A Remote Sensing Perspective on Mass Wasting in Contrasting Planetary Environments: Cases of the Moon and Ceres
Abstract
:1. Introduction
2. Lunar Mass Wasting Processes: Status and Prospects
2.1. Status of Our Understanding
2.2. Prospects
3. Cerean Periglacial Landforms and Mass Wasting Processes: Status and Prospects
3.1. Status of Our Understanding
3.2. Prospects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; UNESCO Press: Paris, France, 1984; ISBN 978-92-3-101895-4. [Google Scholar]
- Xiao, Z.; Zeng, Z.; Ding, N.; Molaro, J. Mass wasting features on the moon—How active is the lunar surface? Earth Planet. Sci. Lett. 2013, 376, 1–11. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, S.; Chang, S.; Liu, B.; Liu, J.; Long, J. Geophysical interpretation of a subsurface landslide in the Southern Qinshui basin. J. Environ. Eng. Geophys. 2019, 24, 433–449. [Google Scholar] [CrossRef]
- Corsini, A.; Borgatti, L.; Cervi, F.; Dahne, A.; Ronchetti, F.; Sterzai, P. Estimating mass-wasting processes in active earth slides—Earth flows with time-series of high-resolution DEMs from photogrammetry and airborne LiDAR. Nat. Hazards Earth Syst. Sci. 2009, 9, 433–439. [Google Scholar] [CrossRef]
- Deplus, C.; Le Friant, A.; Boudon, G.; Komorowski, J.-C.; Villemant, B.; Harford, C.; Ségoufin, J.; Cheminée, J.-L. Submarine evidence for large-scale debris avalanches in the lesser Antilles arc. Earth Planet Sci. Lett. 2001, 192, 145–157. [Google Scholar] [CrossRef]
- Moore, J.G.; Normark, W.R.; Holcomb, R.T. Giant Hawaiian landslides. Annu. Rev. Earth Planet Sci. 1994, 22, 119–144. [Google Scholar] [CrossRef]
- Parker, R.N.; Densmore, A.L.; Rosser, N.J.; de Michele, M.; Li, Y.; Huang, R.; Whadcoat, S.; Petley, D.N. Mass wasting triggered by the 2008 wenchuan earthquake is greater than orogenic growth. Nat. Geosci. 2011, 4, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.A.; Pandit, A.; Ganju, A. Demarcation of potential avalanche sites using remote sensing and ground observations: A case study of Gangotri Glacier. Geocarto Int. 2014, 29, 520–535. [Google Scholar] [CrossRef]
- Wolman, M.G.; Gerson, R. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf. Process. 1978, 3, 189–208. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I. How image acquisition geometry of UAV campaigns affects the derived products and their accuracy in areas with complex geomorphology. ISPRS Int. J. Geoinf. 2021, 10, 408. [Google Scholar] [CrossRef]
- Ritter, D.F.; Kochel, R.C.; Miller, J.R. Process Geomorphology; Waveland Press: Long Grove, IL, USA, 2006. [Google Scholar]
- Solari, L.; Del Soldato, M.; Raspini, F.; Barra, A.; Bianchini, S.; Confuorto, P.; Casagli, N.; Crosetto, M. Review of satellite interferometry for landslide detection in Italy. Remote Sens. 2020, 12, 1351. [Google Scholar] [CrossRef]
- Kokelaar, B.P.; Bahia, R.S.; Joy, K.H.; Viroulet, S.; Gray, J.M.N.T. Granular avalanches on the moon: Mass-wasting conditions, processes, and features. J. Geophys. Res. Planets 2017, 122, 1893–1925. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Xiao, Z.; Komatsu, G.; Peruccacci, S.; Guzzetti, F. Large rock slides in impact craters on the moon and mercury. Icarus 2015, 260, 289–300. [Google Scholar] [CrossRef]
- Waltham, D.; Pickering, K.T.; Bray, V.J. Particulate gravity currents on Venus. J. Geophys. Res. Planets 2008, 113, E02012. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.-P.; Fonseca, R.M. Martian slope streaks as plausible indicators of transient water activity. Sci. Rep. 2017, 7, 7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.-P. Are slope streaks indicative of global-scale aqueous processes on contemporary mars? Rev. Geophys. 2019, 57, 48–77. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.-P. Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars. Sci. Rep. 2019, 9, 2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, A.; Sam, L.; Gharehchahi, S. Four decades of understanding martian geomorphology: Revisiting Baker’s ‘The Geomorphology of Mars’. Prog. Phys. Geogr. Earth Environ. 2021, 45, 979–989. [Google Scholar] [CrossRef]
