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Abstract: The invasion of exotic annual grass (EAG), e.g., cheatgrass (Bromus tectorum) and medusa-
head (Taeniatherum caput-medusae), into rangeland ecosystems of the western United States is a
broad-scale problem that affects wildlife habitats, increases wildfire frequency, and adds to land
management costs. However, identifying individual species of EAG abundance from remote sensing,
particularly at early stages of invasion or growth, can be problematic because of overlapping controls
and similar phenological characteristics among native and other exotic vegetation. Subsequently,
refining and developing tools capable of quantifying the abundance and phenology of annual and
perennial grass species would be beneficial to help inform conservation and management efforts at lo-
cal to regional scales. Here, we deploy an enhanced version of the U.S. Geological Survey Rangeland
Exotic Plant Monitoring System to develop timely and accurate maps of annual (2016–2020) and intra-
annual (May 2021 and July 2021) abundances of exotic annual and perennial grass species throughout
the rangelands of the western United States. This monitoring system leverages field observations
and remote-sensing data with artificial intelligence/machine learning to rapidly produce annual
and early season estimates of species abundances at a 30-m spatial resolution. We introduce a fully
automated and multi-task deep-learning framework to simultaneously predict and generate weekly,
near-seamless composites of Harmonized Landsat Sentinel-2 spectral data. These data, along with
auxiliary datasets and time series metrics, are incorporated into an ensemble of independent XGBoost
models. This study demonstrates that inclusion of the Normalized Difference Vegetation Index and
Normalized Difference Wetness Index time-series data generated from our deep-learning framework
enables near real-time and accurate mapping of EAG (Median Absolute Error (MdAE): 3.22, 2.72,
and 0.02; and correlation coefficient (r): 0.82, 0.81, and 0.73; respectively for EAG, cheatgrass, and
medusahead) and native perennial grass abundance (MdAE: 2.51, r:0.72 for Sandberg bluegrass
(Poa secunda)). Our approach and the resulting data provide insights into rangeland grass dynam-
ics, which will be useful for applications, such as fire and drought monitoring, habitat suitability
mapping, as well as land-cover and land-change modelling. Spatially explicit, timely, and accurate
species-specific abundance datasets provide invaluable information to land managers.

Keywords: exotic annual grasses; native perennial grass; Landsat 8; Sentinel-2; deep learning;
machine learning; time-series analysis

1. Introduction

The invasion of exotic species to any ecosystem can have catastrophic effects when the
exotic species outcompete native species and substantially alter landscapes [1,2]. Landscape
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change can lead to significant economic cost [3,4]. The invasion of annual grasses in arid
and semiarid ecosystems across the globe continues to transform these habitats and alter
their biodiversity [5].

The invasion of large swaths of rangeland ecosystems in the western United States
by exotic annual grass (EAG), such as cheatgrass (Bromus tectorum) and medusahead
(Taeniatherum caput-medusae), have affected wildlife habitat by altering the abundance and
diversity of native species. The invasion of the exotic annuals in these rangeland ecosystems
have led to increases in wildfire frequency, the spread rate, and intensity by providing
a fine-fuel bed as EAG emerge early in the growing season, depriving native plants of
critical moisture and nutrients from the soil, and senescing before the hot summer days
arrive [6–9].

Wildfires in these ecosystems further exacerbate habitat loss by disturbing the land,
thus, making restoration difficult and expensive [10]. The positive feedback mechanism
between fire and EAG lead to the expansion of the exotic annuals [11], further adding to
land management costs [12]. Several studies have successfully created EAG maps at various
spatiotemporal resolutions with different temporal latencies over rangeland ecosystems of
the western United States [7,11,13–18].

For example, Rigge et al. [15] and Jones et al. [17] covered most of the western United
States developing their historical annual herbaceous and annual grass and forb percent
cover maps, respectively. However, both studies included native/non-native grass and forb
species. On the other hand, Boyte and Wylie [18] and Pastick et al. [19] developed expedited
EAG maps focusing only exotic annual grass species but for much smaller regions.

Maps that aggregate multiple species and developed with different methods can be
insufficient to land managers as each species has its own characteristics and may pose
different threats. Moreover, some of the exotic annual species have higher competitive
advantages over other exotic annual and native perennial species [7,9,20]. Therefore,
species specific maps that cover large spatial extents and are generated with consistent
methodologies would provide land managers with a mechanism by which to prioritize
land management activities.

Recent advancements in remote-sensing satellite sensors and computational tech-
nologies have provided a wide range of newer tools for mapping communities and char-
acteristics of plant species at a range of spatial scales [13,16,17,21]. Gu et al. [22] used
Moderate Resolution Image Spectroradiometer (MODIS) satellite data, Soil Survey Geo-
graphic (SSURGO) productivity data, and regression-tree models and analysis to quantify
grassland productivity.

Other studies have used MODIS and regression-tree models to study cheatgrass
distributions [7] or die-off [20]. Lately, multi-scale satellite sensor approaches have been
used to map individual exotic annual species in smaller spatial domains [9,16]. Remotely
sensed work that supports the early detection, rapid response mapping, and monitoring of
exotic annual grass cover by species as well as their phenological confusion with native
grass species over regional scales is important for land managers’ understanding of current
landscape conditions.

Harmonized Landsat Sentinel-2 (HLS) surface reflectance data provides a useful data
source to meet those goals. Pastick et al. [13,14,19] leveraged HLS and machine-learning
approaches and demonstrated that EAG could reliably be mapped and monitored with high
spatiotemporal resolution. Recently, Weisberg et al. [23] conducted a phenological analysis
and developed species-specific exotic annual grass maps using high-resolution imagery
acquired from small, unoccupied aerial vehicles and machine learning to a small spatial
extent. They found that each species showed significant differences in seasonal phenology
even though they were similar spectrally and spatially during their active growth period.

