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Abstract: Deformation prediction for a salt solution mining area is essential to mining environmental
protection. The combination of Synthetic Aperture Radar Interferometry (InSAR) technique with
Probability Integral Method (PIM) has proven to be powerful in predicting mining-induced subsi-
dence. However, traditional mathematical empirical models (such as linear model or linear model
combined with periodical function) are mostly used in InSAR approaches, ignoring the underground
mining mechanisms, which may limit the accuracy of the retrieved deformations. Inaccurate InSAR
deformations will transmit an unavoidable error to the estimated PIM parameters and the forward
predicted subsidence, which may induce more significant errors. Besides, theoretical contradictory
and non-consistency between InSAR deformation model and future prediction model is another
limitation. This paper introduces the Coordinate-Time (CT) function into InSAR deformation model-
ing. A novel time-series InSAR model (namely, CT-PIM) is proposed as a substitute for traditional
InSAR mathematical empirical models and directly applied for future dynamic prediction. The
unknown CT-PIM parameters can be estimated directly via InSAR phase observations, which can
avoid the error propagation from the InSAR-generated deformations. The new approach has been
tested by both simulated and real data experiments over a salt mine in China. The root mean square
error (RMSE) is determined as ±10.9 mm, with an improvement of 37.2% compared to traditional
static PIM prediction method. The new approach provides a more robust tool for the forecasting
of mining-induced hazards in salt solution mining areas, as well as a reference for ensuring the
environment protection and safety management.

Keywords: InSAR; mine; land subsidence; time series deformation; model

1. Introduction

By the end of 2018, the reserves of mirabilite deposits in China had reached up to
117.297 billion tons [1]. For mirabilite production in the salt mining deposits, water-
soluble exploitation, with comprehensively multi-propulsion through groups of drilling
wells, is the primary mining mode in salt solution mining area. Attributing to the multi-
direction of water-soluble mining activities, the upper layer of the rock salt cavern is
prone to overburden, or even serious collapse [2]. As long as the roof of the cavern
uplifts to the ground surface, a large pit, which may cause potential damage to the nearby
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infrastructures, will be formed [3]. In addition, accumulated water-soluble mining activities
may cause significant lithological changes of the underground rock, even inducing a serious
pumping of brine and water salinization. Therefore, long-term spatio-temporal deformation
prediction of salt solution mines are of considerable importance to the environmental
protection and safety management. The multi-temporal interferometric synthetic aperture
radar (MT-InSAR) is an advanced space-to-earth observation technology developed in
recent years. Compared with traditional InSAR technology, MT-InSAR technology has been
reported to be more effective and applicable for deriving ground deformations (i.e., mining
area or infrastructures) [4–13]. However, the single MT-InSAR has a limitation in that it can
only obtain the deformation sequences during SAR acquisition dates; the subsequent future
displacement beyond the span of the SAR observations cannot be acquired. To compensate
for the limitation, researchers have incorporated InSAR deformation observations into the
Probability Integral Method (PIM), which has successfully solved the problems, such as
surface deformation space calculation and overlying strata movement prediction [14–22].
The basic idea for those studies is firstly using the traditional MT-InSAR technique to
generate the line-of-sight (LOS) deformation results as input dataset to estimate the PIM
parameters; then, the corresponding subsidence sequences for the future period can be
predicted based on the PIM prediction model. Those researchers have successfully retrieved
the spatio-temporal deformation characteristics and achieved the forward prediction of
mining-induced deformations, which proves that the combination with PIM theory is an
efficient and feasible complementation to single MT-InSAR technique.

However, there still exist limitations: Firstly, according to previous studies, pure em-
pirical mathematical models (i.e., linear model or linear model combined with periodical
function) are mostly utilized to generate the InSAR observations, and the underground
mining subsidence mechanism is not considered in the InSAR modeling procedure. In
MT-InSAR data processing, the deformation modeling procedure determines the temporal
functional relationship between the interferometric phase observations and the parameters.
The evolution of mining-induced surface displacement is a complex physical non-linear
process, varying with time. Apparently, modeling a physical process with a single em-
pirical mathematical function cannot accurately describe the underground deformation
mechanisms and, thus, may have a great impact on the accuracy of the generated InSAR
deformation observations. Secondly, inaccurate InSAR deformation results will transmit
an unavoidable error to the estimated PIM parameters, then, secondly, propagating to the
future subsidence prediction, leading even larger errors in the predicted displacements.
Finally, the traditional mathematical models (i.e., linear model or linear model combined
with periodical function) used in the deformation monitoring is not consistent with the
PIM used in the future deformation prediction, which is based on random medium theory.
Using InSAR deformation observations generated via a simple linear model to estimate
parameters for a complex non-linear model may not be reasonable. Consequently, contra-
diction and inconsistency between the InSAR deformation model and the future prediction
model is the third limitation.

Based on the above analysis, in order to improve the accuracy of deformation predic-
tion, we propose a novel InSAR deformation model, which can better describe the dynamic
evolution disciplines of the underground mining subsidence in the MT-InSAR deformation
modeling procedure, as well as be directly used to the forward deformation prediction. The
novel model is based on the Coordinate-Time (CT) function (namely CT-PIM) and used as a
substitute for traditional InSAR models. CT-PIM improves the static PIM via integrating the
temporal parameter to achieve the description of the temporal dynamical characteristics of
the mining-induced subsidence. Considering the physical subsurface mechanism, CT-PIM
can describe the temporal dynamical characteristics of the mining-induced subsidence
more realistically. The PIM parameters are introduced into InSAR time-series phase func-
tions and can be estimated via the phase observations, which can avoid the secondary
error propagation from the inaccurate InSAR deformations to the subsequent deformation
prediction. Subsidence can be predicted directly based on CT-PIM, which implements in
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opposition to the deficiency of inconsistency and lack of reasonability between the InSAR
model and the forward prediction model. Consequently, the new method is expected not
only to enrich the time series InSAR modeling theory but also provide a more robust tool
for forecasting mining-induced hazards in mining areas.

2. Materials and Methods

The CT-PIM, including the Coordinate-Time function, and the PIM parameters are
introduced in Section 2.1. The InSAR modeling based on CT-PIM is derived in Section 2.2,
together with the final functional relationship between the time series phase observations
and the PIM parameters.

2.1. Dynamic Coordinate-Time Probability Integration Model

The Coordinate-Time (CT) function was proposed in Reference [23], which improved
the traditional static PIM with introducing the temporal parameter t, thus being referred
as CT-PIM hereinafter. It has proven to be effective and reliable in the application for
the dynamic ground deformation prediction caused by mining activities. The surface
subsidence described in CT-PIM function is as follows [23]:

W (x, y, t) =
1

w0
W (x, t)W (y, t), (1)

where (x, y) denotes the coordinate of the surface point, and W (x, y, t) is the surface
vertical subsidence related to mining activities at time t; w0 is the maximum settlement,
which can be written as w0 = mq·cosα, where m is the thickness of the mine, q is the
subsidence factor, and α is the dip angle of the layer. W (x, t) and W (y, t) can be expressed
as follows:

(1) When the dip direction of the working face is under critical extraction, whereas the
strike is under subcritical extraction. This happens in the practical condition that
the advancing distance is longer than the depth along the dip direction. The ground
subsidence can be written as (the schematic diagram is shown as Figure 1b) [23]:

W(x, t) =
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where w(x) can be calculated based on the principles of static PIM following
the equation: w(x) = w0

2
[
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(√

π x
r
)
+1
]
; er f is a probability integral function:

er f (
√

π
r x) = 2√

π

∫ √π
r x

0 e−u2
du (where u is the integral parameter, r is the main in-

fluence radius, r = H
tanβ ; H is the mining depth and tanβ is the tangent of the main

influence angle); nH is the starting distance, describing the advancing distance of the
working face when the ground point starts to move; n is the starting factor; ω is the
static leading influence angle (in degrees); vm is the mining advancing speed; and the
coefficients a and b can be expressed as a = 117r−ωnH

1.3r−nH and b = ω−90
1.3r−nH , respectively.