- McEwen, A.S. Mobility of large rock avalanches: Evidence from Valles Marineris, Mars. Geology 1989, 17, 1111–1114. [Google Scholar] [CrossRef]
- Schenk, P.M.; Bulmer, M.H. Origin of mountains on io by thrust faulting and large-scale mass movements. Science 1998, 279, 1514–1517. [Google Scholar] [CrossRef] [Green Version]
- Hall, S. The race to Venus. Nature 2019, 570, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.P.; Siddique, T. Mass wasting: An overview. In Landslides: Theory, Practice and Modelling; Pradhan, S.P., Vishal, V., Singh, T.N., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 3–20. ISBN 978-3-319-77377-3. [Google Scholar]
- Bhardwaj, A.; Sam, L. Reconstruction and characterisation of past and the most recent slope failure events at the 2021 rock-ice avalanche site in Chamoli, Indian Himalaya. Remote Sens. 2022, 14, 949. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Bickel, V.T.; Aaron, J.; Manconi, A.; Loew, S.; Mall, U. Impacts drive lunar rockfalls over billions of years. Nat. Commun. 2020, 11, 2862. [Google Scholar] [CrossRef]
- Characterised Lunar Rockfalls. ETH Zurich Research Collection. Available online: https://www.research-collection.ethz.ch/; (accessed on 1 January 2022).
- Unified Geologic Map of the Moon. United States Geological Survey. Available online: https://astrogeology.usgs.gov/search/map/Moon/Geology/Unified_Geologic_Map_of_the_Moon_GIS_v2 (accessed on 1 January 2022).
- Fortezzo, C.M.; Spudis, P.D.; Harrel, S.L. Release of the Digital Unified Global Geologic Map of the Moon at 1:5,000,000-Scale; Lunar and Planetary Institute: Houston, TX, USA, 2020; p. 2760. [Google Scholar]
- Estes, N.M.; Robinson, M.S. LROC: Ten Years Exploring the Moon. In Proceedings of the 4th Planetary Data Workshop, Flagstaff, AZ, USA, 18–20 June 2019; Volume 2151, p. 7082. [Google Scholar]
- Li, C.; Wang, C.; Wei, Y.; Lin, Y. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [Google Scholar] [CrossRef]
- Castillo-Rogez, J. Future exploration of ceres as an ocean world. Nat. Astron. 2020, 4, 732–734. [Google Scholar] [CrossRef]
- Lindsay, J.F. Energy at the lunar surfaces. In Lunar Stratigraphy and Sedimentology; Kopal, Z., Cameron, A.G.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 3, pp. 45–55. ISBN 978-0-444-41443-4. [Google Scholar]
- Pike, R.J. Some preliminary interpretations of lunar mass-wasting processes from Apollo 10 photography. In Analysis of Apollo 10 Photography and Visual Observations, NASA Special Publication, NASA-SP-232; NASA: Washington, DC, USA, 1971; Volume 232, pp. 14–20. [Google Scholar]
- JMARS Tool Developed by Arizona State University. Available online: http://jmars.asu.edu/ (accessed on 27 December 2021).
- Melosh, H.J. The mechanics of large rock avalanches. In Debris Flows/Avalanches: Process, Recognition, and Mitigation; Costa, E.J., Wieczorek, G.F., Eds.; Geological Society of America: Boulder, CO, USA, 1987; Volume 7, pp. 41–50. [Google Scholar]
- Kleinhans, M.G.; Markies, H.; de Vet, S.J.; in’t Veld, A.C.; Postema, F.N. Static and dynamic angles of repose in loose granular materials under reduced gravity. J. Geophys. Res. Planets 2011, 116, E11. [Google Scholar] [CrossRef]
- Losiak, A.; Wilhelms, D.E.; Byrne, C.J.; Thaisen, K.G.; Weider, S.Z.; Kohout, T.; O’Sullivan, K.; Kring, D.A. A new lunar impact crater database. In Proceedings of the 40th Lunar and Planetary Science Conference, (Lunar and Planetary Science XL), The Woodlands, TX, USA, 23–27 March 2009; p. 1532. [Google Scholar]
- Wilhelms, D.E.; McCauley, J.F.; Trask, N.J. The Geologic History of the Moon; Professional Paper 1348; United States Government Printing Office: Washington, DC, USA, 1987.