The primary goal of this research was to explore whether the spatiotemporal and
spectral resolution of HLS data allow for mapping and monitoring the fractional cover of a
suite of exotic annual and native perennial grass species in the rangelands of the western
United States. To accomplish this goal, first, we developed a multi-task learning framework
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that leverages artificial intelligence/machine learning for the simultaneous estimation of
multispectral data and subsequent estimation of the abundance of exotic annual and native
perennial grass species. The second objective was to assess the spatiotemporal patterns
and drivers of grass abundance and potential mapping confusion between species from
field observations, remote-sensing, and climate data. The third objective was to assess the
inter-annual variability of the grass species cover compared against the regional weather.

2. Materials and Methods
2.1. Study Area, Remote-Sensing Inputs, and Cleaning Contaminated Pixels

In this study, we enhanced the temporal resolution, latency, and specificity of the
U.S. Geological Survey (USGS) Rangeland Exotic Plant Monitoring System [https://www.
sciencebase.gov/catalog/item/5f0ddd6e82ce21d4c4053e17 (accessed date: 15 December
2021) ] to develop and publicly release species-specific maps (30-m spatial resolution) of the
abundance of exotic annual (combination of multiple species, cheatgrass, and medusahead)
and native perennial (Sandberg bluegrass (Poa secunda)) grasses across much of the western
United States (Figure 1).

In addition to an expanded spatial and temporal scope of our monitoring area, which
was divided into all or parts of 376 mapping units (109.9 × 109.9 km) to coincide with the
Military Grid Reference System adopted by HLS [24], we updated the system by integrating
different algorithms, modelling techniques, and spectral data to improve predictions.

The overall data processing and modelling framework is shown in Figure 2 and
consists of (1) acquiring HLS images and removing cloud/shadow pixels; (2) developing
cloud/shadow free weekly spectral layers using a spatiotemporal interpolation approach;
and (3) developing species-specific exotic annual and perennial grass percent cover datasets
for historical (2016–2020) and rapid (2021) estimation.
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Figure 1. Field observations of the exotic annual grass abundance overlain on a hillshade model and 
maximum Normalized Difference Vegetation Index for 2021. Black lines represent state boundaries. 
Red lines are Omernik Level II ecoregions boundaries [25], and blue polygons represent permanent 
terrestrial water bodies. (Inset): 376 individual Harmonized Landsat/Sentinel-2 mapping units over-
lain with Conterminous United States (upper) and box and whisker plots (lower) showing distribu-
tion of selected grass species for training data over the years. The boxes represent interquartile range 
with horizontal line inside them indicating median values. The whiskers extend to a range that is 
within the median values ±1.5 times the interquartile range. EAG represents a combination of 16 
exotic annuals, BRTE is cheatgrass, TACA8 is medusahead, and POSE is Sandberg bluegrass. 
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maximum Normalized Difference Vegetation Index for 2021. Black lines represent state boundaries.
Red lines are Omernik Level II ecoregions boundaries [25], and blue polygons represent permanent
terrestrial water bodies. (Inset): 376 individual Harmonized Landsat/Sentinel-2 mapping units
overlain with Conterminous United States (upper) and box and whisker plots (lower) showing
distribution of selected grass species for training data over the years. The boxes represent interquartile
range with horizontal line inside them indicating median values. The whiskers extend to a range
that is within the median values ±1.5 times the interquartile range. EAG represents a combination of
16 exotic annuals, BRTE is cheatgrass, TACA8 is medusahead, and POSE is Sandberg bluegrass.
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Figure 2. Schematic diagram showing pre-processing steps, modelling tasks and outcomes, and tools
used for each step. NDVI is Normalized Different Vegetation Index, NIR is near infrared, SWIR is
shortwave infrared, and subscripted HLS, FILL, and PRD stand for cloud/shadow cleaned, gap-filled,
and predicted, respectively. EAG represents a combination of 16 exotic annual grasses, BRTE is
cheatgrass, TACA8 is medusahead, and POSE is Sandberg bluegrass. BLM AIM is the Bureau of Land
Management Assessment, Inventory, and Monitoring program, and GDAL stands for Geospatial
Data Abstraction Library.

National Aeronautics and Space Administration (NASA) uses surface reflectance
data from the Operational Land Imager (OLI) of Landsat satellite and the Multi-Spectral
Instrument (MSI) from two Sentinel-2 (A and B) satellites to produce atmospherically
corrected land observation data. The multi-sensor feature of HLS data renders a temporal
resolution of 2–3 days. We acquired all available HLS (v1.4) 30-m data from the HLS data
portal for years 2016–2021.

These data are produced with approximately a 5-day latency period from the satellite
observation. More than 298,000 scenes with approximately 23 terabytes of data were
acquired for the study, and the complete data processing was conducted on the USGS
Tallgrass supercomputer [26]. We used an automated masking procedure that leveraged
HLS imagery and a decision-tree classification model (C5; https://www.rulequest.com/
see5-info.html, accessed on 15 December 2021) because existing HLS (v1.4) QA bands are
known to contain omission/commission errors.

Pixels identified as clouds, shadows, and water in the QA bands and with a Normal-
ized Difference Wetness Index (NDWI) ≤0.1 were given a value of 0. Pixels identified as
high quality with no contamination except snow/ice, and NDWI values >0.1 were given a
value of 1.