(2) When the strike direction of working face is under critical extraction, whereas the dip
is under subcritical extraction. This happens in the most practical condition of the
coal mining activities, since the strike direction is better to contain a longer advancing
distance (even up to several kilometers, much deeper than the depth along the strike),
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which can easily satisfy the critical extraction condition. The surface subsidence can
be written as (the schematic diagram is shown as Figure 1c) [16]:

W (y, t) =
w0

2

[
er f
(√

π
y
r1

)
−er f

(√
π

y− L
r2

)]
, (3)

where y denotes the vertical coordinate of the ground point in the mining area; r1 and
r2 represent the main influence radius along the down-dip, and up-dip directions,
respectively, which can be expressed as r1 = H1

tanβ1
and r2 = H2

tanβ2
. H1 and H2 are

the mining depths along the down-dip, and up-dip directions, respectively. Here,
H1 = H − D1

2 sinα and H2 = H + D1
2 sinα; L is the estimated length of strike working

face, which can be expressed as L = (D1 − s1 − s2)
sin(θ0−α)

sinθ0
; D1 is the inclined length

of working face; s1 and s2 are the offsets of inflection point along down-dip and
up-dip directions of the working panel; θ0 is the mining influence angle, which can be
calculated following θ0 = 90◦ − kα.

Figure 1. Schematic diagrams for the coordinate system: (a) 3D view of the coordinate system;
(b) profile along strike direction; (c) profile along dip direction.

It is worth noting that, when the strike of the working face is under subcritical extrac-
tion, the final deformation should be estimated via multiplying a coefficient: Cxm = Wxm

W0
< 1,

where W0 = mq·cosθ. Wxm is the maximum value of W (x, t), which can be calculated
according to the first equation in Equation (2), under the assumption that the tendency
has reached an extreme exploitation [16]. Similarly, when the dip of the working face is
under subcritical extraction, then a dip mining degree coefficient, Cym =

Wym
W0

< 1, should
be multiplied with it, where Wym denotes the maximum value of W (y, t) in Equation (3).

2.2. InSAR Modeling Based on CT-PIM (InSAR-CTPIM)

For each high coherence pixel in the i-th interferogram [24–26], its corresponding
interferometric phase can be expressed as:

δϕi = δϕi
de f + δϕi

topo + δϕi
orbit + δϕi

atm + δϕi
noise + ∆ϕi

non

≈ 4π
λ ∆di + 4πBi

λRsinθ ∆Hi + ∆ϕi
res,

(4)

where λ is the radar wavelength; ∆d is the LOS accumulated deformation spanning the
time period of the i-th interferogram, referred as the low-pass (LP) component hereinafter;
∆ϕi

topo represents the residual topographic phase component; ∆ϕi
topo =

4πBi
λRsinθ ∆Hi, where

Bi defines the perpendicular baseline, θ the incident angle, R the sensor-target distance,
and ∆H the residual elevation, which is an unknown parameter; ∆ϕi

res denotes the final
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residual phase, which includes the phase noise, atmospheric delay, and the high-pass (HP)
deformation component [27].

During the extraction of the brine from the wellhead, the deformation of the surface
caused by the change of the top pressure in the cavern is dominantly along the vertical
direction. Besides, the upper dissolution rate of the drilling solution mining process is
approximately twice of the side dissolution rate [28]. Therefore, compared with the vertical
subsidence, the horizontal displacement caused by water-soluble mining is relatively minor,
and omitted hereinafter. Then, the functional relationship between the LOS deformation
and the ground subsidence can be expressed as:

∆di = dLOS

(
ti
B

)
−dLOS

(
ti

A

)
= [W (x, y, tB)−W (x, y, tA)]·cosθ, (5)

where W (x, y, tB) and W (x, y, tA) are the corresponding dynamic subsidence at tB and
tA, respectively. Substituting Equation (5) into (4), the functional relationship between the
InSAR phases and PIM parameters can be written as:

δϕi =
4π

λ
[W (x, y, tB)−W (x, y, tA)]·cosθ +

4πBi
λRsinθ

∆Hi + ∆ϕi
res, (6)

where the geological parameter GP = [m, α, H, D1, ω] of the rock salt mine can be deter-
mined according to the in-situ investigation of the study area or the materials provided
by the mining company, which can be regarded as known parameters. The unknown
parameters to be solved here are UP = [q, tanβ, s1, s2, k, n]. Among them, q is within the
range of [0.01, 1], tanβ, tanβ1, and tanβ2 are all distributed within the range of [1, 3.8], and
both s1 and s2 are within the range of [0.05H, 0.3H]. The propagation influence angle of
mining is θ0= 90◦ − kα. Here, k ranges from 0.5 to 0.8, and the starting distance coefficient
n ranges from 1/7 to 1/2 [14,16,23]. Equation (6) describes the temporal functional relation-
ship between the InSAR time series phases and the PIM parameters, which is referred as
InSAR-CTPIM, and will be applied for the time series deformation generation.

2.3. CT-PIM Parameters Estimation Based on InSAR Phases

If N + 1 scenes covering the whole study area are acquired at dates (t0, t1, . . . , tN),
then M differential interferometric pairs are generated accordingly. For each pixel (x, y)
on the differential interferograms, M InSAR functions (in Equation (6)) based on the
phase observations can be established. If M is higher than six, the unknown parameters
UP = [q, tanβ, s1, s2, k, n] can be estimated. The ill-conditioned nature of the phase
functions (introduced as Equation (6)) has also been tested to ensure the robustness. For
each pixel (x, y) on the differential interferograms, M InSAR functions based on the phase
observations can be established. The condition number Cond∞(A) = ||A||∞

∣∣∣∣A−1
∣∣∣∣

∞ is
estimated as 18 here, where A defined the coefficient matrix of the phase functions. The
value of Cond∞(A) implies that no ill-conditioned phenomenon exists in the functions.

The solving of Equation (6) is obviously a non-linear parameter estimation problem.
The Genetic Algorithm (GA), combined with the Simplex Method (SM), is introduced
here to estimate UP. GA processes the advantages of global optimization searching ability
and unrestricting to different model forms [29], and it has been proven to be feasible in
solving the problems of non-linear parameter estimation [30]. It generates the optimized
estimations in form of population individuals following the principle of fitness function
minimization [31]. However, the disadvantages of slow convergence speed and low
accuracy are also prominent for GA. SM has proven to be an efficient tool in solving
the non-linear estimation problems when combined with GA, which can refine the GA
generated results effectively [32]. Consequently, the combination of GA and SM, namely
GASM, is adopted here to effectively estimate the unknown parameters.

As for Equation (6), each individual gene is UP = [q, tanβ, s1, s2, k, n], and the fitness
function here is:

f =
∣∣∣∣∣∣∆ϕi

res

∣∣∣∣∣∣ = min, (7)
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where ∆ϕi
res denotes the residual phase in Equation (6). After the iteration of population

selection, crossing over, and evolution for each individual gene until the minimum fitness
function value condition is satisfied, the final obtained individual genes, which are treated
as the initial GA-solutions for PIM parameters, will be taken as the input initial values
of SM. Then, SM is utilized to improve the accuracy of GA estimations after the global
searching, and the corresponding SM-output results are determined as the final solutions
for PIM parameters [33].

