dynamic is found.

On the other hand, in August, canopy development was almost complete and fairly
homogeneous due to the plants reaching the maximum phenological maturity level and
to complete the soil coverage. Relating to the NDVI index, the areas A and C passed the
test but not the B area. However, in B, the NDVI average value difference of 0.007 is very
close to the minimum threshold τ’, i.e., an uncertainty of two bits out of 256, which can be
considered negligible. Furthermore, the NIR measurements were similar in the three test
areas and for the Red band, the two areas that are statistically different showed differences
of less than τ’, not satisfying the applicability conditions of the test itself. Therefore, the
results revealed a vegetation in full activity with very strong emission in the NIR and a
total absorption in the Red, as expected [47,90].

The knowledge of correspondences and differences between two sensors is important
to recognize what Sentinel-2 data can measure with certainty on the one hand and with
uncertainty on the other. Consequently, it became useful to understand when to use MS2_10
data as a calibration tool of S2 data and when to use MS2_10 data as an integration of S2
data. In the first case, as in August for corn, the MS2 data become ground truths suitable to
calibrate the information extracted from the satellite data [57]; in the second case, as in June
for corn, the MS2 data completed and expanded the S2 measurements [89].

Different plant phenological stages gradually define different plant canopy/bare soil
ratios. In terms of the relationship between irradiance and reflection, for both sensors, the
Red and NIR bands behaved very differently as time varies because they were modulated
by the evolution of the phenological phase. The transition from the flowering phase to
the ripening phase involves an increase in the leaf surface [65] and a decrease in the bare
soil effect, as evidenced by the NDVI and SAVI values. The differences between indices
are greater than those of bands. The differences in the Red are almost always greater
than in the NIR, especially for periods with a lot of bare soil patches (such as June in our
example). Further, Huang et al. [91] also demonstrated that by applying a paired t-test,
the differences in the Red channel between different satellite sensors are always highly
significant (p < 0.0001). Consequently, reporting the values of Red in the index formulas
influences their result. While the reflectance in Red decreased with increasing growth
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(Table 4), the NIR had the opposite behavior. The vegetation reflects much of the NIR
signal.

The use of SAVI [45], in addition to NDVI, derived from the curiosity to test a vege-
tation index able to minimize the brightness of the soil. Considering the scenario under
observation, to make even a temporal comparison between VI products from S2 and
MS2_10, the SAVI was calculated specifically for the June and July stages. It did not provide
additional information but only a general decrease in values is noted with respect to the
NDVI values. The trend of average SAVI do not change, especially for June (A, B, C) and
July (B, C), when bare soil is present in a dominant or significant way, even though SAVI
was studied to consider and reduce the contribution of the soil beneath the plants. In sum-
mary, based on the SAVI, the two sensors see different things, as already noted previously
for Red and NIR bands. MAIA-S2, due to its higher spatial resolution, is more suitable
to detect soil contribution, and the differences in this index are greater than the threshold
τ‘; they are always significant. For these reasons, the authors think that the definition
of L coefficient for proximity data should be revised through experimental analyses and
described by a specific function.

Concerning linear regression as a tool (cf. 4.3, Figure 5 and Table 5) analyzing the
correspondence between S2 and MS2_10 data, its effectiveness was not exhaustive. An
initial comment concerns the significant difference between the NDVI ranges found in
some cases between S2 values and the MS2_10 values that derive from resampled data. For
example, in June, data with a lot of bare soil, in the test area B, most S2 NDVI values are in
the 0.18 to 0.33 range (a few up to 0.42). These correspond to lower MS2_10 NDVI values,
including between 0.07-0.25 (with a few up to 0.33). Even for area B, in July and in the
presence of a variable bare-vegetated soil distribution, the S2 NDVI values were compacted
in a much higher and limited range (0.81-0.89) while the corresponding MS2_10 values
were distributed in a much wider range (0.58-0.85). This different behavior suggested that
MS2_10, despite the resampling, is more able to discriminate different responses linked
to mixture patches, while S2 merges the values into a small range [89]. In July, the other
test areas also showed a similar trend while, in the August data, the value trend was very
different. The data were distributed on NDVI intervals of 2-3 cents for both measurement
types. They did not manifest a linear relationship although the estimation process obviously
provides the regression line. Even if the statistical tests and the different evaluation between
the means indicated a substantial correspondence of the S2 and MS2_10 data, the correlation
was very low (for example, in the A and C test areas, R2 was 0.28 and 0.47 respectively).
Consequently, the value trend seemed to depend more on the measurement variability of
the two sensors than on a functional trend.

6. Conclusions

This paper evaluates the integrated use of multispectral data in order to accurately
monitor the dynamics of the relationship between bare soil areas and the crop. The protocol
developed to compare the two types of data is based on a statistical comparison between
Sentinel-2 satellite data and UAV multispectral data, with the same spectral bands.

The activity was carried out in a corn field, considering three stages (June, July and
August) and three test areas: A (high vegetation density), B (medium vegetation density),
C (low vegetation density). The similarity between the two types of data was accepted:

− for June, for NIR data in area A, B and C;
− for August, for NDVI values in test areas A and C, Red data in test area A and NIR

data in all test areas.

Based on the acquisition stages, these results provided much information for the
potential integrated use of UAV and Sentinel-2 sensors. In particular, the analysis was
useful in understanding when to use UAV data as a calibration tool for Sentinel-2 data and
when to use UAV data as a supplement to Sentinel-2 data:

− in August, MS2 data can become ground truths suitable for calibrating information
extracted from satellite data;
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− in June, MS2 data can complement and extend S2 measurements.

Scaling up surveys to a local level is very useful when precise or small-area assessments
are required. This approach would also allow for parameters that can specialize satellite and
proximal data in one or more processing steps, such as spatial adaptation of atmospheric
correction algorithms for satellite data, or the possibility of locally characterizing and
estimating the SAVI L parameter to account for an actual average percentage of bare
soil. All the above considerations will be useful for those who will have to elaborate
classifications or detailed analyses aimed at improving the discrimination procedures of
crops and bare soils. Finally, the analysis could also be completed in relation to moisture
content with the addition of short-wave and thermal sensors.
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