Our analysis showed that this threshold resulted in the best shadow and water detec-
tion (see Pastick et al. [14] for details). We further applied a time-series outlier filter to clean
the model training data, targeting the omission errors of the HLS QA bands. We filtered out
pixels from the QA band where NDWI values exceeded ±25% from the seasonal tile/year
NDWI value. For this study, the seasons were defined as day of year <150, 150–190, 190–230,
230–275, >275 giving high priority to the growing season.

Spectral information from five bands (Blue: 0.45–0.51 µm, Red: 0.64–0.67 µm, near
infrared (NIR): 0.85–0.88 µm, mid infrared (MIR): 1.57–1.65 µm, shortwave infrared (SWIR):
2.11–2.29 µm) were randomly extracted within five natural breaks clusters of Normalized
Difference Vegetation Index (NDVI) for each scene. Decision-tree classification models

https://www.rulequest.com/see5-info.html
https://www.rulequest.com/see5-info.html
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were calibrated for optimal hyperparameters (i.e., the number of rulesets and boosting
trials) using five-fold cross validation and applied to make a binary map with cleaned and
contaminated pixels for each scene.

The decision-tree classification framework also resulted in per-pixel estimates of model
confidence (hereafter confidence map) as derived from an ensemble of model realizations
and the fraction of correctly and incorrectly classified data in each terminal node. The
binary maps were used to mask the contaminated pixels from the raw NDVI scenes to
produce cleaned raw NDVI.

The cleaned raw NDVI data were aggregated with the confidence map to interpolate
missing values in time steps using a time and confidence weighted sum approach [27];
these data are called gap-filled NDVI. We further generated weekly composites by taking
the median values of all the cleaned raw NDVI data, the confidence map, and gap-filled
NDVI data. The weekly composite of cleaned raw NDVI (called NDVIHLS, hereafter)
that had higher than 75 percent values in the confidence composite were filtered to select
pure pixels.

The pure pixels were further filtered to cover rangeland pixels that were classified
as grassland/herbaceous or shrub by 2016 National Land Cover Database [28]. Up to
2000 pixels per cluster from five natural breaks clusters of these pure pixels of a weekly
composite were selected as training samples. The weekly training samples for each map-
ping unit and year were further aggregated to extract information from all 52 weeks of
the weekly composites of gap-filled NDVI (NDVIFILL), potential annual incident direct
radiation (PADR) [29], and a digital elevation model (DEM) from the National Elevation
datasets [30] of the study area.

These data served as independent (predictor) variables. The NDVIHLS, NIRHLS, and
SWIRHLS served as the dependent (outcome) variables for the model. All mapping unit
per year datasets were again aggregated to make one training dataset of six years and 376
mapping units with 264 million records. We developed an independent validation dataset
using the same approach; however, validation test samples (n = 39.7 million records) were
located at least 120 m from the training samples to mitigate spatial correlation that could
exaggerate the validation accuracy [31,32].

2.2. Time-Series Modelling, Mapping, and Validation of Spectral Data

The USGS Tallgrass supercomputer was used to develop a multivariate deep-learning
model for the simultaneous estimation of weekly NDVI, NIR, and SWIR data across
our spatiotemporal domain. Predictor variables included (1) weekly NDVIFILL for all
52 weeks of a year, (2) PADR, (3) elevation, and (4) week of year information. A multi-layer
perceptron (MLP) model was developed using TensorFlow [33] and trained (calibrated) on
approximately 264 (26.4) million records that were sampled from clean image composites
(i.e., NIRHLS, SWIRHLS, and NDVIHLS) across time and space (see Section 2.1).

The multi-task, MLP model was trained/calibrated across 50 epochs using Adam’s
optimizer (learning rate of 0.001 + reduction on plateaus) and mean standard error (MSE)
as a loss function. We deployed drop-out layers and an early-stopping procedure to prevent
model overfitting.

The calibrated model was then applied to spatial inputs of the predictor variable within
each mapping unit to produce near seamless, weekly composites (NIRPRD, SWIRPRD, and
NDVIPRD). A weekly time step of NDWIPRD data was also computed using NIRPRD
and SWIRPRD. The multi-task MLP model was validated against the independent test
samples (39.7 million) by calculating Pearson’s r, the median absolute error, and the root
mean square error. We also compared the weekly NDVI time-series data (NDVIPRD)
to expedited MODIS (eMODIS) NDVI time-series data by generating box and whisker
plots. We downscaled smoothed eMODIS at 250-m pixels to 30-m pixels to facilitate the
comparison (see Pastick et al. [13] for the eMODIS smoothing and downscaling process).
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2.3. Exotic Annual and Native Perennial Grass Modelling and Mapping

We compiled 17,542 field observations developed by the Bureau of Land Manage-
ment (BLM) Assessment, Inventory, and Monitoring (AIM) program (i.e., the Landscape
Monitoring Framework (LMF) and Terrestrial Aim Database (TerrADat)) from 2016–2019
(Figure 1). AIM field data were collected with a line-point intercept method [34,35] that
focused on measuring core terrestrial indicators including plant species cover and composi-
tion. The BLM AIM plots were established with random sampling approaches to maintain
an unbiased representation of federally managed rangelands.

Indicator variables were collected as 101 pin-drops in two 150-ft intersecting transects
(LMF) and typically 150 pin drops in three transects (TerrADat) and aggregated for the
plot. We selected data from individual species of interest (Table 1) and summarized the
abundance of (1) a combination of 16 EAGs, (2) cheatgrass, (3) medusahead, and (4) Sand-
berg bluegrass for model development and validation (Figure 1). Sandberg bluegrass is
a native perennial bunch grass found in much of the western United States and Canada
and has phenological traits similar to exotic annual grasses that might lead to mapping
confusion [36].

