A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data
Abstract
:1. Introduction
2. Data
2.1. Microwave Radiometer Data
2.2. Radar Altimeter Data
2.3. Airborne Data
2.4. Snow Depth Products
2.4.1. Modified W99 Snow Depth
2.4.2. AWI Snow Depth
2.4.3. Bremen Snow Depth
2.4.4. Kwok Snow Depth
2.4.5. Neural Network Snow Depth
2.5. Auxiliary Data
3. Methods
3.1. Snow Depth Retrieval Method
3.2. Retrieval of Sea Ice Thickness
4. Results and Discussion
4.1. Comparison of Different Snow Depth Products
4.2. Comparison of the SITs Retrieved from Different Snow Depth Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comiso, J.C.; Parkinson, C.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, 01703. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Lindsay, R.; Schweiger, A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 2015, 9, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Markus, T.; Farrell, S.; Worthen, D.L.; Boisvert, L.N. Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. J. Geophys. Res. Earth Surf. 2011, 116, 04015. [Google Scholar] [CrossRef]
- Perovich, D.; Jones, K.; Light, B.; Eicken, H.; Markus, T.; Stroeve, J.; Lindsay, R. Solar partitioning in a changing Arctic sea-ice cover. Ann. Glaciol. 2011, 52, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Perovich, D.K.; Grenfell, T.C.; Light, B.; Hobbs, P.V. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. Earth Surf. 2002, 107, SHE 20-1–SHE 20-13. [Google Scholar] [CrossRef]
- Sturm, M.; Perovich, D.K.; Holmgren, J. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. J. Geophys. Res. Earth Surf. 2002, 107, SHE 19-1–SHE 19-17. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Cheng, X.; Hu, Y. Retrieval of Snow Depth over Arctic Sea Ice Using a Deep Neural Network. Remote Sens. 2019, 11, 2864. [Google Scholar] [CrossRef] [Green Version]
- Fichefet, T.; Maqueda, M.A.M. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim. Dyn. 1999, 15, 251–268. [Google Scholar] [CrossRef]
- Perovich, D.; Polashenski, C.; Arntsen, A.; Stwertka, C. Anatomy of a late spring snowfall on sea ice. Geophys. Res. Lett. 2017, 44, 2802–2809. [Google Scholar] [CrossRef]
- Schröder, D.; Feltham, D.L.; Flocco, D.; Tsamados, M. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Clim. Change 2014, 4, 353–357. [Google Scholar] [CrossRef]
- Liu, J.; Song, M.; Horton, R.M.; Hu, Y. Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environ. Res. Lett. 2015, 10, 054017. [Google Scholar] [CrossRef] [Green Version]
- Laxon, S.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Hendricks, S.; Ricker, R.; Kern, S.; Rinne, E. Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA Climate Change Initiative. Cryosphere 2018, 12, 2437–2460. [Google Scholar] [CrossRef] [Green Version]
- Giles, K.; Laxon, S.; Wingham, D.; Wallis, D.; Krabill, W.; Leuschen, C.; McAdoo, D.; Manizade, S.; Raney, R. Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002. Remote Sens. Environ. 2007, 111, 182–194. [Google Scholar] [CrossRef]
- Zygmuntowska, M.; Rampal, P.; Ivanova, N.; Smedsrud, L.H. Uncertainties in Arctic sea ice thickness and volume: New estimates and implications for trends. Cryosphere 2014, 8, 705–720. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Zwally, H.J.; Yi, D. ICESat observations of Arctic sea ice: A first look. Geophys. Res. Lett. 2004, 31, 16401. [Google Scholar] [CrossRef] [Green Version]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys. Res. Lett. 2008, 35, L22502. [Google Scholar] [CrossRef] [Green Version]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef] [Green Version]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Near-real-time Arctic sea ice thickness and volume from CryoSat-2. Cryosphere 2016, 10, 2003–2012. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.G.; Rigor, I.G.; Untersteiner, N.; Radionov, V.F.; Bryazgin, N.N.; Aleksandrov, Y.I.; Colony, R. Snow Depth on Arctic Sea Ice. J. Clim. 1999, 12, 1814–1829. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophys. Res. Lett. 2011, 38, 20. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci. 2015, 373, 20140157. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.A.; Rigor, I.G.; Nghiem, S.V.; Kurtz, N.T.; Farrell, S.L.; Perovich, D.K.; Sturm, M. Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res. Oceans 2014, 119, 5395–5406. [Google Scholar] [CrossRef]
- Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z.S.; Djepa, V.; Wadhams, P.; Sandven, S. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. Cryosphere 2015, 9, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Cavalieri, D.J. Snow Depth Distribution Over Sea Ice in the Southern Ocean from Satellite Passive Microwave Data, Antarctic Sea Ice: Physical Processes, Interactions and Variability. Antarct. Res. Ser. 1998, 74, 19–39. [Google Scholar] [CrossRef]
- Comiso, J.; Cavalieri, D.; Markus, T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 243–252. [Google Scholar] [CrossRef]
- Meier, W.N.; Markus, T.; Comiso, J.C. AMSR-E/AMSR2 Unified L3 Daily 12.5 km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth Polar Grids, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Markus, T.; Powell, D.; Wang, J. Sensitivity of passive microwave snow depth retrievals to weather effects and snow evolution. IEEE Trans. Geosci. Remote Sens. 2005, 44, 68–77. [Google Scholar] [CrossRef]
- Rostosky, P.; Spreen, G.; Farrell, S.L.; Frost, T.; Heygster, G.; Melsheimer, C. Snow Depth Retrieval on Arctic Sea Ice from Passive Microwave Radiometers—Improvements and Extensions to Multiyear Ice Using Lower Frequencies. J. Geophys. Res. Oceans 2018, 123, 7120–7138. [Google Scholar] [CrossRef]
- Kilic, L.; Tonboe, R.T.; Prigent, C.; Heygster, G. Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data. Cryosphere 2019, 13, 1283–1296. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, H.; Guan, L. Retrieval of Snow Depth on Arctic Sea Ice from the FY3B/MWRI. Remote Sens. 2021, 13, 1457. [Google Scholar] [CrossRef]
- Braakmann-Folgmann, A.; Donlon, C. Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network. Cryosphere 2019, 13, 2421–2438. [Google Scholar] [CrossRef] [Green Version]
- Maaß, N.; Kaleschke, L.; Tian-Kunze, X.; Drusch, M. Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data. Cryosphere 2013, 7, 1971–1989. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xu, S.; Liu, J.; Lu, H.; Wang, B. Improving L-band radiation model and representation of small-scale variability to simulate brightness temperature of sea ice. Int. J. Remote Sens. 2017, 38, 7070–7084. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, L.; Liu, J.; Lu, H.; Wang, B. Data Synergy between Altimetry and L-Band Passive Microwave Remote Sensing for the Retrieval of Sea Ice Parameters—A Theoretical Study of Methodology. Remote Sens. 2017, 9, 1079. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xu, S.; Liu, J.; Wang, B. On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data. Cryosphere 2018, 12, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, K.; Fleury, S.; Zakharova, E.; Rémy, F.; Kouraev, A. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sens. Environ. 2016, 186, 339–349. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Webster, M.; Kurtz, N.; Petty, A. Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. J. Geophys. Res. Oceans 2020, 125, e2019JC016008. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Shi, J.; Jones, L.A.; Wu, S.; Sun, R.; Yang, H. Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements. Remote Sens. 2014, 6, 8594–8616. [Google Scholar] [CrossRef] [Green Version]
- Frederick, P.I. Map Projections: Theory and Applications; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Snyder, J.P. Map Projections—A Working Manual; US Government Printing Office: Washington, DC, USA, 1987; Volume 1395. [Google Scholar]
- Shi, L.; Liu, S.; Shi, Y.; Ao, X.; Zou, B.; Wang, Q. Sea Ice Concentration Products over Polar Regions with Chinese FY3C/MWRI Data. Remote Sens. 2021, 13, 2174. [Google Scholar] [CrossRef]
- European Space Agency. CryoSat-2 Product Handbook [EB/OL]. (23-11-2020) [01-12-2020]. Available online: http://science-pds.cryosat.esa.int/ (accessed on 19 December 2021).