2.4. Flow Chart and Processing Steps

Figure 2 displays the processing flow of deformation prediction using the CT-PIM
function. The steps are as follows:

1. Differential Interferometry according to the N + 1 SAR images covering the study area.
2. High-coherent candidates extraction considering both the average coherence and the

amplitude dispersion index.
3. InSAR modeling following the CT-PIM function, which establishes the functional

relationship between InSAR phases and unknown PIM parameters.
4. PIM parameter estimation based on Genetic Algorithm and Simplex Method

(GASM) [32,33], which includes GA global searching to generate the initial values of
PIM parameters and SM to optimize the GA solutions.

5. Forward dynamic subsidence prediction beyond the spans of SAR acquisitions based
on CT-PIM function introduced as Equation (1).

Figure 2. Flow chart of deformation prediction based on CT-PIM function.
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3. Results
3.1. Simulated Experiment

A simulated experiment was designed and executed to evaluate the feasibility and
accuracy of the proposed method. Satellite parameters used in the simulated experiment
were set according to Sentinel-1 A spaceborne parameters, which was to keep consistent
with the real data experiment. The geological parameters m, α, H, D1, ω of the strata
overlying the saline layer were set as 0.66 m, 4.5◦, 600 m, 300 m, 80◦ according to real data
collected by the company in charge of the mining activity in the area. The advancing speed
vm at the simulated experiment was set as 0.24 m/d, which was also according to the real
data (will be discussed in Section 3.2.1). The simulated true values of UP were set primarily
as 0.504, 1.560, 30.310 m, 16.080 m, 0.524, 0.167.

After setting those parameters, the time series settlement field could be generated
according to Equation (1), which would be used as the real settlement field compared with
the subsidence generated based on the InSAR-CTPIM processing. The selected images
of the simulated real settlement field are shown in Figure 3. InSAR phase functions can
be simulated according to Equation (6), and the residual elevation ∆H was simulated
via Gaussian random simulator with its magnitude within [−20, 20] m. The random
noise with a variance from 0 rad to 0.65 rad was added in the simulation. The random
noise we added here can be expressed as Noi = sqrt (0.65) ∗ randn (60, 60), where Noi
represents the noise; sqrt (0.65) represents the variance of 0.65 rad; randn is the random
noise function in MATLAB; and (60, 60) is total simulated size of the phase function. Totally,
600 indexes of pixels were randomly extracted for the subsequent quantitative comparison
with the CT-PIM generated deformation. In order to evaluate the impacts of different
numbers of interferometric pairs on the corresponding generated deformation results, the
simulation experiments with a multi-master connection were designed [34]. Six subgroups
of simulation were carried out, with the number of interferometric pairs as 10, 15, 20, 25, 30,
and 35, respectively, which also represented the number of InSAR phase functions. The
corresponding GASM procedure was performed to obtain the CT-PIM parameters based
on the simulated InSAR phase observations, and the final estimated subsidence could be
obtained via Equation (1). The parameters, such as the spatio-temporal baselines, used in
the simulation were set according to the real data experiment (in Section 3.2.2).

Figure 3. Selected images of simulated settlement field (at 24 d, 120 d, 288 d, 468 d, 528 d,
and 576 d, respectively).

To estimate the unknown parameters of CT-PIM, the maximum iteration number, the
population size, the crossover probability, and the mutation probability in GASM algorithm
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were set as 400, 60, 0.5, and 0.2, empirically. After the SM secondary optimization, the
final optimal estimations of the CT-PIM parameters could be generated for each subgroup
of simulation. Substituting the obtained parameters into Equation (1), the time series
settlement field could be generated.

Figure 4 illustrates the relative errors for each parameter between the CT-PIM gen-
erated values and the simulated real ones under a different number of interferometric
pairs. The lower the relative error is, the higher is accuracy suggested for the CT-PIM
estimated parameter. As can be seen from the figure, generally, the relative errors decrease
with the increase of interferometric numbers. Under a multi-master connection, a stack of
20 interferograms is acceptable in our cases. It can also be noted from Figure 4 that, among
the six parameters, q and tanβ were more sensitive with higher curvature slopes than the
remaining four parameters.

Figure 4. Relative errors with different interferometric numbers under multi-master connection.

We extracted the interferometric pairs of 10 and 35, respectively, to show a quantitively
comparison with the simulated real values (shown as Tables 1 and 2). The results show
that the use of 35 interferometric pairs under the multi-master connection to estimate the
unknown parameters is evidently more accurate (for instance, the relative error for q is only
4.8% under 35 pairs compared with that of 10.4%). Therefore, we finally determined to use
35 interferometric pairs (noise level with a variance of 0.65 rad) under the multi-master
connection in the real data experiment. It can also be noted that, among the six parameters,
the relative error of s1 is relatively large, both in Tables 1 and 2, with 8.6 % and 6.2%,
respectively. This is consistent with the results of the sensitivity analysis in Section 3.3.3.

Table 1. Estimated CT-PIM parameters (under the 10 interferometric pairs).

Parameters Simulated
Real Value

CT-PIM
Generated Value Error Relative Error

q 0.504 0.559 0.055 10.4
tanβ 1.560 1.662 0.102 6.4

s1(m) 30.310 27.801 2.509 8.6
s2(m) 16.080 15.340 0.740 4.5

k 0.524 0.504 0.020 3.9
n 0.167 0.166 0.001 0.6
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Table 2. Estimated CT-PIM parameters (under the 35 interferometric pairs).

Parameters Simulated
Real Value

CT-PIM
Generated Value Error Relative Error

q 0.504 0.528 0.024 4.8
tanβ 1.560 1.572 0.012 0.8

s1(m) 30.310 28.431 1.879 6.2
s2(m) 16.080 15.437 0.643 4.0

k 0.524 0.507 0.017 3.3
n 0.167 0.167 0 0

Figure 5 shows the comparison results between the selected time series settlement
generated by CT-PIM and the simulated settlement with 600 pixels (35 interferometric
pairs, multi-master connection, with a noise variance level of 0.65 rad), and the differences
are illustrated in Figure 5f in red polylines. It can be noted that the two groups of results
demonstrate good agreement even under a relatively high noise level of 0.65 rad, and
the max deviation increases with the time span. According to the quantitative statistics
for Figure 5a–f, the number of points with the deviations within [−5, 5] mm account for
100%, 100%, 97%, 90%, 87.6%, and 85.8% of the total number of points for spans of 24 days,
120 days, 288 days, 468 days, 528 days, and 576 days, respectively, and the corresponding
maximum deviation is 0.1 mm, 1.3 mm, 7.9 mm, 9.3 mm, 9.5 mm, and 9.6 mm, respectively.
Compared with the maximum subsidence for each period (i.e., 165 mm at 576 days), the
deviation was relatively minor (a 9.6 mm deviation occupy only 5.8% approximately).
To quantitatively evaluate the distribution of the deviations, statistical analysis for the
probability distribution was carried out. Figure 6 demonstrates the probability distribution
of the average deformation deviations with 600 pixels. As determined, the magnitudes of
errors are concentrated within a relatively low ranges, with 83.8% of points distributed
within [−2, 2] mm and all the pixels distributed within [−6, 6] mm, which implies that
the proposed method is of promising accuracy. The RMSE between the CT-PIM generated
value and the simulated real settlement is estimated as ±4.5 mm.