- Geological Units Description. Available online: https://astropedia.astrogeology.usgs.gov/download/Moon/Geology/thumbs/Unified Geologic Map of The Moon 200dpi.jpg (accessed on 1 January 2022).
- Chavers, G.; Watson-Morgan, L.; Smith, M.; Suzuki, N.; Polsgrove, T. NASA’s human landing system: The strategy for the 2024 mission and future sustainability. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–9. [Google Scholar]
- NASA’s Plan for Sustained Lunar Exploration and Development. Available online: https://www.nasa.gov/sites/default/files/atoms/files/a_sustained_lunar_presence_nspc_report4220final.pdf (accessed on 27 December 2021).
- Berger, K.J.; Anand, A.; Metzger, P.T.; Hrenya, C.M. Role of collisions in erosion of regolith during a lunar landing. Phys. Rev. E 2013, 87, 22205. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Ghent, R.R.; Vasavada, A.R.; Paige, D.A.; Lawrence, S.J.; Robinson, M.S. Lunar surface rock abundance and regolith fines temperatures derived from LRO diviner radiometer data. J. Geophys. Res. Planets 2011, 116, E00H02. [Google Scholar] [CrossRef]
- 46. Senthil Kumar, P.; Sruthi, U.; Krishna, N.; Lakshmi, K.J.P.; Menon, R.; Amitabh, B.; Gopala Krishna, B.; Kring, D.A.; Head, J.W.; Goswami, J.N.; et al. Recent shallow moonquake and impact-triggered boulder falls on the moon: New insights from the Schrödinger basin. J. Geophys. Res. Planets 2016, 121, 147–179. [Google Scholar] [CrossRef]
- Sargeant, H.M.; Bickel, V.T.; Honniball, C.I.; Martinez, S.N.; Rogaski, A.; Bell, S.K.; Czaplinski, E.C.; Farrant, B.E.; Harrington, E.M.; Tolometti, G.D.; et al. Using boulder tracks as a tool to understand the bearing capacity of permanently shadowed regions of the moon. J. Geophys. Res. Planets 2020, 125, e2019JE006157. [Google Scholar] [CrossRef] [Green Version]
- Bickel, V.T.; Honniball, C.I.; Martinez, S.N.; Rogaski, A.; Sargeant, H.M.; Bell, S.K.; Czaplinski, E.C.; Farrant, B.E.; Harrington, E.M.; Tolometti, G.D.; et al. Analysis of lunar boulder tracks: Implications for trafficability of pyroclastic deposits. J. Geophys. Res. Planets 2019, 124, 1296–1314. [Google Scholar] [CrossRef] [Green Version]
- Metzger, P.T.; Anderson, S.; Colaprete, A. Experiments Indicate Regolith is Looser in the Lunar Polar Regions Than at the Lunar Landing Sites; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 79–85. [Google Scholar]
- Honniball, C.I.; Lucey, P.G.; Li, S.; Shenoy, S.; Orlando, T.M.; Hibbitts, C.A.; Hurley, D.M.; Farrell, W.M. Molecular water detected on the sunlit moon by SOFIA. Nat. Astron. 2021, 5, 121–127. [Google Scholar] [CrossRef]
- Li, S.; Lucey, P.G.; Milliken, R.E.; Hayne, P.O.; Fisher, E.; Williams, J.-P.; Hurley, D.M.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. [Google Scholar] [CrossRef] [Green Version]
- Schorghofer, N.; Williams, J.-P. Mapping of ice storage processes on the moon with time-dependent temperatures. Planet Sci. J. 2020, 1, 54. [Google Scholar] [CrossRef]
- Raymond, C.A.; Ermakov, A.I.; Castillo-Rogez, J.C.; Marchi, S.; Johnson, B.C.; Hesse, M.A.; Scully, J.E.C.; Buczkowski, D.L.; Sizemore, H.G.; Schenk, P.M.; et al. Impact-driven mobilization of deep crustal brines on dwarf planet ceres. Nat. Astron. 2020, 4, 741–747. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Ammannito, E.; Raponi, A.; Frigeri, A.; Ferrari, M.; Carrozzo, F.G.; Ciarniello, M.; Formisano, M.; Rousseau, B.; Tosi, F.; et al. Fresh emplacement of hydrated sodium chloride on ceres from ascending salty fluids. Nat. Astron. 2020, 4, 786–793. [Google Scholar] [CrossRef]