- Krabill, W.B.; Thomas, R.H.; Martin, C.F.; Swift, R.N.; Frederick, E.B. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sens. 1995, 16, 1211–1222. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, V.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J.; Rodriguez-Morales, F.; Patel, A.; Markus, T.; Holt, B.; Gogineni, P. An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn. J. Glaciol. 2013, 59, 244–254. [Google Scholar] [CrossRef]
- Jutila, A.; King, J.; Paden, J.; Ricker, R.; Hendricks, S.; Polashenski, C.; Helm, V.; Binder, T.; Haas, C. High-Resolution Snow Depth on Arctic Sea Ice from Low-Altitude Airborne Microwave Radar Data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Alexandrov, V.; Sandven, S.; Wahlin, J.; Johannessen, O.M. The relation between sea ice thickness and freeboard in the Arctic. Cryosphere 2010, 4, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, S.; Ricker, R. Product User Guide & Algorithm Specification—AWI CryoSat-2 Sea Ice Thickness (version 2.3). 2020. Available online: https://www.researchgate.net/publication/346677382 (accessed on 19 December 2021).
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Earth Surf. 2008, 113, C02S03. [Google Scholar] [CrossRef] [Green Version]
- Mallett, R.D.C.; Lawrence, I.R.; Stroeve, J.C.; Landy, J.C.; Tsamados, M. Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates. Cryosphere 2020, 14, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res. 2017, 62, 1203–1225. [Google Scholar] [CrossRef]
- Skourup, H.; Farrell, S.L.; Hendricks, S.; Ricker, R.; Armitage, T.W.K.; Ridout, A.; Andersen, O.B.; Haas, C.; Baker, S. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval. J. Geophys. Res. Oceans 2017, 122, 8593–8613. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Pedersen, L.T.; Tonboe, R.T.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.; Brucker, L.; et al. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 2015, 9, 1797–1817. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learning Representations (ICLR), San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
- Armitage, T.W.K.; Ridout, A.L. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge. Geophys. Res. Lett. 2015, 42, 6724–6731. [Google Scholar] [CrossRef]
- Kwok, R. Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice freeboard. Geophys. Res. Lett. 2014, 41, 5014–5020. [Google Scholar] [CrossRef]
- Miernecki, M.; Kaleschke, L.; Maaß, N.; Hendricks, S.; Søbjærg, S.S. Effects of decimetre-scale surface roughness on L-band brightness temperature of sea ice. Cryosphere 2020, 14, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Derksen, C.; Burgess, D.; Duguay, C.; Howell, S.; Mudryk, L.; Smith, S.; Thackeray, C.; Kirchmeier-Young, M. Changes in snow, ice, and permafrost across Canada. In Canada’s Changing Climate Report; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON, Canada, 2019; Chapter 5; pp. 194–260. Available online: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/Climate-change/pdf/CCCR-Chapter5-ChangesInSnowIcePermafrostAcrossCanada.pdf (accessed on 19 December 2021).