Table 1. List of grass species included in this study. Code as defined by United States Department
of Agriculture plants database (https://plants.sc.egov.usda.gov/home, last accessed on 25 January
2022) and adopted by the AIM program [34].

Code Scientific Name Common Name Duration Mapping

BRAR5 Bromus arvensis L. field brome A }
BRBR5 Bromus briziformis Fisch. & C.A. Mey. rattlesnake brome A }
BRCA6 Bromus catharticus Vahl rescuegrass A }
BRCO4 Bromus commutatus Schrad. Bald brome A }
BRDI3 Bromus diandrus Roth ripgut brome A }

BRHO2 Bromus hordeaceus L. soft brome A }
BRHOH Bromus hordeaceus L. spp. hordeaceus soft brome A }

BRJA Bromus japonicus Thunb. Japanese brome A }
BRMA3 Bromus madritensis L. compact brome A }
BRMAR Bromus madritensis L. ssp. rubens (L.) Duvin compact brome A }
BRRA2 Bromus racemosus L. Bald brome A }
BRRU2 Bromus rubens L. red brome A }
BRSE Bromus secalinus L. rye brome A }
BRTE Bromus tectorum L. cheatgrass A } *
BRTE2 Bromus texensis (Shear) Hitchc. Texas brome A }
TACA8 Taeniatherum caput-medusae (L.) Nevski medusahead A } *
POSE Poa secunda J. Presl Sandberg bluegrass P *

Note: } indicates these species are included in EAG. * Indicates these species are individually mapped. A is
annual and P is perennial.

To permit upscaling of the species abundance data to the entire study area, a suite of
predictor variables was selected and input into our machine-learning framework. The first
set of predictor variables was made up of spectral phenocurves, which were represented
by (1) weekly NDVIPRD and NDWIPRD data (Section 2.2) from weeks of years 1 to 28.
NDVI correlates with photosynthetic potential of vegetation and is a widely used spec-
tral index [22,37,38] despite some limitations in dryland ecosystems with low vegetation
cover [39]. The NDWI, on the other hand, correlates the moisture content in vegetation
and complements the time step spectral information that was lacking with NDVI [40];
and (2) two sets of phenometrics (maximum value- MaxN, and week of maximum value-
MaxW) were calculated from NDVIPRD and NDWIPRD.

The second set of predictor variables were edaphic and included soil organic matter,
silt, sand, clay, and available water capacity in the top soil (0–30 cm) [41]. The third set of
predictor variables were 35-years (1985–2019) of climate normals calculated from Daymet
climate data for the annual precipitation, annual temperature, summer (June–Sept) months’
temperature, summer months’ precipitation, winter (Oct–May) months’ temperature, and

https://plants.sc.egov.usda.gov/home
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winter months’ precipitation [42]. The fourth set of predictor variables were the elevation,
aspect, slope, and PADR.

The fifth set of predictor variables added vegetation and disturbance context to the
model in that we used fractional component estimates of annual herbaceous, peren-
nials herbaceous, and sagebrush from circa 2016 [43] and long-term spectral change
time and change magnitude from Land Change Monitoring, Assessment, and Projection
(LCMAP) [44]. The sixth set of predictor variables added historical (2012–2019) variability
of annual grass and forbs [17] and supplied seed source information to the regression
tree model.

The predictor variables were harvested for each field observation plot, coincident with
the year of observation, thus, creating a model database. To generate an ensemble of five
models, the model database was then randomly split into five subsets. Each subset was
used as validation data once, while the remaining four subsets were used to train the model.
The process was repeated four times. This ensemble of five sets of boosted regression tree
models were developed using python scikit-learn and XGBoost software libraries [45,46].

An early stop approach and grid search hyper-parameter optimization method were
used to prevent overfitting and identify optimal parameters during each model iteration.
This approach utilizes the same set of predictor data to estimate more than one outcome
variable, which, in this case, includes three individual species (i.e., cheatgrass, medusahead,
and Sandberg bluegrass) and a combination of 16 different EAG species (see Table 1).
Each set of test data was used to validate its corresponding model, and the results were
aggregated before reporting.

Each calibrated model was then applied to the spatial input variables to develop
maps (30-m pixels) of each variable (EAG, cheatgrass, medusahead, and Sandberg blue-
grass), making five maps for each. Median values and variances of the five maps serve as
the final annual percent cover maps and confidence level maps of each species for years
2016–2020. While mapping, we applied a mask to areas that were not classified as grass-
land/herbaceous or shrub by the 2016 National Land Cover Database [28] and areas above
2250-m elevation to target only likely rangeland ecosystems and areas that are ecologically
suitable for the selected species.

Leveraging the historical (2016–2020) model algorithms integrated with up-to-date
spectral data for 2021, we developed target species (EAG, cheatgrass, medusahead, and
Sandberg’s bluegrass) intra-annual estimated maps in rapid fashion in both May and July
for 2021. Here, the long-term average (2016–2020) of the NDVIPRD was calculated and
used as proxy to NDVIFILL for future 2021 weeks. The MLP model was re-calibrated
(Section 2.2) to estimate a time series of spectral phenocurves (NDVIPRD, NIRPRD, and
SWIRPRD) followed by the computation of NDWIPRD, MaxN, and MaxW for 2021.

We then applied regression tree models to develop rapid annual percent cover maps.
The process used in May was repeated in July except we made the spectral datasets current
by adding subsequent spectral data to the model so that we could develop more recent
estimates of foliar percent cover.

