Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Assessment Methods
3. Results
3.1. Performance of IRI-2016 Model Options for foF2
3.2. Performance of the Three IRI-2016 Model Options for hmF2
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Bilitza, D. International Reference Ionosphere 2000. Radio Sci. 2001, 36, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D.; Reinisch, B.W. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res. 2008, 42, 599–609. [Google Scholar] [CrossRef]
- Bilitza, D.; McKinnell, L.A.; Reinisch, B.; Fuller-Rowell, T. The international reference ionosphere today and in the future. J. Geod. 2011, 85, 909–920. [Google Scholar] [CrossRef]
- Vryonides, P.; Haralambous, H. Comparison of COSMIC measurements with the IRI-2007 model over the eastern Mediterranean region. J. Adv. Res. 2013, 4, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Sezen, U.; Sahin, O.; Arikan, F.; Arikan, O. Estimation of hmF2 and foF2 Communication Parameters of Ionosphere F2-Layer Using GPS Data and IRI-Plas Model. IEEE Trans. Antennas Propag. 2013, 61, 5264–5273. [Google Scholar] [CrossRef] [Green Version]
- Altadill, D.; Magdaleno, S.; Torta, J.M.; Blanch, E. Global empirical models of the density peak height and of the equivalent scale height for quiet conditions. Adv. Space Res. 2013, 52, 1756–1769. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, C.; Truhlik, V.; Richards, P.; McKinnell, L.A.; Reinisch, B. The International Reference Ionosphere—A model of international collaboration. J. Space Weather. Space Clim. 2014, 4, 689–721. [Google Scholar] [CrossRef]
- Bilitza, D.; Eyfrig, R.; Sheikh, N.M. A global model for the height of the F2-peak using M3000 values from the CCIR numerical map. Telecommun. J. 1979, 49, 549–553. [Google Scholar]
- Bilitza, D.; Rawer, K.; Pallaschke, S.; Rush, C.; Matuura, N.; Hoegy, W. Progress in modeling the ionospheric peak and topside electron density. Adv. Space Res. 1987, 7, 5–12. [Google Scholar] [CrossRef]
- Codrescu, M.V.; Fuller-Rowell, T.J.; Kutiev, I.S. Modeling the F layer during specific geomagnetic storms. J. Geophys. Res. Atmos. 1997, 102, 14315–14330. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Araujo-Pradere, E.; Codrescu, M.V. An empirical ionospheric storm-time correction model. Adv. Space Res. 2000, 25, 139–146. [Google Scholar] [CrossRef]
- Shubin, V.N. Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Adv. Space Res. 2015, 56, 916–928. [Google Scholar] [CrossRef]
- Adeniyi, J.O.; Adebesin, B.O.; Lkubanni, S.O.; Adebiyi, S.J.; Babatunde, J.G. Validating IRI-2016 for quiet-time F2-region peak electron density height (hmF2) at different latitudes during moderate solar activity. Adv. Space Res. 2021, 68, 1366–1376. [Google Scholar] [CrossRef]
- Yadav, S.; Dabas, R.S.; Das, R.M.; Upadhayaya, A.K.; Sharma, K.; Gwal, A.K. Diurnal and seasonal variation of F2-layer ionospheric parameters at equatorial ionization anomaly crest region and their comparison with IRI-2001. Adv. Space Res. 2009, 45, 361–367. [Google Scholar] [CrossRef]