Product | Temporal Resolution | Spatial Grid | Projection Type | Data Type | Reference |
---|---|---|---|---|---|
Modified W99 | monthly | 6.25 km | Polar stereographic grid | Climatology | Warren et al. (1999) |
AWI | monthly | 25 km | EASE2-Grid | Climatology | Stefan Hendricks et al. (2020) |
Bremen | daily | 25 km | Polar stereographic grid | Passive satellite-based | Rostosky et al. (2018) |
Kwok | monthly | 25 km | Up to 88.5°N | Active satellite-based | Kwok er al. (2020) |
Neural Network | daily | 25 km | Polar stereographic grid | Passive satellite-based | Anne Braakmann-Folgmann et al. (2019) |
Gridded Mean ± Standard Deviation/Unit: m | |||||||
---|---|---|---|---|---|---|---|
Modified W99 | AWI | Bremen | Kwok | Neural Network | LSTM | ||
November 2018 | ALL | 0.17 ± 0.09 | 0.17 ± 0.08 | / | 0.08 ± 0.06 | 0.20 ± 0.09 | 0.21 ± 0.10 |
FYI | 0.10 ± 0.02 | 0.11 ± 0.03 | 0.15 ± 0.03 | 0.05 ± 0.02 | 0.14 ± 0.04 | 0.13 ± 0.03 | |
MYI | 0.26 ± 0.05 | 0.25 ± 0.06 | / | 0.14 ± 0.04 | 0.29 ± 0.05 | 0.32 ± 0.05 | |
December 2018 | ALL | 0.17 ± 0.09 | 0.17 ± 0.09 | / | 0.09 ± 0.05 | 0.19 ± 0.08 | 0.20 ± 0.09 |
FYI | 0.11 ± 0.02 | 0.12 ± 0.03 | 0.16 ± 0.02 | 0.06 ± 0.02 | 0.14 ± 0.05 | 0.14 ± 0.03 | |
MYI | 0.28 ± 0.05 | 0.28 ± 0.05 | / | 0.15 ± 0.04 | 0.29 ± 0.05 | 0.32 ± 0.05 | |
January 2019 | ALL | 0.17 ± 0.08 | 0.18 ± 0.08 | / | 0.14 ± 0.06 | 0.16 ± 0.08 | 0.20 ± 0.09 |
FYI | 0.13 ± 0.01 | 0.14 ± 0.03 | 0.17 ± 0.02 | 0.11 ± 0.03 | 0.13 ± 0.05 | 0.15 ± 0.03 | |
MYI | 0.31 ± 0.04 | 0.31 ± 0.04 | / | 0.22 ± 0.05 | 0.28 ± 0.06 | 0.33 ± 0.05 | |
February 2019 | ALL | 0.18 ± 0.08 | 0.19 ± 0.08 | / | 0.15 ± 0.06 | 0.19 ± 0.07 | 0.20 ± 0.08 |
FYI | 0.14 ± 0.01 | 0.15 ± 0.04 | 0.17 ± 0.02 | 0.13 ± 0.04 | 0.16 ± 0.05 | 0.16 ± 0.03 | |
MYI | 0.32 ± 0.02 | 0.32 ± 0.02 | / | 0.23 ± 0.05 | 0.28 ± 0.06 | 0.33 ± 0.05 | |
March 2019 | ALL | 0.19 ± 0.08 | 0.20 ± 0.08 | 0.21 ± 0.07 | 0.17 ± 0.05 | 0.20 ± 0.07 | 0.20 ± 0.08 |
FYI | 0.15 ± 0.02 | 0.17 ± 0.04 | 0.18 ± 0.03 | 0.15 ± 0.04 | 0.17 ± 0.05 | 0.16 ± 0.03 | |
MYI | 0.35 ± 0.02 | 0.34 ± 0.02 | 0.32 ± 0.04 | 0.24 ± 0.04 | 0.28 ± 0.06 | 0.34 ± 0.05 | |
April 2019 | ALL | 0.19 ± 0.08 | 0.21 ± 0.09 | 0.20 ± 0.06 | 0.19 ± 0.06 | 0.20 ± 0.06 | 0.19 ± 0.07 |
FYI | 0.16 ± 0.02 | 0.17 ± 0.05 | 0.18 ± 0.03 | 0.17 ± 0.05 | 0.18 ± 0.04 | 0.16 ± 0.03 | |
MYI | 0.36 ± 0.02 | 0.35 ± 0.03 | 0.32 ± 0.05 | 0.26 ± 0.06 | 0.30 ± 0.07 | 0.33 ± 0.05 |
Gridded Mean ± Standard Deviation/Unit: m | |||||||