2.4. Assessments of Environmental Drivers and Intra-Species Mapping Confusion

We assessed the importance of predictor variables for estimating the species abundance
across each model run using the permutation feature importance method [30,47]. We then
assessed first-order effects of the top-five predictors on modelled estimates of species
abundance using Partial Dependence Plots (PDP), which can show whether the relation
between the target species and a variable is linear, monotonic, or more complex [48] as
generated for all five model iterations. The permutation feature importance plots and PDP
were developed using matplotlib and ppdbox library in python scikit-learn, respectively.

We assessed intra-species mapping confusion between cheatgrass, medusahead, and
Sandberg bluegrass by comparing presence and absence of the species in observed (AIM
plots) and predicted data. For this assessment, we identified three sets of AIM plots: all
plots with (1) cheatgrass presence, (2) medusahead, and (3) Sandberg bluegrass presence.
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We evaluated for the presence/absence of one species by the presence/absence of another
species, and vice versa, to develop accuracy matrices for the years coincident with the
year of observation (AIM plots). For example, in all the plots with cheatgrass presence, we
compared how many plots have Sandberg bluegrass or medusahead presence and absence
in the observed and predicted data.

2.5. Ecoregion and Trend Analysis

Several studies reported that annual grass abundance/cover positively correlates with
the amount of precipitation received annually [49,50]. To analyze the effect of annual
precipitation to the mapped grass species, we used daily 1-km Daymet precipitation data to
calculate an anomaly of a total hydrologic year’s precipitation (previous October to current
June) [41] and compared them to the anomaly of annual average abundance of the grass
species for each Omernik ecoregion [25] within the study area for the years 2016–2021.

3. Results
3.1. Spectral Time-Series Images Modelling, Mapping and Validation

Accurate spectral time-series data are important for developing satellite-based foliar
cover products in arid and semiarid rangeland ecosystems, where small differences in
inter-annual and inter-seasonal weather patterns can drive larger changes in vegetation pro-
ductivity. The correlation coefficient of NDVI predictions for all years except for 2016 (0.47)
showed strong correlations (0.79–0.95) (Table 2). Lower data density in 2016 (33,883 satellite
scenes) may have contributed to lower accuracy. For comparison, 2018 and 2019 had 66,383
and 71,420 satellite scenes, respectively.

Table 2. Accuracy assessment (Pearson’s r, median absolute error, and root mean square error)
between true values and model predicted values for independent test samples for each year of the
study. Bold text indicates best result for that column.

NDVI NIR SWIR
Year r MdAE RMSE r MdAE RMSE r MdAE RMSE
2016 0.47 0.03 0.10 0.56 474.00 619.05 0.64 474.47 626.89
2017 0.94 0.03 0.07 0.61 473.10 665.32 0.79 415.18 563.40
2018 0.94 0.02 0.07 0.61 464.76 667.13 0.80 433.03 590.77
2019 0.88 0.02 0.08 0.62 517.35 769.57 0.75 482.81 636.79
2020 0.95 0.02 0.06 0.63 440.13 619.18 0.81 412.39 556.47
2021 0.79 0.04 0.10 0.62 540.80 895.11 0.75 497.71 689.75

Overall 0.90 0.02 0.10 0.61 485.02 651.22 0.77 452.60 592.71

However, despite fewer scenes in 2016, the median absolute error (MdAE) and root
mean squared error (RMSE) for NDVI were 0.03 and 0.10, respectively, and within the
2017–2021 range of 0.02–0.04 and 0.08–0.10, (2–10 percent of error). The overall accuracy for
NIR (MdAE: about 440–541; and RMSE: about 619–895) and SWIR (MdAE: about 412–498;
and RMSE: 556–690) were very similar (4 to 9 percent of error) when compared to NDVI
(Table 2). Predicted values for all independent (test) samples overall were very close to the
observed values (Figure 3), indicating strong correlation.

Comparison of NDVIPRD with eMODIS NDVI time-series revealed our model under-
predicted NDVI compared to eMODIS but maintained general agreement between the two
datasets for the active growing weeks (box and whisker plots for two tiles as an example
in Appendix A (Figure A1)). In rangeland ecosystems, vegetation growing conditions are
generally favorable in spring, when NDVIPRD correlates strongly with eMODIS except
for 2016.
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3.2. Exotic Annuals and Native Perennial Grass Modelling

Correlation analysis of independent test values against the predicted values for each
species showed general agreement between the two; however, EAG and cheatgrass have
higher agreement than medusahead and Sandberg bluegrass (Figure 4). Overall, the
correlation coefficient for EAG is the highest with 0.82, whereas Sandberg bluegrass has the
lowest with 0.72. The MdAE for medusahead was excellent with only 0.02 percent error,
whereas for EAG, cheatgrass, and Sandberg bluegrass the MdAE values were 3.22, 2.72,
and 2.51, respectively.

Medusahead had the smallest training sample size (presence in only 471 AIM plots),
compared to others (EAG: 8900, cheatgrass: 7600, and Sandberg bluegrass: 8550), which
might have resulted in a higher confidence interval for the modelling.

3.3. Exotic Annuals and Native Perennial Grass Mapping

Anomaly and difference maps of species abundance from the long-term (2016–2020)
median (Figure 5; see Appendix A (Figure A2) for annual abundance cover with associated
confidence maps) provide unique insights into estimated intra and interannual variability.
The map for 2016 shows less abundant cheatgrass and EAG in highly invaded areas of
the Cold Deserts ecoregion and parts of the West-Central Semiarid Prairies ecoregion with
higher abundances for these areas in 2017, 2019, and 2020.