- Schmidt, B.E.; Sizemore, H.G.; Hughson, K.H.G.; Duarte, K.D.; Romero, V.N.; Scully, J.E.C.; Schenk, P.M.; Buczkowski, D.L.; Williams, D.A.; Nathues, A.; et al. Post-impact cryo-hydrologic formation of small mounds and hills in ceres’s occator crater. Nat. Geosci. 2020, 13, 605–610. [Google Scholar] [CrossRef]
- Scully, J.E.C.; Schenk, P.M.; Castillo-Rogez, J.C.; Buczkowski, D.L.; Williams, D.A.; Pasckert, J.H.; Duarte, K.D.; Romero, V.N.; Quick, L.C.; Sori, M.M.; et al. The varied sources of faculae-forming brines in ceres’ occator crater emplaced via hydrothermal brine effusion. Nat. Commun. 2020, 11, 3680. [Google Scholar] [CrossRef]
- Nathues, A.; Schmedemann, N.; Thangjam, G.; Pasckert, J.H.; Mengel, K.; Castillo-Rogez, J.; Cloutis, E.A.; Hiesinger, H.; Hoffmann, M.; Le Corre, L.; et al. Recent cryovolcanic activity at occator crater on ceres. Nat. Astron. 2020, 4, 794–801. [Google Scholar] [CrossRef]
- Park, R.S.; Konopliv, A.S.; Ermakov, A.I.; Castillo-Rogez, J.C.; Fu, R.R.; Hughson, K.H.G.; Prettyman, T.H.; Raymond, C.A.; Scully, J.E.C.; Sizemore, H.G.; et al. Evidence of non-uniform crust of ceres from dawn’s high-resolution gravity data. Nat. Astron. 2020, 4, 748–755. [Google Scholar] [CrossRef]
- Schenk, P.; Scully, J.; Buczkowski, D.; Sizemore, H.; Schmidt, B.; Pieters, C.; Neesemann, A.; O’Brien, D.; Marchi, S.; Williams, D.; et al. Impact heat driven volatile redistribution at occator crater on ceres as a comparative planetary process. Nat. Commun. 2020, 11, 3679. [Google Scholar] [CrossRef] [PubMed]
- Combe, J.-P.; McCord, T.B.; Tosi, F.; Ammannito, E.; Carrozzo, F.G.; De Sanctis, M.C.; Raponi, A.; Byrne, S.; Landis, M.E.; Hughson, K.H.G.; et al. Detection of local H2O exposed at the surface of ceres. Science 2016, 353, aaf3010. [Google Scholar] [CrossRef] [PubMed]
- Parekh, R.; Otto, K.A.; Jaumann, R.; Matz, K.D.; Roatsch, T.; Kersten, E.; Elgner, S.; Raymond, C. Influence of volatiles on mass wasting processes on vesta and ceres. JGR Planets 2021, 126, e2020JE006573. [Google Scholar] [CrossRef]
- Parekh, R. Data for “Influence of Volatiles on Mass Wasting Processes on Vesta and Ceres”.7z. J. Contrib. 2020. [Google Scholar] [CrossRef]
- Chilton, H.T.; Schmidt, B.E.; Duarte, K.; Ferrier, K.L.; Hughson, K.H.G.; Scully, J.E.C.; Wray, J.J.; Sizemore, H.G.; Nathues, A.; Platz, T.; et al. Landslides on ceres: Inferences into ice content and layering in the upper crust. J. Geophys. Res. Planets 2019, 124, 1512–1524. [Google Scholar] [CrossRef]
- Duarte, K.D.; Schmidt, B.E.; Chilton, H.T.; Hughson, K.H.G.; Sizemore, H.G.; Ferrier, K.L.; Buffo, J.J.; Scully, J.E.C.; Nathues, A.; Platz, T.; et al. Landslides on ceres: Diversity and geologic context. J. Geophys. Res. Planets 2019, 124, 3329–3343. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.E.; Hughson, K.H.G.; Chilton, H.T.; Scully, J.E.C.; Platz, T.; Nathues, A.; Sizemore, H.; Bland, M.T.; Byrne, S.; Marchi, S.; et al. Geomorphological evidence for ground ice on dwarf planet ceres. Nat. Geosci. 2017, 10, 338–343. [Google Scholar] [CrossRef]