Figure 5. Comparison between the CT-PIM generated deformation sequences (six periods are selected)
and the simulated real settlement.
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Figure 6. Probability distribution for deformation deviations.

3.2. Real Data Experiment
3.2.1. Study Area and SAR dataset

A salt mine, located in China, was selected as the study area. Figure 7 displays the
location of our test area in Hunan Province and the corresponding coverage of SAR satellite
images. The red rectangle in Figure 7b represents the spatial coverage of Sentinel-1 A
image obtained by a satellite ascending geometry, and the purple rectangle represents
the area of interest. The mine is located in the central part of Liyang Plain, with the
characteristics of abundant natural water systems, numerous large and densely distributed
ponds, crisscrossing artificial channels, and extensive surface paddy fields. Long-term
drilling soluble mining activities have caused serious land salinization, which imposed
significant influences to the surrounding environment (see Figure 8a). The mining-induced
accumulated subsidence also led to cracks on the ground surface of roads, which imposed
potential damage to infrastructures built on the nearby residential area (see Figure 8b,c).
Gradually accumulated ground subsidence may also generate an obvious stagnant water
pit (shown as Figure 8d, with a settlement approximately of 1.5 m).

Figure 7. Study area and SAR spatial coverage: (a) map of Hunan Province; (b) coverage of SAR
images; (c) mean amplitude image of the study area.
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Figure 8. Field pictures of the residential area near the study area: (a) area with land saliniza-
tion; (b) uneven displacement on the road; (c) cracks on the wall of a house; (d) a water pit in the
salinized area.

Figure 9 shows the local geological asset. The underground stratums mainly include
Lower Tertiary and Quaternary. The lithological components over this area mainly consist
of mudstone, dolomite, siltstone, gypsum, mirabilite, and glauberite. Anhydrous Glauber
salt (Na2SO4, 62.76–78.8%) produced in this area exist in the salt-bearing section (E2x3)
of Neogene Formation. Argillaceous dolomitic mirabilite is the dominate lithological
component, which distributes over the up layer, bottom layer, and interlayer and belongs
to weak layered rock mass. The poor stability of the rocks in this area makes the ground
surface vulnerable to soften and collapse.

Figure 9. Schematic diagram of the lithological distribution over the study area.

According to the above lithological characteristics of the upper layer on the working
surface and the collected geological materials of the mine, the aforementioned lithologic
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geological parameters GP (see Table 3) is set as GP = [3 m, 5.7◦, 240 m, 258 m, 80◦] according
to the geological materials provided by the mining company. The advancing speed vm is
practically calculated according to properties of the sedimentation funnel in the mining
area, which follows the equation vm = S

t = 0.056 m/day, where S denotes the mean radius
for the sedimentation funnels, and t denotes the time span of the mining activities.

Table 3. Geological parameters.

Geological
Parameters m (m) α (◦) H (m) D1 (m) ω (◦) vm (m/Day)

value 3 5.7 240 258 80 0.056

3.2.2. SAR Data Acquisition and Preprocessing

A total of 32 Sentinel-1A scenes with ascending geometry spanning the period from
15 June 2015 to 15 August 2017 were collected for the differential interferometric dataset
processing. The unwrapped interferometric pairs with small spatial-temporal baselines
were generated via SARScape 5.2 and ENVI 5.3. The SAR sensor parameters and spa-
tial -temporal baselines are shown in Table 4 and Figure 10, and the subsequent high
coherence points extraction, InSAR deformation modeling, CT-PIM parameter estimation,
and deformation generation were all executed via MATLAB software. In the preprocess-
ing of differential interferometry, the multi-look ratio of SAR image was set as 5:1, with
the sampling resolutions as 9.022 m along azimuth, and 7.368 m along range direction,
respectively. Spatial-temporal interferometric baselines were set lower than 150 m and
420 days, respectively, with all the images registered and resampled to a super master
image (acquired at 3 July 2016). External 30 m resolution Shuttle Radar Topography Mis-
sion Digital Elevation Model (SRTM DEM) data was used to filter the terrain phase [35].
The procedure of phase unwrapping was executed with the Minimum Cost Flow (MCF)
method. After artificially eliminating the unsatisfied interferometric pairs with poor un-
wrapping effect, totally, 58 unwrapped differential interferograms were generated [36,37].
Thresholds for moderate to high coherent points were set as 0.45 for coherence, and 0.35 for
mean amplitude dispersion index. Finally, a total of 6027 candidates in the mining area
were extracted.

Figure 10. Spatio-temporal baselines.
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Table 4. Interferometric pairs and sensor parameters (Ascending, Orbit No. 11).

Image No. Acquisition Date
(yyyy/mm/dd)

Perpendicular
Baseline (m)

Temporal
Baseline (Days)

0 2015/06/15 10.32 −384
1 2015/07/09 94.46 −360
2 2015/08/02 8.65 −336
3 2015/08/26 −25.59 −312
4 2015/09/19 −27.87 −288
5 2015/10/13 42.76 −264
6 2015/12/24 125.03 −192
7 2016/01/17 19.96 −168
8 2016/02/10 99.87 −144
9 2016/03/05 −21.75 −120
10 2016/03/29 −48.25 −96
11 2016/04/22 37.12 −72
12 2016/05/16 −9.33 −48
13 2016/07/03 0 0
14 2016/08/20 15.15 48
15 2016/09/25 −54.32 84
16 2016/10/07 −27.33 96
17 2016/10/19 63.93 108
18 2016/10/31 57.18 120
19 2016/11/12 52.15 132
20 2016/11/24 26.62 144
21 2016/12/18 25.12 168
22 2016/12/30 20.94 180
23 2017/01/11 76.93 192
24 2017/02/16 48.78 228
25 2017/03/12 34.61 252
26 2017/04/05 −16.41 276
27 2017/04/29 34.59 300
28 2017/05/23 47.07 324
29 2017/06/28 16.92 360
30 2017/07/22 63.26 384
31 2017/08/15 −69.95 408

3.2.3. PIM Parameter Estimation Based on InSAR-CTPIM

Before the novel InSAR-CTPIM processing being applied for the study area, the
traditional SBAS-InSAR with multi-linear velocity model was performed to capture the
spatial-temporal deformation characteristics over the rock salt mine. As shown in Figure 11,
it can also be determined that apparent multi subsidence bowls developed during the
observations from a spatial view. This phenomenon is related to drilling water-soluble
mining activities. As in situ investigated, the mining mode for the test rock salt mine is
multi-well groups connectivity, where more than two wells are connected for each well
group during the drilling soluble mining; thus, multi settlement funnels will be formed
around each well group. Since the CT-PIM model is based on a single subsidence funnel,
it is difficult to accurately cover the whole test area containing complex multi settlement
funnels with a single CT-PIM. Consequently, we divided the area into seven sub-settlement
funnels, which are shown as Figure 11b, with the subsidence image at 15 August 2017 as
the background.



Remote Sens. 2022, 14, 842 14 of 24

Figure 11. Schematic map of sub-settlement funnels distribution (with the settlement at 15 August
2017 generated via SBAS as the background): (a) the leveling points; (b) distribution of the seven
sub-settlement funnels; (c) the distribution of the traverse-longitudinal profiles of the funnels; (d) 3D
version of the mining coordinate system.