Both versions of the 2021 rapid maps (May and July) predicted variable results for
cheatgrass and EAG as the invasion of these grasses was below average in some areas while
higher than average in others. Medusahead, which is not wide spread (see Appendix A
(Figure A2)), appears to have relatively little departure from the long-term median except in
2019, where the Western Cordillera, Mediterranean California, and Great Basin ecoregions
show some positive deviation from normal.

The Sandberg bluegrass abundance was less than the long-term median in 2016 but
appeared to be more consistent with the long-term median in subsequent years until 2021,
when it was substantially less. The Sandberg bluegrass abundance was down on average by
12.4 and 10.4 percent in May and July 2021, respectively, when EAG abundance in the same
areas was up on average by 4.7 and 3.2 percent from their respective long-term median.
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Figure 4. Scatterplots showing agreement between modelled and independent test samples for EAGs
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and MdAE equals the median absolute error.
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Figure 5. Historical (left) and rapid (center) deviation maps of the annual species abundance from
the long-term (2016–2021) median percent cover. Estimated abundances lower than the median are
displayed in red, while estimated abundances higher than the median are displayed in green. The
difference (right) of the two rapid maps (May–July 2021) shows higher abundances in May displayed
in red with lower abundances in July displayed in green. EAG represents a combination of 16 exotic
annual grasses, BRTE is cheatgrass, TACA8 is medusahead, and POSE is Sandberg bluegrass.
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3.4. Model Drivers and Feature Importance

Model-agnostic interpretation methods revealed the feature importance and unique
and similar first-order interactions between the estimated grass abundances and envi-
ronmental predictors (Figure 6). Model estimates of the EAG abundance and its major
constituent cheatgrass cover varied largely as a function of long-term estimates of annual
herbaceous cover and variability (proxy for seedbank and invasion envelope) and summer
precipitation and, to a lesser degree, as a function of the wetness and productivity indices.
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Figure 6. (Left) Predictor variable usage and (right) partial dependence plots (PDP) across all five
iterations of boosted regression tree models. The plots are arranged in order of decreasing importance
from left to right. (A) Box and whisker plots showing the variance of importance between five
models. Whiskers show minimum and maximum values while the boxes show the 25th and 75th
percentile. The line indicates median variable usage. Accumulative average of predictor variable
importance of five models for EAG (B), cheatgrass (C), medusahead (D), and Sandberg bluegrass
(E). SS = seed source, NV = weekly NDVIs, NW = weekly NDWIs, CL = climatic, ED = edaphic,
TP= topographic, VG = vegetation, DI = disturbance, and PD = pheno-derivatives (see Section 2.3).
The hash marks at the base of each PDP represent the deciles of the predictor variable distribution.
EAG = combination of 16 exotic annual grasses, BRTE = cheatgrass, TACA8 = medusahead, and
POSE = Sandberg bluegrass.

The relation between estimates of EAG abundance and the historical variability of
annual herbaceous cover was somewhat sigmoidal with low and high invasion in areas
with low and high variability, respectively. Summer precipitation was found to be a useful
predictor of species abundances, where cover was generally the highest (lowest) in areas
that received relatively less (more) summer rainfall but, by itself, was not highly useful for
separating each component.

Targeted species operated in similar climate envelopes, as indicated by similar first-
order relations, and observed abundances across similar precipitation and temperature
gradients, which indicated that high-order interactions and remote-sensing data largely
drove the modeled and mapped differences (Figures 5 and 6).

3.5. Intra-Species Mapping Confusion

Our assessment of intra-species mapping confusion between cheatgrass, medusahead,
and Sandberg bluegrass found that some confusion existed between the predictions of the
species (Figure 7). Some AIM plots with cheatgrass presence (values > 0) were predicted to
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contain medusahead (11.6 to 13.6 percent) and Sandberg bluegrass (19.7 to 29.6 percent),
when they were not observed on the ground (commission errors).
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Figure 7. Heat maps showing intra-species annual accuracy matrices for the training plots with one
species presence to another species presence or absence for the years 2016–2019. P-Pres is POSE
present, P-Abs is POSE absent, T-Pres is TACA8 present, T-Abs is TACA8 absent, B-Pres is BRTE
present, and B-Abs is BRTE absent. BRTE is cheatgrass, TACA8 is medusahead, and POSE is Sandberg
bluegrass. The values in boxes show the percent accurate, and values inside parentheses represent
the number of observations.

Overall, the median observed cheatgrass abundance was 17.5 percent in AIM plots
with no Sandberg bluegrass, and the models predicted 10.9 percent cheatgrass with 2.2 per-
cent Sandberg bluegrass in those plots (commission errors). Similarly, the median observed
cheatgrass abundance was 17.1 percent in AIM plots with no medusahead, and the models
predicted 12.4 percent cheatgrass with 0.3 percent medusahead in those plots.
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Some AIM plots with Sandberg bluegrass presence (values > 0) were predicted to
contain cheatgrass (26.3 to 42.2 percent) and medusahead (8.3 to 11.1 percent) when they
were not observed on the ground. Overall, the median observed Sandberg bluegrass
abundance, in those presence plots, was 9.1 percent, and the models predicted 8.0 percent
with 1.2 percent cheatgrass. Similarly, the median observed Sandberg bluegrass abundance
was 9.7 percent in AIM plots with no medusahead and the models predicted 9.0 percent
Sandberg bluegrass with 0.2 percent medusahead in those plots (commission errors).