---|---|---|---|---|---|---|---|
Modified W99 | AWI | Bremen | Kwok | Neural Network | LSTM | ||
November 2018 | ALL | 1.30 ± 0.81 | 1.31 ± 0.81 | / | 0.97 ± 0.72 | 1.46 ± 0.80 | 1.48 ± 0.86 |
FYI | 0.74 ± 0.28 | 0.76 ± 0.31 | 0.95 ± 0.31 | 0.48 ± 0.31 | 0.91 ± 0.37 | 0.88 ± 0.33 | |
MYI | 2.10 ± 0.63 | 2.11 ± 0.62 | / | 1.69 ± 0.53 | 2.26 ± 0.53 | 2.36 ± 0.59 | |
December 2018 | ALL | 1.23 ± 0.68 | 1.25 ± 0.68 | / | 0.93 ± 0.59 | 1.34 ± 0.67 | 1.38 ± 0.71 |
FYI | 0.84 ± 0.30 | 0.87 ± 0.33 | 1.07 ± 0.33 | 0.62 ± 0.33 | 0.98 ± 0.42 | 0.98 ± 0.36 | |
MYI | 2.02 ± 0.54 | 2.03 ± 0.52 | / | 1.57 ± 0.45 | 2.06 ± 0.45 | 2.19 ± 0.52 | |
January 2019 | ALL | 1.28 ± 0.59 | 1.31 ± 0.60 | / | 1.13 ± 0.55 | 1.24 ± 0.62 | 1.39 ± 0.63 |
FYI | 0.99 ± 0.28 | 1.03 ± 0.33 | 1.16 ± 0.32 | 0.90 ± 0.36 | 0.97 ± 0.41 | 1.10 ± 0.36 | |
MYI | 2.09 ± 0.49 | 2.11 ± 0.46 | / | 1.78 ± 0.46 | 1.99 ± 0.48 | 2.20 ± 0.52 | |
February 2019 | ALL | 1.50 ± 0.54 | 1.54 ± 0.56 | / | 1.39 ± 0.52 | 1.53 ± 0.55 | 1.58 ± 0.58 |
FYI | 1.29 ± 0.34 | 1.33 ± 0.40 | 1.42 ± 0.37 | 1.24 ± 0.43 | 1.36 ± 0.44 | 1.37 ± 0.40 | |
MYI | 2.23 ± 0.44 | 2.28 ± 0.41 | / | 1.92 ± 0.45 | 2.10 ± 0.49 | 2.32 ± 0.50 | |
March 2019 | ALL | 1.72 ± 0.53 | 1.76 ± 0.55 | 1.81 ± 0.53 | 1.64 ± 0.49 | 1.75 ± 0.52 | 1.74 ± 0.56 |
FYI | 1.53 ± 0.37 | 1.57 ± 0.42 | 1.65 ± 0.41 | 1.52 ± 0.44 | 1.62 ± 0.44 | 1.56 ± 0.40 | |
MYI | 2.46 ± 0.40 | 2.50 ± 0.38 | 2.42 ± 0.48 | 2.08 ± 0.42 | 2.26 ± 0.51 | 2.46 ± 0.51 | |
April 2019 | ALL | 1.93 ± 0.62 | 1.99 ± 0.63 | 1.99 ± 0.58 | 1.92 ± 0.57 | 1.96 ± 0.57 | 1.93 ± 0.60 |
FYI | 1.75 ± 0.47 | 1.83 ± 0.52 | 1.85 ± 0.47 | 1.82 ± 0.53 | 1.84 ± 0.45 | 1.77 ± 0.46 | |
MYI | 2.79 ± 0.51 | 2.77 ± 0.50 | 2.66 ± 0.60 | 2.40 ± 0.54 | 2.56 ± 0.65 | 2.67 ± 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Shi, L.; Lin, M.; Zeng, T. A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data. Remote Sens. 2022, 14, 1041. https://doi.org/10.3390/rs14041041
Dong Z, Shi L, Lin M, Zeng T. A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data. Remote Sensing. 2022; 14(4):1041. https://doi.org/10.3390/rs14041041
Chicago/Turabian StyleDong, Zhaoqing, Lijian Shi, Mingsen Lin, and Tao Zeng. 2022. "A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data" Remote Sensing 14, no. 4: 1041. https://doi.org/10.3390/rs14041041
APA StyleDong, Z., Shi, L., Lin, M., & Zeng, T. (2022). A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data. Remote Sensing, 14(4), 1041. https://doi.org/10.3390/rs14041041