- Boyce, J.M.; Mouginis-Mark, P.; Robinson, M. The Tsiolkovsky crater landslide, the moon: An LROC view. Icarus 2020, 337, 113464. [Google Scholar] [CrossRef]
- Singer, K.N.; McKinnon, W.B.; Schenk, P.M.; Moore, J.M. Massive ice avalanches on iapetus mobilized by friction reduction during flash heating. Nat. Geosci. 2012, 5, 574–578. [Google Scholar] [CrossRef]
- Beddingfield, C.B.; Cartwright, R.J. A lobate feature adjacent to a double ridge on ariel: Formed by cryovolcanism or mass wasting? Icarus 2021, 367, 114583. [Google Scholar] [CrossRef]
- Moore, J.M.; Howard, A.D.; Umurhan, O.M.; White, O.L.; Schenk, P.M.; Beyer, R.A.; McKinnon, W.B.; Spencer, J.R.; Grundy, W.M.; Lauer, T.R.; et al. Sublimation as a landform-shaping process on Pluto. Icarus 2017, 287, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Kofler, C.; Steger, S.; Mair, V.; Zebisch, M.; Comiti, F.; Schneiderbauer, S. An inventory-driven rock glacier status model (intact vs. relict) for South Tyrol, Eastern Italian Alps. Geomorphology 2020, 350, 106887. [Google Scholar] [CrossRef]
- Johnson, B.C.; Sori, M.M. Landslide morphology and mobility on ceres controlled by topography. J. Geophys. Res. Planets 2020, 125, e2020JE006640. [Google Scholar] [CrossRef]
- Magnarini, G.; Mitchell, T.M.; Grindrod, P.M.; Goren, L.; Schmitt, H.H. Longitudinal ridges imparted by high-speed granular flow mechanisms in martian landslides. Nat. Commun. 2019, 10, 4711. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-T.; Merghadi, A.; Yunus, A.P.; Pham, B.T.; Dou, J. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep. 2019, 9, 12296. [Google Scholar] [CrossRef] [Green Version]
- Raponi, A.; De Sanctis, M.C.; Frigeri, A.; Ammannito, E.; Ciarniello, M.; Formisano, M.; Combe, J.-P.; Magni, G.; Tosi, F.; Carrozzo, F.G.; et al. Variations in the amount of water ice on ceres’ surface suggest a seasonal water cycle. Sci. Adv. 2018, 4, eaao3757. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock glaciers and mountain hydrology: A review. Earth Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Sam, L.; Gahlot, N.; Prusty, B.G. Estimation of dune celerity and sand flux in part of west Rajasthan, Gadra area of the Thar desert using temporal remote sensing data. Arab. J. Geosci. 2015, 8, 295–306. [Google Scholar] [CrossRef]
- Sam, L.; Bhardwaj, A.; Singh, S.; Kumar, R. Remote sensing flow velocity of debris-covered glaciers using Landsat 8 data. Prog. Phys. Geogr. Earth Environ. 2016, 40, 305–321. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sam, L.; Bhardwaj, A. A Remote Sensing Perspective on Mass Wasting in Contrasting Planetary Environments: Cases of the Moon and Ceres. Remote Sens. 2022, 14, 1049. https://doi.org/10.3390/rs14041049
Sam L, Bhardwaj A. A Remote Sensing Perspective on Mass Wasting in Contrasting Planetary Environments: Cases of the Moon and Ceres. Remote Sensing. 2022; 14(4):1049. https://doi.org/10.3390/rs14041049
Chicago/Turabian StyleSam, Lydia, and Anshuman Bhardwaj. 2022. "A Remote Sensing Perspective on Mass Wasting in Contrasting Planetary Environments: Cases of the Moon and Ceres" Remote Sensing 14, no. 4: 1049. https://doi.org/10.3390/rs14041049
APA StyleSam, L., & Bhardwaj, A. (2022). A Remote Sensing Perspective on Mass Wasting in Contrasting Planetary Environments: Cases of the Moon and Ceres. Remote Sensing, 14(4), 1049. https://doi.org/10.3390/rs14041049