Some AIM plots with medusahead presence (values > 0) were predicted to contain
cheatgrass (18.1 to 51.2 percent) and Sandberg bluegrass (4.9 to 9.5 percent) when they were
not observed on the ground. However, models rarely missed predicting the grasses (0.0 to
7.3 percent) that AIM plots observed as present (omission errors).

3.6. Inter-Annual Variability of Grass Cover and Relation to Precipitation

The results show that the anomaly of annual averages of cheatgrass (r: 0.46–0.83) and
EAG (r: 0.40–0.81) abundances have moderate to high correlations with the anomaly of total
hydrologic year precipitation in a majority of the ecoregions. Two ecoregions (Cold Deserts
and Western Cordillera) have low correlations, and the West Central Semiarid Prairies
ecoregion shows a negative correlation (Figure 8). The years 2017 and 2019 received the
most precipitation for most of the study area. The results show a higher abundance of
EAG and cheatgrass for those years. The annual average abundance of medusahead and
Sandberg bluegrass shows a relatively weak relation with the annual total precipitation.
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Figure 8. Time series of the annual average species cover abundance and hydrologic year precipitation
(October–June) anomalies (left), scatterplot (top-right), and correlation matrices (bottom-right) of
species abundance anomalies with hydrologic year precipitation anomalies for Omernik Level II
ecoregions [25]. EAG represents a combination of 16 exotic annual grasses, BRTE is cheatgrass,
TACA8 is medusahead, POSE is Sandberg bluegrass, and PPT is the sum of the previous October to
current June precipitation. Year 2021 for the species percent cover is calculated using the July 2021
version of rapid mapping.
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4. Discussion

Phenology can be especially dynamic in temperate climates as temperature, precipita-
tion, and other climatic factors vary year-to-year at local scales [51]. The dynamics become
more extreme in arid/semiarid landscapes where precipitation can be the strongest driver
of vegetation growth and productivity [52]. Moreover, plant phenology can be influenced
by other factors, such as the elevation, habitat type, and soil type, and can vary pixel to
pixel for even the same grass species, especially in arid/semiarid landscapes [23,53].

The data fusion approach we implemented to leverage HLS data and machine-learning
techniques to develop near-seamless, weekly NDVI proved effective in the arid/semiarid
study area [14,19]. In this study, we demonstrated the robustness of the approach by
expanding the spatiotemporal extent and developing similar quality products for spectral
bands, i.e., NIR, and SWIR. We extended the temporal dimension to cover the entire year
(52 weeks; Appendix A (Figure A2) and increased the spatial extent by approximately three
times to cover most of the western United States (Figure 1).

The implementation of deep learning, neural network algorithms in this study enabled
the predictive model to distinguish between phenological differences from coastal climates
to desert climates to semi-arid prairies’ climates. However, it is worth noting that this
approach requires an enormous amount of training data (264 million records in this study
to develop NIRPRD, SWIRPRD, and NDVIPRD; see Section 2.1) and computational capability.
Zhu et al. [54] reported that a minimum number of training samples is needed to optimize
the model accuracy.

We postulate that spatially and temporally balanced training data are equally impor-
tant for achieving optimal accuracy. Year 2016 had the lowest number of available HLS
scenes as Sentinel-2B was not launched until 7 March 2017. This meant that 2016 had
about half the scenes of other years, and 2016 had the lowest accuracy in both the imagery
processing and EAG predictions by a relatively wide margin (see Section 3.1).

Predictor variables drive the predictive capability of a model. The more closely a
predictor variable represents the characteristics of an outcome variable, the more accurate
the modelling outcome. For remote-sensing-based annual grass abundance modelling and
mapping studies, satellite spectral bands or spectral band-derived indices are often sup-
plemented by auxiliary variables. Some studies rely on single-date satellite imagery [9,55],
other studies used two or more dates [7,11], and some used time-series data [14,19,23,49].

However, these studies relied heavily on NDVI to drive model development. NDWI,
which is highly sensitive to water content in grassland vegetation [56], responds quickly
to growing grasses, and can improve the modelling accuracy. Our study revealed that
NDWI time-series data were similarly influential as NDVI time-series data when driving
the model development (Figure 6).

Similarly, a seed source layer, the variance of annual grass and forb percent cover for
2012–2019 from Jones et al. [17] as a proxy, was included as a model driver, anticipating that
it would improve the accuracy of exotic annual grasses (EAG, cheatgrass, and medusahead).
The higher usage of the layer by EAG and cheatgrass and lower usage by Sandberg
bluegrass (a perennial grass) in the predicting models met our expectations.

While the functional relations for the estimated medusahead cover followed those of
other grass species, the comparatively smaller footprint and fewer training points within
areas of high abundance likely resulted in smaller usage of the seed source layer. Further
investigation may be needed to better understand these dynamics and identify various
stages of medusahead invasion. Future studies that include perennial grass abundance
may also benefit by adding the perennial seed source.

Within season (May and July 2021) estimates of EAG and cheatgrass cover growth
generally followed temperature gradients as expected, with new growth in ecoregions with
later growing seasons (i.e., high latitudes) and slight gains or declines in lower latitudes
with earlier starts to the growing season (Figure 5). Slight declines in the foliar cover from
May to July could be effects of grazing or human-induced factors; however, additional
investigation would be needed to make that connection.
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Stark differences in early season estimates of EAG cover (2021) from the historical
average annual cover highlights the effect of weather, and thus spectral data, in estimating
cover and dynamic growth patterns of each vegetation component. The substantial loss of
Sandberg bluegrass in 2021 from the historical average could be attributed to the increased
abundance of EAG as both May and July version of maps estimated higher cover for EAG
and lower cover for Sandberg bluegrass than their respective long-term median.