In InSAR-CTPIM processing, 24 images from 15 June 2015 to 11 January 2017 were
extracted to estimate the CT-PIM parameters with GASM algorithm, which would be used
to generate the corresponding deformation sequences following the step 4 of the procedures
introduced in Section 2.4. Based on the obtained CT-PIM parameters, the remaining eight
images (from 16 February 2017 to 15 August 2017) were reserved to validate the forward
predicted deformation generated by CT-PIM following the step 5. During the GASM
procedure, seven sub-funnels were processed separately, with seven groups of parameters
generated, which is shown in Table 5.

Table 5. Estimated CT-PIM parameters.

Parameters A1 A2 A3 A4 A5 A6 A7

q 0.832 0.882 0.919 0.741 0.957 0.750 0.974
tanβ 3.060 3.128 3.473 3.362 3.732 3.608 2.995

s1 (m) 39.170 40.694 44.933 49.888 42.297 47.468 31.116
s2 (m) 36.481 38.631 32.001 39.813 48.184 47.374 26.701

k 0.518 0.623 0.743 0.693 0.658 0.702 0.718
n 0.150 0.162 0.182 0.196 0.145 0.193 0.166

3.2.4. Deformation Prediction Based on CT-PIM

Based on the seven groups of obtained CT-PIM parameters in Table 5, the deformation
sequences covered by SAR data acquisition can be derived by InSAR-CTPIM. Figure 12
shows the time series deformation generated spanning from 15 June 2015 to 11 January
2017, which were treated as the deformation monitoring results. The deformation beyond
SAR data acquisition can be predicted according to CT-PIM (expressed as Equation (1)).
Figure 13 shows the eight 3D scenes (from 16 February 2017 to 15 August 2017) of the
predicted subsidence based on CT-PIM, which were treated as the deformation prediction
results. From 9 July 2015 to 10 February 2016, the overall deformation of the whole area
was relatively stable, with the maximum estimated subsidence as only 52 mm. Obvious
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subsidence began to occur at 5 March 2016 after an 8-month temporal lag, and the subsiding
velocities have increased rapidly since then. Since 20 August 2016, the boundary of the
seven sub-settlement bowls has become apparently more distinct, with the maximum
subsidence increasing from 110 mm to 205 mm on 11 January 2017. As of 15 August 2017,
the maximum subsidence had accumulated up to 294 mm.

Figure 12. Derived deformation sequences based on InSAR-CTPIM (reference date: 15 June 2015).

Figure 13. Three-dimensional scenes of the predicted subsidence based on CT-PIM (reference date:
15 June 2015).

3.3. Accuracy Analysis
3.3.1. Accuracy Evaluation for InSAR-CTPIM Monitored Subsidence

The historical leveling measurements from 2 August 2015 to 18 December 2016 for the
test mine were collected, which can be used to test the accuracy of the deformation results
during the SAR acquisitions obtained by InSAR-CTPIM. The locations of the leveling points
(CP1, CP2, . . . , CP7) are marked in Figure 11a, with the reference point marked as R in
the north-east corner. The leveling measurements which covered consistent periods with
the SAR acquisition dates were extracted to conduct a more precise comparison with the
InSAR-CTPIM monitored subsidence.

Figure 14 shows the comparison between the results of InSAR-CTPIM, SBAS-InSAR,
and leveling measurements. The average RMSE of InSAR-CTPIM results was estimated
as ±6.9 mm, whereas that of traditional SBAS-InSAR was ±8.5 mm, with an increase
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of approximately 20.8%. It can be determined that the dynamic settlement obtained by
InSAR-CTPIM shows better consistency with the leveling measurements. According to our
experiment, almost all the leveling points in the mining area were under a considerable
subsiding period. The most serious settlement occurred at CP3, with a value of 156 mm.
The RMSE accounts for 4.4% of the maximum settlement, which implies the promising
accuracy of InSAR-CTPIM in deriving time series subsidence of the rock salt mine.

Figure 14. Time series deformation at leveling points (reference date: 2 August 2015).

3.3.2. Accuracy Evaluation for CT-PIM Predicted Subsidence

As discussed above, the remaining eight images from 16 February 2017 to 15 August
2017 were reserved to evaluate the forward subsidence prediction results. To compensate
for the unavailability of simultaneous periods of leveling measurements, SBAS-derived
results were used to be compared with the predicted subsidence. The traditional static
PIM prediction method introduced in References [20,38], which inversed the PIM parame-
ters based on a single interferometric pair, was carried out preliminarily to be compared
with the CT-PIM predicted results. Four periods of predicted subsidence (spanning from
15 June 2015 to 26 February 2017, 5 April 2017, 28 June 2017, and 15 August 2017, respec-
tively) were extracted, which is shown as Figure 15. The maximum subsidence predicted
via static PIM were relatively lower than those of SBAS-InSAR. On 15 August 2017, the
maximum subsidence predicted by static PIM was estimated as 325 mm, with a 39-mm
difference with the SBAS-derived result, while the difference of CT-PIM is only 8 mm.
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Figure 15. Subsidence comparison: (a) SBAS-InSAR results; (b) CT-PIM predicted; (c) static PIM
predicted (with reference to 15 June 2015).

For further quantitative analysis, the points located in the subsidence funnels were
extracted from Figure 15. The probability distribution was statistically analyzed, and the
distribution histograms are shown as Figures 16 and 17. As Figure 16 shows, the residual
errors for all the sampled points between CT-PIM predicted subsidence and those of the
SBAS results during the four temporal periods are mainly distributed within the range of
[−25, 25] mm. The RMSE is estimated as ±12.8 mm, ±12.7 mm, ±12.9 mm, ±13.2 mm,
respectively. In contrast, those residual errors for static PIM (shown as Figure 17) are
mainly distributed within a more disperse range of [−40, 40] mm, with its RMSE estimated
as ±20.2 mm, ±18.5 mm, ±20.7 mm, ±15.8 mm, respectively, which are much higher.
Apparently, the distribution of CT-PIM errors is better concentrated than those of static
PIM, which indicates a better consistency with the SBAS technique and a higher predictive
accuracy. The total STD of those errors for CT-PIM is estimated as ±12.9 mm. It can be
inferred that the CT-PIM predicted results show better consistency with the traditional
SBAS-derived subsidence than that of static PIM predicted ones, with an increase of 37.2%
compared to that of static PIM.

Figure 16. Differences of CT-PIM predicted subsidence with comparison of SBAS-InSAR results (with
reference to 15 June 2015).
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Figure 17. Differences of static PIM predicted subsidence with comparison of SBAS-InSAR results
(with reference to 15 June 2015).

3.3.3. Sensitivity Analysis on CT-PIM Parameters

Since CT-PIM is directly used to predict the forward dynamic deformation subsequent
to the SAR acquisitions, the accuracy of the predicted mining subsidence directly depends
on the accuracy of CT-PIM parameters. Consequently, it is necessary to analyze the sensi-
tivity of CT-PIM parameters. Sensitivity analysis can assist us in understanding how the
parameters influence the predicted deformation, i.e., which parameter impacts the most
and to what extent it impacts the results. The sensitivity analysis method based on Sobol
indices is introduced here to execute a simulated experiment [39].