- Bertoni, F.; Sahai, Y.; Lima, W.L.C.; Fagundes, P.R.; Pillat, V.G.; Beckner-Guedes, F.; Abalde, J.R. IRI-2001 model predictions compared with ionospheric data observed at Brazilian low latitude stations. Ann. Geophys. 2006, 24, 2191–2200. [Google Scholar] [CrossRef] [Green Version]
- Arikan, F.; Sezen, U.; Gulyaeva, T. Comparison of IRI-2016 F2 Layer Model Parameters With Ionosonde Measurements. J. Phys. Res. 2019, 124, 8092–8109. [Google Scholar] [CrossRef]
- Grozov, V.P.; Kotovich, G.V. A comparison of results derived from scaling VS chirp-ionosonde ionograms with the international reference ionosphere (IRI). J. Atmos. Sol.-Terr. Phys. 2003, 65, 409–416. [Google Scholar] [CrossRef]
- Rush, C.; Fox, M.; Bilitza, D.; Davies, K.; McNamara, L.; Stewart, F.; Pokempner, M. Ionospheric mapping—An update of foF2 coefficients. Telecommun. J. 1989, 56, 179–182. [Google Scholar]
- Magdaleno, S.; Altadill, D.; Herraiz, M.; Blanch, E.; Morena, B.D.L. Ionospheric peak height behavior for low, middle and high latitudes: A potential empirical model for quiet conditions—Comparison with the IRI-2007 model. J. Atmos. Solar-Terr. Phys. 2011, 73, 1810–1817. [Google Scholar] [CrossRef]
- Amarante, G.M.; Santamaría, M.C.; Alazo, K.; Radicella, S.M. Validation of the STORM model used in IRI with ionosonde data. Adv. Space Res. 2007, 39, 681–686. [Google Scholar] [CrossRef]
- Araujo-Pradere, E.A. Validation of the STORM response in IRI2000. J. Geophys. Res. Space Phys. 2003, 108, 1120. [Google Scholar] [CrossRef]
- Araujo-Pradere, E.A.; Fuller-Rowell, T.J.; Codrescu, M.V.; Anghel, A. Evaluation and prospects for storm-time corrections in the International Reference Ionosphere. Adv. Space Res. 2003, 33, 902–909. [Google Scholar] [CrossRef]
- Timoçin, E.; Ünal, İ.; Göker, Ü.D. Comparison of IRI-2016 foF2 predictions with the observations at different latitudes during geomagnetic storms. Geomagn. Aeron. 2018, 58, 846–856. [Google Scholar] [CrossRef]
- Lemma, E.M.; Moldwin, M.B.; Yeshita, B.D.; Gereme, M.N. The performance of IRI-2016 in the African sector of equatorial ionosphere for different geomagnetic conditions and time scales. J. Atmos. Sol. Terr. Phys. 2019, 186, 11–38. [Google Scholar]
- Ameen, M.A.; Khursheed, H.; Jabbar, M.A.; Ali, M.S.; Chishtie, F. Variation of hmF2 and NmF2 deduced from DPS-4 over Multan (Pakistan) and their comparisons with IRI-2012 & IRI-2016 during the deep solar minimum between cycles 23 & 24. Adv. Space Res. 2018, 61, 1726–1735. [Google Scholar]
- Araujo-Pradere, E.A.; Buresova, D.; Fuller-Rowell, D.J.; Fuller-Rowell, T.J. Initial results of the evaluation of IRI hmF2 performance for minima 22–23 and 23–24. Adv. Space Res. 2013, 51, 630–638. [Google Scholar] [CrossRef]
- Brum, C.G.M.; Rodrigues, F.S.; Santos, P.T.; Matta, A.C.; Aponta, N.; Gonzalez, S.A.; Robles, E. A modeling study of foF2 and hmF2 parameters measured by the Arecibo incoherent scatter radar and comparison with IRI model predictions for solar cycles 21, 22, and 23. J. Geophys. Res. Space Phys. 2011, 116, A03324. [Google Scholar] [CrossRef]