Estimates of the annual abundance of each grass species and their associations with
environmental conditions generally aligned with distribution maps and habitat suitability
analyses of McMahon et al. [57]. In their analysis, climate variables were the best predictors
of most species’ distribution; however, in this study remote-sensing data were generally
more informative for estimating abundance levels. That is, climate data serve as a tool
for identifying where species operate but less so for establishing absolute measures of
foliar cover.

Although our primary purpose was to map the EAG percent cover, we demonstrated
that our modelling approach can also effectively map a native perennial species along
with specific EAG species for a large regional area. In this study, we developed both a
predictive map of a collection of 16 EAGs and stand-alone predictive maps for cheatgrass,
medusahead, and Sandberg bluegrass (Figure 5 and Appendix A (Figure A2)).

Peterson [11] reported that Sandberg bluegrass, which has similar phenology timings
during active growth to cheatgrass (cheatgrass and medusahead including many exotic an-
nuals may have the similar phonology) may have caused a higher estimation of cheatgrass
abundance in some part of his study.

Our study shows a similar outcome in about 25% and 10% of the sampled plots for
cheatgrass and medusahead, respectively. However, the predicted cover for incorrectly
predicted species was substantially smaller than the observed species. The models almost
always predicted the species presence when training data (AIM) observed the species
as present. Conversely to McMahon et al. [57], our models were more likely to predict
presence in areas where none was observed (i.e., a commission error). Our study reveals
that there was a greater level of confusion of cheatgrass between medusahead and Sandberg
bluegrass than between medusahead and Sandberg bluegrass (Figure 7).

The total hydrological year precipitation was positively correlated to the EAG pro-
duction, whereas native grass production increased when prior years were dry [8,58].
Our analysis found a similar outcome between the precipitation and abundances of EAG
and cheatgrass where they showed some correlation with the total hydrological year pre-
cipitation in the most of our study area except for one ecoregion. The hydrological year
precipitation showed no relations with the medusahead and Sandberg bluegrass abundance.
(Figure 8).

Future efforts could focus on identifying the inconsistent relation between the medusa-
head abundance to the total hydrological precipitation and negative relation of the EAG
and cheatgrass abundance to the total hydrological precipitation in West Central Semiarid
Prairie ecoregion. However, our results demonstrated that the cheatgrass invasion was high
in primarily Sandberg bluegrass’s ecological landscapes (Appendix A (Figure A2)); how-
ever, these two species demonstrate different relations to the total amount of hydrological
year precipitation (Figure 8).

Previous studies found that areas with cheatgrass have altered soil environments as
well as changed nutrient cycling, microbial communities, and soil structure, all of which
had lingering effects even after the invasion was removed, making native species, such as
Sandberg bluegrass, less competitive in a changing environment [59–61]. Other studies
found smaller plant size, earlier phenology, and changing root characteristics of perennial
grasses in cheatgrass invaded areas [62,63].

Thus, the annual amount of precipitation alone may not be sufficient to explain why
the Sandberg bluegrass abundance did not show correlation with the annual amount of
precipitation. Future studies may benefit by taking account of the changing environment
after invasion of exotic annuals in the analysis as well as modelling process along with the
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weather variables, such as precipitation. The inclusion of weather variables hinges on the
availability of data with finer spatial resolution and shorter temporal latency.

In comparison to the earliest version of U.S. Geological Survey Rangeland Exotic Plant
Monitoring System, the current approach made it possible to estimate the foliar cover for
multiple grass species. The current approach with new algorithms and usage of the USGS
Tallgrass supercomputer reduced the total computational time from more than two weeks
to less than a week even after expanding the study area by approximately three fold.

The modelling accuracy improved significantly with the current approach (testing
r = 0.82 for EAG) compared to the earlier approach (r= 0.72 for EAG) [19]. However, the
current approach used a higher number of predictor variables (84 compared to 36 in the
previous version), hence, resulting in more complex regression tree models. It would be
beneficial to simplify the model with fewer or a different set of predictor variables without
losing the accuracy.

5. Conclusions

This study presented an automated modelling approach that integrated HLS data,
in-situ field observations, and various other vegetative and landscape datasets with deep-
learning/machine-learning algorithms to map multiple species-specific exotic annual and
native perennial grass species in rangeland ecosystems of the western United States. As
part of the approach, weekly near-seamless NDVI, NIR, and SWIR time-series image
composites were developed. The approach was designed for quick the processing and
release of time-series composites as well as species-specific maps.

Our species-specific datasets may be beneficial to land managers because these datasets
provide an estimate of the abundance of troublesome exotic annual grass species, as these
species may need different management approaches. The inclusion of desirable native
perennial grasses that often have phenological traits similar to exotic annuals could help
minimize the confusion of when and how to control exotic annuals. Researcher working
in environmental fields, such as habitat and land cover/change mapping, vegetation,
fire, and drought monitoring, could benefit from our automated modelling approach,
species-specific grass maps, and time-series products.
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Appendix A

Figure A1. Box and whisker plots, as an example for tiles 11TNG and 11TPH, showing weekly time-
series model predicted NDVI (NDVIPRD) and eMODIS NDVI for all mapped years and weeks. Boxes
represent the 25th and 75th percentile, while horiizontal lines inside the boxes indicate median values.
The whiskers extend to a range of values that are within the median ± 1.5 times the interquartile range.
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Figure A2. Annual abundance and associated confidence maps for exotic annual grasses (EAG),
cheatgrass (BRTE), medusahead (TACA8), and Sandberg bluegrass (POSE) for all mapped time period.
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