Sobol indices describe the correlation between each parameter and its global sensitivity
on the objective function. The higher the sensitivity index, the higher the result error of
the parameter on the deformation. Firstly, the objective function is decomposed based on
variance analysis; then, the first-order indices (Sα, where α represents the certain parameter)
and total-effect indices (STot

α ) of each parameter is calculated, and the sensitivity of the
interactive input parameters can also be generated. Here, Sα represents the partial variance,
which describes the main contribution of a sample of the certain parameter for the output
variances, while STot

α represents the total variance, which describes the percentage of a group
of samples for a certain parameter on the output variances. Finally, the disturbance analysis
is used to quantitatively analyze the influences of different parameters on the final predicted
deformation. The estimated two kinds of indices for each CT-PIM parameter are shown in
Figure 18, where X axis represents the input parameters (UP = [q, tanβ, s1, s2 , k, n] ), and
Y axis represents the Sobol indices for each parameter. The closer the magnitude of each
corresponding Sobol index to 1, the higher sensitivity the parameter possesses. Table 6 lists
the ranges of different importance extent. From it, we can determine that all the parameters
are beyond the range of “Not correlated”, which implies their impacts on the accuracy of
predicted deformation cannot be ignored. Among the six parameters, q and tanβ are more
sensitive to the model, with the Sobol indices STot

α of 0.95 and 0.90, respectively, which can
be treated as “Very important” parameters. Consequently, we should pay more attention to
the error control during the parameter estimation procedure for those two parameters. In
contrast, s1 and s2 show relatively lower sensitivity than the remaining four parameters,
with the Sobol indices STot

α of 0.60 and 0.65, respectively. The two parameters can be treated
within the united range of “Unimportant” and “Important”.

Table 6. Correlation extent for different ranges of sensitivity indices [39].

Correlation Extent Ranges of Sensitivity Indices

Very important 0.8 < Sα < STot
α ≤ 1

Important 0.5 < Sα < STot
α ≤ 0.8

Unimportant 0.3 < Sα < STot
α ≤ 0.5

Not correlated 0 < Sα < STot
α ≤ 0.3
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Figure 18. Estimated Sobol indices for CT-PIM parameter.

4. Discussion

Subsidence along the traverse and longitudinal lines marked in Figure 11c (EE’, FF’,
GG’, HH’) were extracted for a profile analysis. The profile analysis results based on
the SBAS-InSAR derived time series subsidence are shown in Figure 19 (as shown the
dotted line), while the CT-PIM results are shown as Figure 19 (as shown the solid line).
From the figures, we can see similar spatial-temporal characteristics and approximate
same locations of pixels with separate subsidence bowls along EE’, FF’, GG’, and HH’, for
both the two groups of generated results. The discrepancy between the SBAS results and
CT-PIM predicted ones, in the case of Figure 19c (particularly in the black rectangle), was
suggested to be related to the following reasons: (1) The systematic uplifts in the black
rectangle in Figure 19c for the SBAS results were related to the residual atmospheric delay
and orbital errors. During CT-PIM processing, the mining area was divided into several
subsidence bowls artificially. (2) We treated the GG’ profile that only traversed a single
subsidence funnel, and only one group of CT-PIM parameters was used to predict the
subsidence. Some unrevealed deformation characteristics maybe hidden in the predicted
results, which can be revealed by the SBAS-InSAR monitored results. As we determined
for the InSAR-CTPIM derived results, the apparent three peak values were detected at
172 m, 322 m, and 414 m along EE’, with the subsidence of 232 mm, 249 mm, and 205 mm,
respectively, and peak values at 149 m along the FF’ section of 219 mm, whereas, at 172 m,
along GG’ of 218 mm and, at 80 m, along the HH’ of 247 mm. The multi peaks of the
subsidence along traverse and longitudinal directions were due to the water-soluble mining
activities with groups of drilling wells simultaneously.
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Figure 19. Profile analysis based on SBAS (dotted line) and CT-PIM (solid line) predicted subsidence:
(a) Profile EE’; (b) FF’; (c) GG’; (d) HH’.

Five feature points (F1–F5, marked in Figure 11c) are extracted for quantitative analysis,
and the results are shown in Figure 20. It can be seen from Figure 20 that, during the whole
period, the five feature points displayed similar temporal evolution trends: slow settlement
period from 15 June 2015 to 29 March 2016, and then a rapid settlement period from
29 March 2016 to 15 August 2017. Maximum subsidence was determined at F5 with its
accumulated settlement of 289 mm until 15 August 2017. In contrast, F1, which was far
away from the wellhead, was relatively stable, with its maximum deformation accumulated
to 98 mm until 15 August 2017. As introduced in Section 3.2.4, an 8-month temporal lag
of the subsidence can be found in Figure 20, which is suggested to be mainly related to
the dissolution processing of the mirabilite by the solvent, with a certain longer time from
injection to the surface displacement emerged. In addition, the depth of rock salt mine is
generally deeper than that of common coal mines, which also leads to the time delay from
the underground displacement cavity being accumulated on the ground surface.

Figure 20. Time series settlement on feature points based on InSAR-CTPIM.
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Another phenomenon of seasonal related variations was determined from our exper-
iments. For a warm season (29 March 2016 to 19 October 2016 in Stage B and 12 March
2017 to 15 August 2017 in stage C), a rapid subsiding trend occurred for all the five feature
pixels, with the cumulative maximum subsidence reaching up to 98 mm and 83mm, while,
for a cold season (13 October 2015 to 29 March 2016 of Stage A and 19 October 2016 to
12 March 2017 of Stage B), a relatively slow developing trend dominated those points,
with a maximum subsidence of 31 mm and 45 mm, respectively, for the two periods. The
potential reasons are suggested to be related to the air temperature, which influences the
dissolution rate of mirabilite. The higher temperature of warm periods can accelerate the
dissolution, and, accordingly, increased the subsiding velocities. Comparatively, lower
temperature in cold periods slowed down the dissolution processing, which induced a
stable trend of deformation. It should be noted that the dissolution rate of mirabilite in
water is directly affected by solvent temperature (as shown in Table 7); however, it is
indirectly affected by the air temperature. Hot water is used as solvent in drilling soluble
production, which is delivered from the processing plant to the injection well after being
measured and distributed at the control station. In the process of transportation, the solvent
temperature is easily affected by the outside air temperature, which supports the above
temperature-related interpretations.

Table 7. Seven groups of obtained InSAR-CTPIM parameters [28,40].

Mineral
Temperature (◦C)

0 10 20 30 40 50 60 70 80 90 100

Thenardite – – – 50.4 48.8 46.7 45.3 44.1 43.7 42.9 42.5
Glauber’s Salt 5.0 9.0 19.4 40.8 – – – – – – –

Glauberite 0.18 0.19 0.20 0.21 0.21 – 0.21 0.20 0.20 – 0.16

It can also be determined, in Figure 20, that four minor jumps occurred for all the five
feature points (marked by black arrows). According to the precipitation and temperature
information of the Hunan Lixian Meteorological Bureau, the precipitation increased signif-
icantly on 13 October 2015, 16 May 2016, 31 October 2016, and 28 Jun 2017, as shown in
Figure 21 [41]. Besides the decrease of solvent solubility caused by the aforementioned low
temperature in winter, an increase of rainfall also contributed to the recoveries of subsidence.