- Ehinlafa, O.E.; Falaiye, O.A.; Adeniyi, J. Comparison of observed hmF2 and IRI 2007 model with M(3000)F2 estimation of hmF2 at low solar activity for an equatorial station. Adv. Space Res. 2010, 46, 89–93. [Google Scholar] [CrossRef]
- Oyeyemi, E.O.; Adewale, A.O.; Adeloye, A.B.; Akala, A.O. Comparison between IRI-2001 predictions and observed measurements of hmF2 over three high latitude stations during different solar activity periods. J. Atmos. Sol. Terr. Phys. 2010, 72, 676–684. [Google Scholar] [CrossRef]
- Sezen, U.; Gulyaeva, T.; Arikan, F. Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons. J. Geophys. Res. Space Phys. 2018, 123, 1441–1456. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, L. Accuracy Analysis of IRI-2016 International Reference Ionospheric Model at Altitude of 60~100 km. Acta Geod. Cartogr. Sin. 2020, 49, 42–54. [Google Scholar]
- Liu, Z.; Fang, H.; Wang, L.; Niu, J.; Meng, X. A comparison of ionosonde measured foF2 and IRI-2016 predictions over China. Adv. Space Res. 2019, 63, 1926–1936. [Google Scholar] [CrossRef]
- Rao, S.S.; Chakraborty, M.; Pandey, R. Ionospheric variations over Chinese EIA region using foF2 and comparison with IRI-2016 model. Adv. Space Res. 2018, 62, 84–93. [Google Scholar] [CrossRef]
- CCIR. Comite Consultatif International des Radio Communications. Reports 340-1 and 340-6; International Telecommunication Union: Geneva, Switzerland, 1996. [Google Scholar]
- Jiandi, F.; Zhengtao, W.; Weiping, J.; Zhenzhen, Z.; Bingbing, Z. A New Regional Total Electron Content Empirical Model in Northeast China. Adv. Space Res. 2016, 58, 1155–1167. [Google Scholar]
Station | Geomagnetic Quiet Period | Geomagnetic Disturbed Period | ||
---|---|---|---|---|
Days | Total Numbers | Days | Total Numbers | |
Mohe | 710 | 15,359 | 21 | 382 |
Beijing | 710 | 14,688 | 21 | 435 |
Sanya | 710 | 16,081 | 21 | 460 |
IRI-2016 foF2 Options | Geomagnetic Quiet Days | Geomagnetic Disturbed Days | ||||
---|---|---|---|---|---|---|
Mohe | Beijing | Sanya | Mohe | Beijing | Sanya | |
URSI storm ‘on’ | 0.89 | 0.81 | 1.58 | 0.82 | 0.98 | 1.72 |
URSI storm ‘off’ | 0.89 | 0.82 | 1.59 | 0.90 | 1.05 | 1.81 |
CCIR storm ‘on’ | 0.84 | 0.83 | 1.55 | 0.87 | 0.93 | 1.76 |
CCIR storm ‘off’ | 0.84 | 0.83 | 1.57 | 0.96 | 1.00 | 1.86 |
Season | Mohe | Beijing | Sanya | |||
---|---|---|---|---|---|---|
URSI | CCIR | URSI | CCIR | URSI | CCIR | |
Spring 2014 | 1.2 | 1.16 | 0.92 | 0.92 | 1.81 | 1.77 |
Spring 2016 | 0.83 | 0.74 | 0.83 | 0.83 | 1.72 | 1.69 |
Summer 2014 | 0.85 | 0.86 | 0.88 | 0.89 | 1.30 | 1.25 |
Summer 2016 | 0.65 | 0.68 | 0.75 | 0.82 | 1.13 | 1.15 |
Autumn 2014 | 0.90 | 0.87 | 0.75 | 0.73 | 1.47 | 1.50 |
Autumn 2016 | 0.65 | 0.66 | 0.69 | 0.74 | 1.55 | 1.64 |
Winter 2014 | 0.93 | 0.87 | 0.79 | 0.83 | 1.69 | 1.56 |
Winter 2016 | 0.76 | 0.65 | 0.69 | 0.70 | 1.22 | 1.20 |
Season | Mohe | Beijing | Sanya | |||
---|---|---|---|---|---|---|