Figure 21. Air temperature and precipitation of the mining area (6 June 2016 to 31 January 2017) [42].
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5. Conclusions

A novel InSAR deformation model, namely CT-PIM function, was proposed and
applied for predicting the dynamic deformation over a drilling solution rock salt mine. The
CT-PIM function was used as a substitute for traditional InSAR pure empirical models,
which can also provide as potential combined use with other high-productive inspection
methodologies, which has the following advantages: (1) with consideration of the physical
underground mechanism, CT-PIM can describe the temporal dynamical characteristics of
the mining-induced subsidence more realistically; (2) CT-PIM can be directly applied for
the forward deformation prediction, which implements to the deficiency of non-consistency
and unreasonableness between the traditional InSAR model (i.e., linear model or linear
model combined with periodical function) and the forward prediction model (i.e., PIM);
(3) it provides an alternative PIM parameters estimation method directly based on the
InSAR phase observations, which can avoid the secondary error propagation from the
InSAR inaccurate deformation to the subsequent deformation prediction; and, (4) as for
the computational burden, since the GASM are based on the input InSAR unwrapped
phases (not the final generated deformation sequences), we saved the preprocessing time
for InSAR Geocoding compared to the static PIM.

The feasibility and improvement of our method was verified by both simulated and
real-data experiments. The simulated results showed that the RMSE between the defor-
mation results estimated by the new model and the simulated true value was ±4.5 mm,
even under a high noise level of 0.65 rad. In the real data experiment, 32 Sentinel-1A SAR
images were used to carry out the experiment over a water-soluble rock salt mine. As
we determined, the maximum settlement was estimated as 294 mm. The experimental
results were compared with external leveling results, and the RMSE was determined as
±10.9 mm, which accounts for only 6.9% of the maximum settlement. During the deforma-
tion prediction procedures, CT-PIM showed a considerable improvement of 32.7% than
the traditional static PIM prediction approach, with an STD of ±12.9 mm compared to
SBAS-generated results.

6. Patents

There are patents resulting from the work reported in this manuscript. Our research
content has applied for a Chinese patent (ZL202010122691.8) entitled “A deformation
monitoring method in mining area”.

Author Contributions: X.X. designed the experiments and produced the results; T.Z. carried out the
experiment. X.X. and T.Z. analyzed the experiment results; L.C., X.L. and W.P. analyzed the precipita-
tion data; X.X., W.P. and Z.Y. (Zefa Yang) helped to collect and analyze the leveling measurement
in the real data experiment; X.L. and Z.Y. (Zhihui Yuan) contributed to the discussion of the results;
X.X. and T.Z. drafted the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Natural Science Foundation under Grant of China
(Grant No. 42074033, 41904003, 41701536, 61701047); the Open Project Program of the Hunan Key
Laboratory of remote sensing of ecological environment in Dongting Lake Area (Grant No. 2021-011);
the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50639, 2020JJ5571); and
Key Project of Education Department of Hunan Province, China (Grant No. 18A148, 19C0042).

Data Availability Statement: The Sentinel-1 data presented in this study are openly available in
ESA/Copernicus at https://scihub.copernicus.eu (accessed on 16 December 2021). The SRTM data
presented in this study are openly available in the National Aeronautics and Space Administration
(NASA, United States).

Acknowledgments: The Sentinel-1 A images used in this work are provided by the European Space
Agency. Thanks for He Y.G. of Transportation Engineering College, Changsha University of Science
and Technology, China, for providing the leveling deformation data of the research area, which
provides available validation data for this work.

Conflicts of Interest: The authors declare no conflict of interest.

https://scihub.copernicus.eu


Remote Sens. 2022, 14, 842 23 of 24

References
1. Ministry of Natural Resources. China Mineral Resources Report; Geological Publishing House: Beijing, China, 2019; pp. 2–6.
2. Zhang, M.G.; Wang, Z.S.; Wang, L.J.; Chen, Y.L.; Wu, Y.; Ma, D.; Zhang, K. Mechanism of collapse sinkholes induced by solution

mining of salt formations and measures for prediction and prevention. Bull. Eng. Geol. Environ. 2019, 78, 1401–1415. [CrossRef]
3. Buchignani, V.; Avanzi, G.D.; Giannecchini, R.; Puccinelli, A. Evaporite karst and sinkholes: A synthesis on the case of Camaiore

(Italy). Environ. Geol. 2008, 53, 1037–1044. [CrossRef]
4. Solari, L.; Montalti, R.; Barra, A.; Monserrat, O.; Crosetto, M. Multi-temporal satellite interferometry for fast-motion detection: An

application to salt solution mining. Remote Sens. 2020, 12, 3919. [CrossRef]
5. Wang, S.; Jiang, G.; Weingarten, M.; Niu, Y. InSAR evidence indicates a link between fluid injection for salt mining and the 2019

Changning (China) earthquake sequence. Geophys. Res. Lett. 2020, 47, e2020GL087603. [CrossRef]
6. Furst, S.L.; Doucet, S.; Vernant, P.; Champollion, C.; Carme, J.L. Monitoring surface deformation of deep salt mining in vauvert

(france), combining InSAR and leveling data for multi-source inversion. Solid Earth 2021, 12, 15–34. [CrossRef]
7. Jung, J.; Kim, D.J.; Vadivel, P.S.K.; Yun, S.H. Long-term deflection monitoring for bridges using X and C-Band time-series SAR

interferometry. Remote Sens. 2019, 11, 1258. [CrossRef]
8. Tosti, F.; Gagliardi, V.; D’Amico, F.; Alani, A.M. Transport infrastructure monitoring by data fusion of GPR and SAR imagery

information. Transp. Res. Procedia 2020, 45, 771–778. [CrossRef]
9. Gagliardi, V.; Bianchini Ciampoli, L.; Trevisani, S.; D’Amico, F.; Alani, A.M.; Benedetto, A.; Tosti, F. Testing Sentinel-1 SAR

interferometry data for Airport Runway monitoring: A Geostatistical Analysis. Sensors 2021, 21, 5769. [CrossRef]
10. Zheng, M.; Deng, K.; Fan, H.; Du, S. Monitoring and analysis of surface deformation in mining area based on InSAR and GRACE.

Remote Sens. 2018, 10, 1392. [CrossRef]
11. Xiao, L.; He, Y.G.; Xing, X.M.; Wen, D.B.; Tong, C.G.; Chen, L.F.; Yu, X.Y. Time series subsidence analysis of drilling solution

mining rock salt mines based on Sentinel-1 data and SBAS-InSAR technique. Int. J. Remote Sens. 2019, 23, 501–513.
12. Ma, T.; Zhao, Y.J.; Zhang, W. Application of SBAS-InSAR technology in settlement monitoring of mining area. Geom. Spat. Inf. Tech.

2020, 11, 210–212.
13. Chen, Y.; Tong, Y.X.; Tan, K. Coal mining deformation monitoring using SBAS-InSAR and offset tracking: A case study of Yu

County, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6077–6087. [CrossRef]
14. Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Chen, G.L. InSAR-Based model parameter estimation of probability integral

method and its application for predicting mining-induced horizontal and vertical displacements. IEEE Trans. Geosci. Remote Sens.
2016, 54, 4818–4832. [CrossRef]

15. Fan, H.; Lu, L.; Yao, Y. Method combining probability integration model and a small baseline subset for time series monitoring of
mining subsidence. Remote Sens. 2018, 10, 1444. [CrossRef]

16. Zhu, J.J. A Mining Monitoring Method Based on InSAR Technology. Chinese Patent ZL201310011306.2, 8 May 2013.
17. Li, Z.W.; Yang, Z.F.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Li, P.X.; Chen, G.L. Retrieving three-dimensional displacement fields of mining

areas from a single InSAR pair. J. Geod. 2015, 89, 17–32. [CrossRef]
18. Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Preusse, A.; Yi, H.W.; Wang, Y.J.; Papst, M. An extension of the InSAR-Based probability

integral method and its Application for Predicting 3-D Mining-Induced Displacements Under Different Extraction Conditions.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3835–3845. [CrossRef]

19. Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Feng, G.C.; Wang, Q.J.; Hu, J.; Wang, C.C. Deriving time-series three-dimensional displacements of
mining areas from a single-geometry InSAR dataset. J. Geod. 2018, 92, 529–544. [CrossRef]

20. Xing, X.M.; Zhu, Y.K.; Yuan, Z.H.; Xiao, L.; Liu, X.B.; Chen, L.F.; Xia, Q.; Liu, B. Predicting mining-induced dynamic deformations
for drilling solution rock salt mine based on probability integral method and weibull temporal function. Int. J. Remote Sens. 2020,
42, 639–671. [CrossRef]

21. Wang, L.Y.; Deng, K.Z.; Zheng, M.N. Research on ground deformation monitoring method in mining areas using the probability
integral model fusion D-InSAR, sub-band InSAR and offset-tracking. Int. J. Appl. Earth Obs. 2020, 85, 101981. [CrossRef]

22. Xing, X.M.; Xiao, L.; Bao, L.; Chen, L.F.; Yuan, Z.H. An InSAR Prediction Method for Mining Subsidence in Drilling Water-Soluble
Salt Mines. Chinese Patent ZL201910168502.8, 16 March 2021.

23. Zhu, G.Y.; Shen, H.X.; Wang, L.G. Study of dynamic prediction function of surface movement and deformation. Chin. J. Rock Mech. Eng.
2011, 30, 1889–1895.

24. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline
differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [CrossRef]

25. Lauknes, T.R.; Zebker, H.A.; Larsen, Y. InSAR Deformation Time Series Using an L1-Norm Small-Baseline Approach.
IEEE Trans. Geosci. Remote Sens. 2010, 49, 536–546. [CrossRef]

26. Li, D.; Deng, K.Z.; Gao, X.X.; Niu, H.P. Monitoring and analysis of surface subsidence in mining areas based on SBAS-InSAR.
Geom. Inf. Sci. Wuhan Univ. 2018, 43, 1531–1537.

27. Zhang, Y.; Meng, X.M.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating slow-moving landslides in the Zhouqu
region of China using InSAR time series. Landslides 2018, 5, 1299–1315. [CrossRef]

28. Wang, Q.M. Water-Soluble Salt Mine Mining and Design; Chemical Industry Press: Beijing, China, 2016; pp. 46–71.
29. Yao, L.; Sethares, W.A. Nonlinear parameter estimation via the genetic algorithm. IEEE Trans. Signal Process. 1994, 42, 927–935.

http://doi.org/10.1007/s10064-017-1173-6
http://doi.org/10.1007/s00254-007-0730-x
http://doi.org/10.3390/rs12233919
http://doi.org/10.1029/2020GL087603
http://doi.org/10.5194/se-12-15-2021
http://doi.org/10.3390/rs11111258
http://doi.org/10.1016/j.trpro.2020.02.097
http://doi.org/10.3390/s21175769
http://doi.org/10.3390/rs10091392
http://doi.org/10.1109/JSTARS.2020.3028083
http://doi.org/10.1109/TGRS.2016.2551779
http://doi.org/10.3390/rs10091444
http://doi.org/10.1007/s00190-014-0757-1
http://doi.org/10.1109/TGRS.2017.2682192
http://doi.org/10.1007/s00190-017-1079-x
http://doi.org/10.1080/01431161.2020.1813345
http://doi.org/10.1016/j.jag.2019.101981
http://doi.org/10.1109/TGRS.2002.803792
http://doi.org/10.1109/TGRS.2010.2051951
http://doi.org/10.1007/s10346-018-0954-8


Remote Sens. 2022, 14, 842 24 of 24

30. Xing, X.M.; Chang, H.C.; Chen, L.F.; Zhang, J.H.; Yuan, Z.H.; Shi, Z.N. Radar Interferometry Time Series to Investigate Deformation
of Soft Clay Subgrade Settlement—A Case Study of Lungui Highway, China. Remote Sens. 2019, 11, 429. [CrossRef]

31. Tian, Y.G. Study on Genetic Algorithm for Nonlinear Least Squares Estimation; Wuhan University Press: Wuhan, China, 2003.
32. Xiao, H.F.; Tan, G.Z. Study on Fusing Simplex Search into Genetic Algorithm. Comput. Eng. Appl. 2008, 44, 30–33.
33. Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Yi, H.W.; Feng, G.C. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic

Model. Remote Sens. 2017, 9, 125. [CrossRef]
34. Duan, M.; Xu, B.; Li, Z.W.; Wu, W.H.; Liu, J.H. Adaptively selecting interferograms for SBAS-InSAR based on graph theory and

turbulence atmosphere. IEEE Access 2020, 99, 112898–112909. [CrossRef]
35. Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038.

[CrossRef]
36. Costantini, M.; Rosen, P.A. A generalized phase unwrapping approach for sparse data. In Proceedings of the IEEE International

Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; pp. 267–269.
37. Li, Z.W.; Ding, X.L.; Zheng, D.W.; Huang, C. Least squares-based filter for remote sensing image noise reduction.

IEEE Trans. Geosci. Remote Sens. 2008, 46, 2044–2049. [CrossRef]
38. Fan, H.D.; Cheng, D.; Deng, K.Z.; Chen, B.Q.; Zhu, C.G. Subsidence monitoring using D-InSAR and probability integral prediction

modelling in deep mining areas. Surv. Rev. 2015, 47, 438–445. [CrossRef]
39. Cannavo, F. Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comput. Geosci. 2012, 44,

52–59. [CrossRef]
40. Ma, Z.Y.; Nie, C.X.; Wang, R.T. Geological Basis and Mining Technology of Well and Mineral Salt; National Mine Salt Industry Science

and Technology Information Station: Chengdu, China, 1992; pp. 82–115.
41. Fomelis, M.; Papageorgiou, E.; Stamatopoulos, C. Episodic ground deformation signals in Thessaly Plain (Greece) revealed by

data mining of SAR interferometry time series. Int. J. Remote Sens. 2016, 37, 3696–3711. [CrossRef]
42. Precipitation and Temperature Data of Lixian City, China. Available online: https://tianqi.911cha.com/lixian/2016.html (accessed

on 15 December 2021).

http://doi.org/10.3390/rs11040429
http://doi.org/10.3390/rs9020125
http://doi.org/10.1109/ACCESS.2020.3002990
http://doi.org/10.1029/1998GL900033
http://doi.org/10.1109/TGRS.2008.916981
http://doi.org/10.1179/1752270614Y.0000000153
http://doi.org/10.1016/j.cageo.2012.03.008
http://doi.org/10.1080/01431161.2016.1201233
https://tianqi.911cha.com/lixian/2016.html

	Introduction 
	Materials and Methods 
	Dynamic Coordinate-Time Probability Integration Model 
	InSAR Modeling Based on CT-PIM (InSAR-CTPIM) 
	CT-PIM Parameters Estimation Based on InSAR Phases 
	Flow Chart and Processing Steps 

	Results 
	Simulated Experiment 
	Real Data Experiment 
	Study Area and SAR dataset 
	SAR Data Acquisition and Preprocessing 
	PIM Parameter Estimation Based on InSAR-CTPIM 
	Deformation Prediction Based on CT-PIM 

	Accuracy Analysis 
	Accuracy Evaluation for InSAR-CTPIM Monitored Subsidence 
	Accuracy Evaluation for CT-PIM Predicted Subsidence 
	Sensitivity Analysis on CT-PIM Parameters 


	Discussion 
	Conclusions 
	Patents 
	References