URSI | CCIR | URSI | CCIR | URSI | CCIR | |
Spring 2014 | 0.10 | 0.09 | 0.07 | 0.07 | 0.09 | 0.09 |
Spring 2016 | 0.05 | 0.03 | 0.04 | 0.04 | 0.12 | 0.12 |
Summer 2014 | 0.04 | 0.05 | 0.03 | 0.04 | 0.06 | 0.04 |
Summer 2016 | 0.06 | 0.07 | 0.06 | 0.07 | 0.04 | 0.06 |
Autumn 2014 | 0.05 | 0.04 | 0.03 | 0.02 | 0.04 | 0.06 |
Autumn 2016 | 0.04 | 0.05 | 0.04 | 0.14 | 0.04 | 0.16 |
Winter 2014 | 0.1 | 0.09 | 0.05 | 0.08 | 0.09 | 0.06 |
Winter 2016 | 0.14 | 0.09 | 0.08 | 0.09 | 0.10 | 0.06 |
Season | Mohe | Beijing | Sanya | ||||||
---|---|---|---|---|---|---|---|---|---|
AMTB-2013 | SHU-2015 | BSE-1979 | AMTB-2013 | SHU-2015 | BSE-1979 | AMTB-2013 | SHU-2015 | BSE-1979 | |
Spring 2014 | 21.37 | 20.95 | 21.73 | 19.78 | 22.71 | 19.95 | 34.66 | 31.00 | 33.30 |
Spring 2016 | 26.33 | 21.51 | 27.00 | 25.94 | 20.73 | 24.04 | 32.62 | 32.06 | 30.84 |
Summer 2014 | 31.20 | 27.64 | 29.33 | 29.24 | 25.49 | 25.04 | 35.77 | 36.98 | 32.56 |
Summer 2016 | 36.48 | 29.37 | 34.42 | 35.46 | 28.32 | 29.96 | 34.88 | 34.77 | 32.80 |
Autumn 2014 | 25.86 | 21.02 | 24.29 | 22.04 | 21.67 | 22.05 | 34.28 | 31.40 | 31.37 |
Autumn 2016 | 31.76 | 24.09 | 26.64 | 27.90 | 20.92 | 23.03 | 33.23 | 32.03 | 30.44 |
Winter 2014 | 24.00 | 21.29 | 22.09 | 23.81 | 21.80 | 23.23 | 43.94 | 31.38 | 31.15 |
Winter 2016 | 34.12 | 24.19 | 23.57 | 32.36 | 21.88 | 24.28 | 39.55 | 32.23 | 31.52 |
Season | Mohe | Beijing | Sanya | ||||||
---|---|---|---|---|---|---|---|---|---|
AMTB-2013 | SHU-2015 | BSE-1979 | AMTB-2013 | SHU-2015 | BSE-1979 | AMTB-2013 | SHU-2015 | BSE-1979 | |
Spring 2014 | 0.03 | 0.03 | 0.04 | 0.02 | 0.03 | 0.02 | 0.06 | 0.04 | 0.05 |
Spring 2016 | 0.07 | 0.03 | 0.07 | 0.07 | 0.02 | 0.05 | 0.05 | 0.04 | 0.04 |
Summer 2014 | 0.07 | 0.06 | 0.07 | 0.05 | 0.03 | 0.02 | 0.04 | 0.04 | 0.02 |
Summer 2016 | 0.11 | 0.07 | 0.10 | 0.09 | 0.04 | 0.06 | 0.04 | 0.05 | 0.03 |
Autumn 2014 | 0.05 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.05 | 0.04 | 0.04 |
Autumn 2016 | 0.09 | 0.04 | 0.06 | 0.07 | 0.02 | 0.04 | 0.05 | 0.05 | 0.04 |
Winter 2014 | 0.04 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.10 | 0.05 | 0.05 |
Winter 2016 | 0.11 | 0.05 | 0.05 | 0.09 | 0.03 | 0.05 | 0.09 | 0.04 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, Z.; Shen, Y.; Li, W.; Xu, F.; Li, X. Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years. Remote Sens. 2022, 14, 860. https://doi.org/10.3390/rs14040860
Zhang B, Wang Z, Shen Y, Li W, Xu F, Li X. Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years. Remote Sensing. 2022; 14(4):860. https://doi.org/10.3390/rs14040860
Chicago/Turabian StyleZhang, Bingbing, Zhengtao Wang, Yi Shen, Wang Li, Feng Xu, and Xiaoxiao Li. 2022. "Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years" Remote Sensing 14, no. 4: 860. https://doi.org/10.3390/rs14040860
APA StyleZhang, B., Wang, Z., Shen, Y., Li, W., Xu, F., & Li, X. (2022). Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years. Remote Sensing, 14(4), 860. https://doi.org/10.3390/rs14040860